[image: image1.jpg]

NHCI API Programming Guide
Copyright & Trademark

© 2007, Lantronix. All rights reserved. No part of the contents of this book may be transmitted or reproduced in any form or by any means without the written permission of Lantronix. Printed in the United States of America.

Ethernet is a trademark of XEROX Corporation. UNIX is a registered trademark of The Open Group. Windows 95, Windows 98, Windows 2000, and Windows NT are trademarks of Microsoft Corp. Netscape is a trademark of Netscape Communications Corporation.

Contacts

Lantronix Corporate Headquarters
15353 Barranca Parkway
Irvine, CA 92618, USA
Phone:
949-453-3990
Fax:
949-453-3995

Technical Support
Online:
www.lantronix.com/support

Sales Offices
For a current list of our domestic and international sales offices, go to the Lantronix web site at www.lantronix.com/about/contact .
Disclaimer & Revisions

The information in this guide may change without notice. The manufacturer assumes no responsibility for any errors that may appear in this guide.
	Date
	Rev.
	Comments

	09/2007
	A
	Initial Document

Contents

4Introduction

4Overview

4Requirements

4Query Functions:

5Notifications:

5Actions:

6Installation and Packaging

6API Calls

Introduction
This document describes the Application Programming Interface (API) to the patent pending NHCI technology. It takes the viewpoint of the programmer using the API
Overview
NHCI technology is a patent pending scheme whereby USB Devices can be connected to one or more Windows hosts via a network. NHCI further allows these devices to be shared using several different arrangements.

The technology makes it appear that devices connected to the USB Server and subscribed by the client host are directly connected to the host. USB Class and Vendor Specific Device Drivers on the host work just as if the device were plugged in directly.

Subscription sharing allows end users, using a special Management Application, to browse one or more discovered NHCI servers and the USB Devices connected to them. The user can then select and connect to one of those devices, provided that it isn’t currently in use by another user. The device is dedicated to the subscribing user until he gives it up and it is not available to another user during that time.
Requirements

The goal of the NHCI API is to allow 3rd party application software to query, manage and receive notifications from the NHCI software relating to the connection, disconnection and busy status of USB devices connected to NHCI USB Servers.

Conceptually most of this can be thought of as giving a 3rd part application the same control that the admin user has through the USB Server Administration program.

Query Functions:
1. Get list of connected NHCI servers

a) Server name

b) Server Serial number

c) IP Address

d) Password required

2. For a given server, get list of attached USB Devices

a) USB Vendor ID

b) USB Product ID

c) Location ID (which port, Hub, etc.)

3. For a given USB Server and attached USB Device, get the device status

a) Available

b) Shared

c) In use by user xxx

d) If connected to local client, get status of device local USB descriptor cache

e) Device data usage statistics

Notifications:

1. New Server connection established (name, serial, IP)

2. Existing Server connection lost (name, serial, IP)

3. Device added/removed (server serial, VID, PID, LocationID)

4. Device busy/not-busy (server serial, VID, PID, LocationID, Status)

Actions:

1. Subscribe Device (connect)

2. Unsubscribe Device

3. Change local auto-connect setting for Device

4. Connect to Server (to provide password, or because server is outside local server discovery range.)

5. Disconnect from Server (outside local discovery range)

Other possible functions (these items are for consideration, and will not necessarily be included in the next version):

1. Change Server’s configuration

a) Server Name

b) Server Network interface (address type, etc.)

c) Access password (config password will continue to be controlled by the management application and must be provided over the API as needed.)

d) Server Device configuration

i. Name

ii. Password

iii. Connection mode

e) Dedicated Client name

2. Manually subscribe/unsubscribe a device from a 3rd client. This would provide a super-user capability not present in the current management UI. Server firmware changes may be required. This would allow one client host running a special Application to control the deployment of a device or group of devices on one or multiple servers.

3. Manage local settings

a) Client Name

b) UDP port

c) Multicast address

d) Saved Server Access records

e) Saved Device Access records

Installation and Packaging

The files required to use the API are:

nhciClientApi.h (reproduced later in this document)

nhciClientApi.lib (required for linker)

nhciClientApi.dll (required for the runtime)

These files have to be installed in the appropriate place for the user’s development system. The .dll can be placed either in WINDOWS/SYSTEM32 or in an appropriate local directory.

API Calls

NHCI API calls fall into several categories:

1. initialization (NHCIAPIinit() and NHCIAPIstop())

2. gathering information on the available servers and devices connected to them (NHCIGetServerList() and NHCIGetDeviceList())

3. receiving optional notifications (NHCIpostNotify() and NHCIcancelNotify())

4. Affecting changes in device connections (NHCIAttachDevice() and NHCIDetachDevice())

Note that notifications are optional, but they are the only way of receiving updates of changing device and server status.

At the very minimum, to attach a device, you have to:

· initialize the API

· gather the appropriate server and device information so that you have the needed server and device reference numbers

· issue an NHCIAttachDevice with the associated reference numbers

Unless otherwise specified all NHCI API calls return either 0 upon success or non-zero for an error.

NHCIAPIinit

int

NHCIAPIinit();

Initializes the NHCI API. Must be called before anything else.

Parameters:

Returns:

0 if successful, error if not

NHCIAPIstop

void

NHCIAPIstop();

Discontinues use of NHCI API and allows it to clean up its resources.

NHCIGetServerList

int

NHCIGetServerList(struct NHCIServerList *pSList);

Get the list of currently known servers to pSList[], fills in countServers.

Parameters:

pSList
pointer to a struct NHCIServerList, filled in by call

Returns:

0 if ok, <0 error
NHCIGetDeviceList

int

NHCIGetDeviceList(int serverRefnum, struct NHCIDeviceList *pDList);

Get the list of currently known devices for server with refnum, to pDList[], fills in countDevice

Parameters:

serverRefnum
server reference number, from struct NHCIServerList

returned by NHCIGetServerList()

pDList

pointer to a struct NHCIDeviceList, filled in by call

Returns:

0 if ok, <0 error
NHCIpostNotify

void

NHCIpostNotify(NHCInotifiyCallback notify, void *refnum);

Post an NHCI API notification callback.

Parameters:

notify

pointer to function of type NHCInotifyCallback

refnum

unique user provided void* that is passed to callback,

must be present if NHCIcancelNotify is used.

NHCIcancelNotify

void

NHCIcancelNotify(void *refnum);

Cancels a notification callback.

Parameters:

refnum

unique value previously provided to NHCIpostNotify()

NHCIAttachDevice

int

NHCIAttachDevice(int serverRefnum, int deviceRefnum);

Attach the given device locally.

request completes asynchronously and results in notification

Parameters:

serverRefnum

server reference number, from struct NHCIServerList

returned by NHCIGetServerList()

deviceRefnum

device reference number, from struct NHCIDeviceList

returned by NHCIGetDeviceList()

Returns:

<0 if error, 0 if request sent
NHCIDetachDevice

int

NHCIDetachDevice(int serverRefnum, int deviceRefnum);

Unsubscribe device

Parameters:

serverRefnum

server reference number, from struct NHCIServerList

returned by NHCIGetServerList()

deviceRefnum

device reference number, from struct NHCIDeviceList

returned by NHCIGetDeviceList()

Returns:

<0 if error, 0 if request sent
/*

 * nhciclientapi.h

 * NHCI

 *

 * Created on 2/27/07.

 * Copyright 2007. All rights reserved.

 *

 */
/*--- NHCI API Requirements

Query Functions:

1.
Get list of connected NHCI servers

a.
Server name

b.
Server Serial number

c.
IP Address

d.
Password required

2.
For a given server, get list of attached USB Devices

a.
USB Vendor ID

b.
USB Product ID

c.
Location ID (which port, Hub, etc.)

3.
For a given USB Server and attached USB Device, get the device status

a.
Available

b.
Shared

c.
In use by user xxx

d.
If connected to local client, get status of device local USB descriptor cache

e.
Device data usage statistics

Notifications:

1.
New Server connection established (name, serial, IP)

2.
Existing Server connection lost (name, serial, IP)

3.
Device added/removed (server serial, VID, PID, LocationID)

4.
Device busy/not-busy (server serial, VID, PID, LocationID, Status)

Actions:

1.
Subscribe Device (connect)

2.
Unsubscribe Device

3.
Change local auto-connect setting for Device (later version)

4.
Connect to Server (to provide password, or because server is outside local server discovery range.) (later version)

5.
Disconnect from Server (outside local discovery range) (later version)

---*/
enum
{

kNHCIMaxServerNameLen
= 64,

kNHCIMaxServers

= 8,

kNHCIMaxDevicesServer
= 8,

kNHCIMaxDeviceNameLen
= 32,

kNHCIMaxSerialStringLen
= 256,

kNHCIMaxClientNameLen
= 64
};

enum

// NHCIServerEntry flags
{

kNHCIServerNeedsPassword
= 0x0001,

kNHCIServerModelUS4A

= 0x0002,

kNHCIServerModelU2S2A

= 0x0004
};

enum

// NHCIDeviceEntry flags
{

kNHCIDeviceBusy

= 0x0001,
// device is in use (including locally)

kNHCIDeviceUsesPswd
= 0x0002,
// when device needs password

kNHCIDeviceConnected
= 0x0004

// device connected locally
};

struct NHCIServerEntry

{

int
serialNo,

// Server serial number as a 32 bit binary

IPAddr,

// IP address in standard network byte order

flags;

char
serverName[kNHCIMaxServerNameLen];
// C-string assigned name of server

int
refnum;

// for calls that need to refer to this Server
};

struct NHCIServerList

{

int
countServers;

struct NHCIServerEntry
serverEntries[kNHCIMaxServers];

};

struct NHCIDeviceEntry

{

char
productName[kNHCIMaxDeviceNameLen],
// USB product Name or 1284 string

NHCIdeviceName[kNHCIMaxDeviceNameLen],
// if present, assigned name

USBSerialString[kNHCIMaxSerialStringLen],// if present, USB Serial number text, in ascii

userName[kNHCIMaxClientNameLen];
// name of user, if busy

int
refnum;
// for calls that need to refer to this Device (within server)

unsigned short

USBVid,

// USB Vendor ID

USBPid;

// USB Product ID

unsigned char

USBClass,

USBSubClass,

USBProtocol,

fill;

int

flags;

// NHCI API flags, defined above
};

struct NHCIDeviceList

{

int

countDevices;

struct NHCIDeviceEntry
deviceEntries[kNHCIMaxDevicesServer];

};

//
// initialize API
//
int

NHCIAPIinit();

void

NHCIAPIstop();

//
// API Query calls
//
//
// get the list of currently known servers to pSList[], fills in countServers
// return 0 if ok, <0 error
//
int

NHCIGetServerList(struct NHCIServerList *pSList);

//
// get the list of currently known devices for server with refnum, to pDList[], fills in countDevice
// return 0 if ok, < 0 if error
//
int

NHCIGetDeviceList(int refnum, struct NHCIDeviceList *pDList);

enum
{

kNHCINotifyNewServerConn

= 1,

kNHCINotifyServerConnLost

= 2,

kNHCINotifyDeviceAdded

= 3,

kNHCINotifyDeviceRemoved

= 4,

kNHCINotifyDeviceStatusUpdate
= 5,

kNHCINotifyAttachComplete

= 6,

// p1 0 if good, !=0 if bad

kNHCIDeviceStatusAvailable

= 1,

kNHCIDeviceStatusBusy

= 2,

kNHCIDeviceStatusLocalConnect
= 3
};

struct NHCInotification

{

int

note,

serverSerial,

serverIP,

deviceVid,

devicePid,

deviceLocationID,

status,

p1,

p2,

p3,

p4;

char

name[kNHCIMaxServerNameLen];

};

typedef void (*NHCInotifiyCallback)(void * refnum, struct NHCInotification *pNote);

void

NHCIpostNotify(NHCInotifiyCallback notify, void *refnum),

NHCIcancelNotify(void *refnum);

//
// Actions
//
//
// Attach the given device locally
// returns <0 if error, 0 if request sent
// request completes asynchronously and results in notification
int

NHCIAttachDevice(int serverRefnum, int deviceRefnum);

//
// unsubscribe device
// returns <0 if error, 0 if request sent
// request completes asynchronously
int

NHCIDetachDevice(int serverRefnum, int deviceRefnum);

Part Number 900-528
Revision A September 2007
[image: image1.jpg]Title of User Guide
12

