

Paradigm C++ Professional
Language Reference

Paradigm Systems

The authors of this software make no expressed or implied warranty of any kind with regard to this software
and in no event will be liable for incidental or consequential damages arising from the use of this product. The
software described in this document is furnished under a license and may only be used or copied in accordance
with the terms of the licensing agreement.

The information in this document is subject to change without notice.

Copyright © 2006 Paradigm Systems. All rights reserved.

Paradigm C++ Professional™ is a trademark of Paradigm Systems. Other brand and product names are
trademarks or registered trademarks of their respective holders.

December 8, 2005

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of Paradigm Systems.

Paradigm Systems
3301 Country Club Road

Suite 2214
Endwell, NY 13760

USA

(607)748-5966
(607)748-5968 (FAX)

Sales information: sales@devtools.com
Technical support: support@devtools.com

Web: http://www.devtools.com

For prompt attention to your technical questions, contact our technical support team via the Internet at
support@devtools.com. Please note that our 90 days of free technical support is only available to registered
users of Paradigm C++. If you haven't yet done so, take this time to register your products under the Paradigm
C++ Help menu or online at http://www.devtools.com.

Paradigm's SurvivalPak maintenance agreement will give you unlimited free technical support plus automatic
product updates for an additional 12 months. Call (607) 748-5966 to purchase this protection today.

Contents 3

Table of Contents

Chapter 1 Introduction
How this manual is organized....................................9
Typefaces and icons used in this manual9
Using help in Paradigm C++....................................10

Online help organization.......................................10
Getting help in Paradigm C++..............................11

Getting context-sensitive help...........................11
Accessing and using contents screens11
Using the index..11
Searching for keywords.....................................12
Help SpeedMenus..12
Contacting Paradigm...12

Chapter 2 Keywords
Keywords (by category) ...13
Paradigm C++ keyword extensions13
C++ specific keywords ..14
Modifiers..14
Operator keywords...15
Statement keywords...15
Type specifiers ...15
Register pseudovariables ...16
Parameter types and possible registers used16
Keyword alphabetical reference...............................16

asm, _asm, _ _asm..16
auto..17
break ...17
bool ...18
case ...19
catch..19
cdecl, _cdecl, _ _cdecl..20
char ...20
class ..20
const..21
continue...22
_cs, _ _cs ..23
default...23
delete...23

The delete operator with arrays23
Overloading the operator delete24

do ..24
double ...25
_ds, _ _ds ..25
enum..25
_es, _ _es ..26
_ _except...26
explicit ..26
_export, _ _export...27
extern ..29

far, _far, _ _far ..29
_fastcall, _ _fastcall ..30
finally ..30
float ...30
for..31
friend ...31
goto..32
huge, _huge, _ _huge ..32
if 32
_import, _ _import ..33
inline..33
int...33
_ _interrupt functions ..33
_loadds, _ _loadds...34
long..34
near, _near, _ _near ...34
new..35

Operator new placement syntax.........................36
operator new placement syntax example...........36
Handling errors for the new operator37
The operator new with arrays37
Example of the new and delete operators37
::operator new..38
Overloading the operator new39
Example of overloading the new and delete

operators ...39
operator ...40
pascal, _pascal, _ _pascal40
private ...40
protected..41
public...41
register...41
return...41
_ _rtti and the -RT option......................................42

Run-time type identification (RTTI) overview .42
__rtti example..43
-RT option and destructors43

_saveregs, _ _saveregs ..44
_seg, _ _seg...44
short...44
signed ..45
sizeof ...45
_ss, _ _ss ...46
static ..46
_stdcall, _ _stdcall...47
struct..47
switch ..48
template ...49

Paradigm C++ Language Reference4

this ..49
throw...50
_ _try...50
try..51
typedef ..51
typeid ..51
typename...52
union...53
unsigned..54
virtual..54
void ...54

Void pointers ...54
volatile ..55
while ...55

Data types...55
16-bit...55
32-bit...56

Chapter 3 Library routines
Reasons to access the RTL source code...................57
Guidelines for selecting run-time libraries57
Run-time libraries overview57
Static run-time libraries ...58
Dynamic-link libraries ...59
C++ prototyped routines ..59
Paradigm C++ library routines by category.............59

Classification routines ..59
Console I/O routines...60
Conversion routines..60
Diagnostic routines ...60
Inline routines ...60
Input/output routines...61
Interface routines (DOS, 8086, BIOS)61
Manipulation routines...62
Math routines..62
Memory routines...63
Miscellaneous routines ...64
Process control routines..64
Time and date routines..64
Variable argument list routines.............................64

Chapter 4 Run-time functions
Sample function entry..65
abort ...66
abs ..67
acos, acosl ..67
alloca..68
asctime..69
asin, asinl..69
assert ..70
atan, atanl ...71
atan2, atan2l ...71
atexit...72
atof, _atold ...73

atoi ..74
atol ..74
bsearch..75
cabs, cabsl ..76
calloc ..77
ceil, ceill ...78
_c_exit ..78
_cexit ..79
_chain_intr ..79
_clear87..80
clearerr..81
clock ...81
_control87...82
coreleft..83
cos, cosl ..83
cosh, coshl ..84
_crotl, _crotr ...85
ctime ...85
difftime ...86
disable, _disable, enable, _enable87
div...87
ecvt ...88
_ _emit_ _...89
_exit ..90
exit ..90
exp, expl ...91
_expand...92
fabs, fabsl..93
farcalloc..93
farfree ...94
farmalloc...94
farrealloc ..95
fclose ..96
fcloseall ..96
fcvt..97
feof..98
ferror...98
fflush...99
fgetc ..99
_fgetchar, _fgetwchar ...100
fgetpos ..100
fgets, fgetws..101
fileno...102
floor, floorl ...102
flushall ..103
fmod, fmodl ..103
FP_OFF, FP_SEG ..104
_fpreset ...105
free..105
freopen, wfreopen...106
frexp, frexpl ..107
_fstr*...107
gcvt ...108

Contents 5

geninterrupt..109
getc ...109
getchar..110
gets ...110
getvect, setvect ...111
getw ..112
gmtime..112
heapcheck...115
heapcheckfree...115
heapchecknode ...116
_heapchk ..116
heapfillfree ...117
_heapmin..117
_heapset..118
heapwalk ..119
hypot, hypotl ..119
inp...120
inport ..121
inportb ..121
inpw..122
int86..122
int86x..123
intr ..124
isalnum...125
isalpha ..125
isascii ...126
iscntrl..126
isdigit..127
isgraph..127
islower..128
isprint ...128
ispunct..129
isspace..129
isupper..130
isxdigit..130
itoa..131
labs ...131
ldexp, ldexpl...132
ldiv ...132
lfind ..133
localtime ...134
log, logl ..134
log10, log10l ..135
longjmp ..136
_lrotl, _lrotr ..137
lsearch ..137
ltoa..138
malloc...139
_matherr, _matherrl..140
max...142
mblen..142
mbstowcs..143
mbtowc...144

memccpy, _fmemccpy..144
memchr, _fmemchr...145
memcmp, _fmemcmp ...146
memcpy, _fmemcpy, _hmemcpy............................146
memicmp, _fmemicmp...147
memmove, _fmemmove, _hmemmove148
memset, _fmemset, _hmemset................................148
min..149
MK_FP ...149
mktime ..150
modfm modfl ..151
movedata...151
movmem, _fmovmem, _hmovmem........................152
_normalize_fptr ..152
offsetof..153
outp ...154
outpcb ...154
outport...155
outpw ..155
peek...156
peekb...157
perror ..157
poke ..159
pokeb ..159
poly, polyl ...160
pow, powl ...160
pow10, pow10l ...161
printf ...162
putc ...168
putchar ..168
puts ...169
putw ..169
qsort..170
raise ..171
rand ...172
random..172
randomize ...173
realloc ...173
_rotl, _rotr...174
scanf..175

The scanf format string175
Whitespace characters176
Non-whitespace characters176

Format specifiers...176
Type characters ...177
Input fields ..177
Assignment-suppression character......................178
Width specifiers ..178
Pointer-size and argument-type modifiers178

Pointer-size modifiers......................................178
Argument-type modifiers178

Format specifier conventions179
Single character conversion (%c)....................179

Paradigm C++ Language Reference6

Character array conversion (%[W]c)179
String conversion (%s)....................................179
Floating-point conversions (%e, %E, %f, %g,

and %G) ...179
Unsigned conversions (%d, %i, %o, %x, %D,

%I, %O, %X, %c, and %n)180
Search set conversion (%[search_set])............180
Rules convering search set ranges...................180

When …scanf functions stop scanning...............180
Stop and skip to next input field180
Terminate...181
…scanf functions...181

segread ...181
setbuf..182
setjmp ...183
setmem, _hsetmem...184
setmode ..184
setvbuf..185
signal ..186
sin, sinl ...189
sinh, sinhl ...190
sprintf ...190
sqrt, sqrtl ..191
srand ...192
sscanf..192
stackavail..193
_status87...194
stime ...194
stpcpy ...195
strcat, _fstrcat ...195
strchr, _fstrchr ..196
strcmp ...196
strcmpi..197
strcoll ...198
strcpy..198
strcspn, _fstrcspn..199
_strdate ...199
strdup, _fstrdup ..200
_strerror..201
strerror..201
strftime ...202

strftime format string..202
ANSI-defined format specifiers.............................202

POSIX-defined format specifiers203
POSIX-defined format specifier modifiers.........203

%O modifier..204
stricmp, _fstricmp ..204
strlen, _fstrlen...205
strlwr, _fstrlwr ...205
strncat, _fstrncat ...206
strncmp, _fstrncmp ...207
strncmpi..207
strncpy, _fstrncpy...208

strnicmp, _fstrnicmp ...208
strnset, _fstrnset..209
strpbrk, _fstrpbrk..210
strrchr, _fstrrchr ..210
strrev, _fstrrev ..211
strset, _fstrset..212
strspn, _fstrspn..212
strstr, _fstrstr ...213
_strtime ...213
strtod, _strtold...214
strtok, _fstrtok...215
strtol..216
strtoul..217
strupr, _fstrupr ..217
strxfrm..218
swab..219
tan, tanl ...221
tanh, tanhl ...221
time ...222
toascii ...222
_tolower..223
tolower..223
_toupper..224
toupper..224
ultoa ..225
ungetc..225
va_arg, va_end, va_start ...226
vprintf ...227
vscanf..228
vsprintf..229
vsscanf ..229
wcstombs ..230
wctomb ...231

Chapter 5 Global variables
_8087..233
_ctype..233
errno..234
_doserrno ..234
_sys_errlist ...235
_sys_nerr ..237
_floatconvert...237
_fmode..238
_new_handler ...238
_psp ..238
_ _throwExceptionName ..239
_ _throwFileName ..239
_ _throwLineNumber ...239

Chapter 6 Preprocessor directives
(Null directive) ..241
#define ..241
#undef...242

Using the -D and -U command-line options243

Contents 7

Keywords and protected words as macros243
Nesting parentheses and commas....................244
Token pasting with ##244
Converting to strings with #244
Using the backslash (\) for line continuation...244
Side effects and other dangers.........................244

#error..244
#if, #elif, #else, and #endif.....................................245
#ifdef and #ifndef...245
#include..246

Header file search with <header_name>246
Header file search with "header_name\247

#line..247
Pragma summary..247

#pragma anon_struct...248

#pragma argsused..248
#pragma check_stack..249
#pragma codeseg...249
#pragma comment...249
#pragma exit and #pragma startup249
#pragma hdrfile ...250
#pragma hdrstop..250
#pragma intrinsic...250
#pragma message ..250
#pragma option..251
#pragma pack..252
#pragma saveregs ..252
#pragma warn..253

Predefined macros ..253
Index...255

Paradigm C++ Language Reference8

Chapter 1, Introduction 9

C h a p t e r

1

Introduction

This book is a reference manual or the Paradigm C++ language. This book provides
detailed information about specific items such as functions, classes, macros, properties,
methods, and events. For details on getting started using Paradigm C++ or details about
its features, refer to The Paradigm C++ User's Guide.

How this manual is organized

This book is divided into the following chapters:

� Chapter 1, "Introduction," describes the organization of this manual, other areas in
Paradigm C++ to find detailed help on specific refernce items, and ways to obtain
technical assistance.

� Chapter 2, "Keywords," shows how the lexical tokens for Paradigm C++ are
categorized. It covers the different categories of word-like unit, known as tokens,
recognized by a language. It provides an alphabetical listing of keywords available in
Paradigm C++.

� Chapter 3, "Library routines," is an overview of the various classes, functions, and
macros that you can call from within your C and C++ programs to perform tasks.
These are collectively referred to as library routines.

� Chapter 4, "Run-time functions," is an alphabethical reference of all Paradigm C++
library functions. Each entry gives syntax, portability information, an operative
description, and return values for the function, together with a reference list of
related functions.

� Chapter 5, "Global variables," defines and discusses Paradigm C++'s global variables.
You can use these to save yourself a great deal of programming time on commonly
needed variables (such as dates, time, error messages, stack size, and so on).

� Chapter 6, "The preprocessor," discusses the CPP and CPP32 preprocessors and the
preprocessor functionality built into the Paradigm C++ compiler.

Typefaces and icons used in this manual

This manual uses the following special fonts:

Monospace This type represents text that you type or text as it appears onscreen.

Italics These are used to emphasize and introduce words, and to indicate
varaible names (identifiers), function names, class names, and
structure names.

Bold This type indicates reserved keywords words, format specifiers, and
command-line options.

Keycap This type represents a particular key you should press on your
keyboard. For example, "Press Del to erase the character."

Paradigm C++ Language Reference10

Key1+Key2 This indicates a command that requires you to press Key1 with Key2.
For example, Shift+a (although not a command) indicates the
uppercase letter "A."

ALL CAPS This type represents disk directories, file names, and application
names. (However, header file names are presented in lowercase to be
consistent with how these files are usually written in source code.)

Menu | Choice This represents menu commands. Rather than use in the phrase
"choose the Save command from the File menu," Paradigm manuals
use the convention "choose File | Save."

This icon indicates material that you should take special notice of.

Using help in Paradigm C++

The reference material covered in this manual is also available within the Paradigm C++
IDE through the Help system. The Paradigm C++ Programmer's Guide, The Paradigm
C++ Class Libraries Guide and The ObjectScripting Guide help files provide
descriptions of functions, header files, keywords, classes, and script functions used in
Paradigm C++. Using Help is a convenient way to get information about language
features, compiler options, and any tasks you need to perform while developing
applications in Paradigm C++.

Online help organization

The Help system is organized into Help files that include the following documentation:

Help file Description

Using Online Help Features of Paradigm C++ Help (OPENHELP.HLP)

Paradigm C++ Class Libraries Guide Programming and reference material (CLASSLIB.HLP)

Paradigm C++ Programmer's Guide Programming tips and language details (PCPP.HLP)

Paradigm C++ User's Guide Paradigm C++ tasks, projects, tools (PCW.HLP)

Error Messages and Warnings Paradigm C++ Error message descriptions (PCERRMSG.HLP)

Tools and Utilities Command-line tools (PCTOOLS.HLP)

ObjectScripting Guide Customizing with scripts in Paradigm C++ (SCRIPT.HLP)

Paradigm C++ Locate Reference Reference material for Paradigm C++ Locator (LOCATE.HLP)

Paradigm C++ Locate Errors Paradigm C++ Locator Error messages (LOCERR.HLP)

Paradigm C++ Locate32 Reference Reference for 32-bit Paradigm C++ Locator (LOCATE32.HLP)

PDREMOTE/ROM Help PDREMOTE/ROM Tutorial help (PDREM.HLP)

Paradigm Assembler Help Assembler options and operators reference (PASM.HLP)

Paradigm C++ SCCS Integration Source code control system features (SCCS.HLP)

Run-time Library Source Code Building and customizing tips (RUNTIME.HLP)

PDREMOTE/ROM Source Code Building and customizing tips (PDREMSRC.HLP)

Paradigm OMFCVT Guide Features of Paradigm OMFCVT (OMF.HLP)

Some of these files may only be available if you have optional components installed in
the Paradigm C++ IDE. Additional files may be available.

☞☞☞☞

Table 1-1
Help files

Chapter 1, Introduction 11

Getting help in Paradigm C++

In Paradigm C++, you can get Help in the following ways:

� Context-Sensitive Help (F1)
� Contents Screens
� Index
� Keyword Search (F1 or Ctrl+F1 in the Edit Window)
� SpeedMenus (in the Help window)
� Contacting Paradigm

Getting context-sensitive help
To access context-sensitive Help for items in Paradigm C++:

1. Select the element you want help on (menu, menu command, an item in a dialog
box).

2. Press F1 or Ctrl+F1.

Help buttons are available on many dialog boxes and for most error messages.

Click Help to view information about:

� The entire dialog box
� An error message
� The current group of topics in an Options settings dialog box

Accessing and using contents screens
Each Help Contents offers an entry into a Help system installed with Paradigm C++.
From the Contents, select the category of information that best suits your needs, then
click on it.

� To display the Master Contents screen, choose Contents on the Help menu in
Paradigm C++.

� To access the Help Contents from within a topic in the active Help file, click the
Contents button.

� To access the Help Contents screen of a different Help file installed with Paradigm
C++, right-click and select the name of the Help file you want to view.

� To access the Contents of all available Help files, click the Book Shelf button from
within the topic of a Help file. Shortcuts to help files are also listed under the Start
menu in Programs|Paradigm C++|Help.

You can expand books that appear on the Contents, or jump directly to a topic. To view
a topic, click on it.

You can print several topics at once by clicking a book on the Contents and then clicking
Print.

Using the index
In Help, click the Index tab to view a list of index entries. Either type the word you're
looking for or scroll through the list.

To return to a
previous topic or

Help file, click
the Back button.

Paradigm C++ Language Reference12

Searching for keywords
Keyword Search gives you direct access to Help about a term in your program. To get
help on a term:

1. In the Edit window, place the insertion point on the term you want help on.
2. Use one of the following methods:

� Press F1 or Ctrl+F1.
� Choose Keyword Search on the Help menu.
� Choose Go To Help Topic on the Edit Window SpeedMenu.

3. One of these events occurs:
� The topic associated with the term you selected is displayed.
� If more than one topic is available on the term for which you requested Help, the

Topics Found dialog box is displayed listing topics associated with the term.
Double-click the topic you want to view.

� If no Help is available for the term nearest the insertion point, the index is
displayed. You can then select a different searching method to locate a topic
associated with that term. The term for which you requested Help appears
highlighted in the top box. Click the Display button or double-click the term to
view the list of topics associated with the term.

Help SpeedMenus
All the Paradigm C++ Help files have SpeedMenus that you access by right-clicking on
the mouse. These menus provide quick access to commands for copying or printing a
Help topic, or exiting Help.

The SpeedMenu also lists additional Help files containing information related to the
current Help file. Right-click and select a Help file from the SpeedMenu. The Contents
screen for that Help file is displayed.

Technical assistance

There are several ways to contact Paradigm Systems for technical assistance on
Paradigm C++.

Use the Help menu links to access the Paradigm C++ home page or to register
Paradigm C++.

You can contact Paradigm directly at:

Paradigm Systems Sales: 607-748-5966, sales@devtools.com
Suite 2214 Fax: 607-748-5968
3301 Country Club Road Technical Support: support@devtools.com
Endwell, NY 13760
USA

Ninety days of free technical support is only available to registered users of Paradigm
C++. If you haven’t yet done so, take this time to register your products under the
Paradigm C++ Help menu or online at http://www.devtools.com. Contact Paradigm to
purchase a Paradigm SurvivalPak for an additional 12 months of free technical support
and quarterly product upgrades.

To return to a
previous topic or

Help file, click
the Back button.

☞☞☞☞

Chapter 2, Keywords 13

C h a p t e r

2

Keywords

Keywords are words reserved for special purposes and must not be used as normal
identifier names. You can use options in the IDE or for the command-line compiler to
select ANSI keywords only, UNIX keywords, or to support all keywords - including the
Paradigm C++ extensions.

Keywords (by category)

This section is a categorical listing of the keywords Paradigm C++ supports.

Paradigm C++ Extensions Keywords unique to Paradigm C++

C++ Specific Keywords recognized only in C++ programs

Modifiers Keywords that change one or more attributes of an
identifier associated with an object.

Operators Keywords that invoke functions against objects or
identifiers

Statements Keywords that specify program control during execution

Storage Class Specifiers Keywords that define the location and duration of an
identifier

Type Specifiers Keywords that determine how memory is allocated and
bit patterns are interpreted.

Paradigm C++ keyword extensions

Paradigm C++ provides additional keywords that are not part of the ANSI or UNIX
conventions. You cannot use these keywords in your programs if you set the command-
line options to recognize only ANSI or UNIX keywords.

The Paradigm C++ keyword extensions are:

_asm _import

_ _asm _ _import

_cdecl _ _interrupt

cdecl _interrupt

_cs interrupt

_ _declspec _loadds

_ _ds _ _loadds

_ds near

_ _es _ _near

_es _near

_ _except _pascal

Paradigm C++ Language Reference14

_ _export _ _pascal

_export pascal

far _ _rtti

_far _ _saveregs

_ _far _saveregs

_ _fastcall _ _seg

_fastcall _seg

_ _finally _ss

_ _huge _ _thread

_huge _ _try

huge

C++ specific keywords

There are several keywords specific to C++. They are not available if you are writing a
C-only program.

The keywords specific to C++ are:

asm inline template typename

bool mutable this

catch namespace throw

class new true

const_cast operator try

delete private typeid

dynamic_cast protected reinterpret_cast

explicit public using

false _ _rtti virtual

friend static_cast wchar

Modifiers

A declaration uses modifiers to alter aspects of the identifier/object mapping.

The Paradigm C++ modifiers are:

_ _cdecl

const

_ _cs

_ _declspec

_ _ds

_ _es

_ _export

_ _far

_ _fastcall

_ _huge

Chapter 2, Keywords 15

_ _import

_ _interrupt

_ _loadds

_ _near

_ _pascal

_ _rtti

_ _ss

_ _stdcall

volatile

Operator keywords

Several Paradigm C++ keywords denote operators that invoke functions against objects
and identifiers.

The keyword operators supported by Paradigm C++ are:

delete operator typeid

new sizeof

See also Operators

Statement keywords

Statements specify the flow of control in a program. In the absence of specific jumps
and selection statements, statements execute sequentially as they appear in the source
code.

The statement keywords in Paradigm C++ are:

break else switch

case _ _finally throw

catch for_ _try

continue goto try

default if while

do return

_ _except

Type specifiers

The type determines how much memory is allocated to an object and how the program
interprets the bit patterns found in the object's storage allocation. A data type is the set
of values (often implementation-dependent) identifiers can assume, together with the set
of operations allowed on those values.

The type specifier keywords in Paradigm C++ are:

Paradigm C++ Language Reference16

char float signed wchar_t

class int struct

double long union

enum short unsigned

_ _except

Use the sizeof operators to find the size in bytes of any predefined or user-defined type.

Register pseudovariables
_AX _AL _AH _SI _es

_BX _BL _BH _DI _ss

_CX _CL _CH _BP _cs

_DX _DL _DH _SP _ds

_FLAGS

All but the _FLAGS register pseudovariable are associated with the general purpose,
segment, address, and special purpose registers.

Use register pseudovariables anywhere that you can use an integer variable to directly
access the corresponding 80x86 register.

The 16-bit flags register contains information about the state of the 80x86 and the
results of recent instructions.

Example
_AX = 0x4c00;

Parameter types and possible registers used

The compiler uses the following rules when deciding which parameters are to be passed
in registers.

Parameter type Registers

char (signed and unsigned) AL, DL, BL

int (signed and unsigned) AX, DX, BX

long (signed and unsigned) DX:AX

near pointer AX, DX, BX

Only three parameters can be passed in registers to any one function.

Do not assume the assignment of registers will reflect the ordering of the parameters to
a function. Far pointer, union, structure, and floating-point (float, double, and long)
parameters are pushed on the stack.

Keyword alphabetical reference

asm, _asm, _ _asm

asm <opcode> <operands> <; or newline>

_asm <opcode> <operands> <; or newline>

__asm <opcode> <operands> <; or newline>

Chapter 2, Keywords 17

Use the asm, _asm, or _ _asm keyword to place assembly language statements in the
middle of your C or C++ source code. Any C++ symbols are replaced by the
appropriate assembly language equivalents.

You can group assembly language statements by beginning the block of statements with
the asm keyword, then surrounding the statements with braces ({}). The initial brace
must be on the same line as the asm keyword; placing it on the following line generates
a syntax error.

Example
// This example places a single assembler statement in your code:
asm pop dx

// If you want to include several of asm statements,
// surround them with braces:
asm {
mov ax, 0x0e07
xor bx, bx
int 0x10 // makes the system beep

}

See also PASM, "Using inline assembly"

auto

[auto] <data-definition> ;

Use the auto modifer to define a local variable as having a local lifetime.

This is the default for local variables and is rarely used.

Example
int main()
{
auto int i;
i = 5;
return i;

}

break

break ;

Use the break statement within loops to pass control to the first statement following the
innermost enclosing brace.

See also continue, do, for, switch, while

Example
/* Illustrates the use of keywords break, case, default, and

switch. */
#include <conio.h>
#include <stdio.h>

int main(void) {
int ch;

Paradigm C++ Language Reference18

printf("\tPRESS a, b, OR c. ANY OTHER CHOICE WILL "
"TERMINATE THIS PROGRAM.");

for (/* FOREVER */; ((ch = getch()) != EOF);)
switch (ch) {

case 'a' : /* THE CHOICE OF a HAS ITS OWN ACTION. */
printf("\nOption a was selected.\n");
break;

case 'b' : /* BOTH b AND c GET THE SAME RESULTS. */
case 'c' :

printf("\nOption b or c was selected.\n");
break;

default :
printf("\nNOT A VALID CHOICE! Bye ...");
return(-1);

}
return(0);
}

bool

bool <identifier>;

Use bool and the literals false and true to make Boolean logic tests.

The bool keyword represents a type that can take only the value false or true. The
keywords false and true are Boolean literals with predefined values. false is
numerically zero and true is numerically one. These Boolean literals are rvalues; you
cannot make an assignment to them.

You can convert an rvalue that is bool type to an rvalue that is int type. The numerical
conversion sets false to zero and true becomes one.

You can convert arithmetic, enumeration, pointer, or pointer to member rvalue types to
an rvalue of type bool. A zero value, null pointer value, or null member pointer value is
converted to false. Any other value is converted to true.

See also if

Example
/* How to make Boolean tests with bool, true, and false. */
#include <iostream.h>

bool func() { // Function returns a bool type
return NULL; // NULL is converted to Boolean false

// return false; // This is Boolean equivalent to the one above.
}

int main() {
bool val = false; // Boolean variable
int i = 1; // i is neither Boolean-true nor Boolean-false
int g = 3;
int *iptr = 0; // null pointer
float j = 1.01; // j is neither Boolean-true nor Boolean-false

Chapter 2, Keywords 19

// Tests on integers
if (i == true) cout << "True: value is 1" << endl;
if (i == false) cout << "False: value is 0" << endl;

if (g) cout << "g is true.";
else cout << "g is false.";

// Test on pointer
if (iptr == false) cout << "Invalid pointer." << endl;
if (iptr == true) cout << "Valid pointer." << endl;

// To test j's truth value, cast it to bool type.
if (bool(j) == true) cout << "Boolean j is true." << endl;

// Test Boolean function return value
val = func();
if (val == false)

cout << "func() returned false.";
if (val == true)

cout << "func() returned true.";
return false; // false is converted to 0

}

Output:
True: value is 1
Unknown truth value for g.
Invalid pointer.
Boolean j is true.
func() returned false.

case

switch (<switch variable>){

case <constant expression> : <statement>; [break;]

…
default : <statement>;

}

Use the case statement in conjunction with switches to determine which statements
evalute.

The list of possible branch points within <statement> is determined by preceding
substatements with

case <constant expression> : <statement>;

where <constant expression> must be an int and must be unique.

The <constant expression> values are searched for a match for the <switch variable>.

If a match is found, execution continues after the matching case statement until a break
statement is encountered or the end of the switch statement is reached.

If no match is found, control is passed to the default case.

It is illegal to have duplicate case constants in the same switch statement.

See also break, default, switch

catch

catch (exception-declaration) compound-statement

☞☞☞☞

Paradigm C++ Language Reference20

The exception handler is indicated by the catch keyword. The handler must be used
immediately after the statements marked by the trytry keyword. The keyword catch can
also occur immediately after another catch. Each handler will only evaluate an
exception that matches, or can be converted to, the type specified in its argument list.

See also C++ Exception Handling, throw

cdecl, _cdecl, _ _cdecl

cdecl <data/function definition> ;

_cdecl <data/function definition> ;

__cdecl <data/function definition> ;

Use a cdecl, _cdecl, or _ _cdecl modifier to declare a variable or a function using the C-
style naming conventions (case-sensitive, with a leading underscore appended). When
you use cdecl, _cdecl, or _ _cdecl in front of a function, it affects how the parameters
are passed (last parameter is pushed first, and the caller cleans up the stack). The
_ _cdecl modifier overrides the compiler directives and allows the function to be called
as a regular C function.

The cdecl, _cdecl, and _ _cdecl keywords are specific to Paradigm C++.

Example
int cdecl FileCount;
long _ _far cdecl HisFunc(int x);

char

[signed|unsigned] char <variable_name>

Use the type specifier char to define a character data type. Variables of type char are 1
byte in length.

A char can be signed, unsigned, or unspecified. By default, signed char is assumed.

Objects declared as characters (char) are large enough to store any member of the basic
ASCII character set.

See also data types (16-bit), data types (32-bit)

class

<classkey> <classname> [<:baselist>] { <member list> }

� <classkey> is either a class, struct,struct or union.union
� <classname> can be any name unique within its scope.
� <baselist> lists the base class(es) that this class derives from. <baselist> is optional.
� <member list> declares the class's data members and member functions.

Use the class keyword to define a C++ class.

Within a class:

� the data are called data members
� the functions are called member functions

Chapter 2, Keywords 21

Example
class stars {

int magnitude; // Data member
int starfunc(void); // Member function

};

const

const <variable name> [= <value>] ;

<function name> (const <type>*<variable name> ;)

<function name> const;

Use the const modifier to make a variable value unmodifiable.

Use the const modifier to assign an initial value to a variable that cannot be changed by
the program. Any future assignments to a const result in a compiler error.

A const pointer cannot be modified, though the object to which it points can be
changed. Consider the following examples.

const float pi = 3.14;
const maxint = 12345; // When used by itself, const is

// equivalent to int.
char *const str1 = "Hello, world"; // A constant pointer
char const *str2 = "Paradigm International"; // A pointer to a

// constant character string.

Given these declarations, the following statements are legal.

pi = 3.0; // Assigns a value to a const.
i = maxint++; // Increments a const.
str1 = "Hi, there!" // Points str1 to something else.

Using the const Keyword in C++ Programs
C++ extends const to include classesclass and member functions. In a C++ class
definition, use the const modifier following a member function declaration. The
member function is prevented from modifying any data in the class.

A class object defined with the const keyword attempts to use only member functions
that are also defined with const. If you call a member function that is not defined as
const, the compiler issues a warning that the a non-const function is being called for a
const object. Using the const keyword in this manner is a safety feature of C.

A pointer can indirectly modify a const variable, as in the following:

*(int *)&my_age = 35;

If you use the const modifier with a pointer parameter in a function's parameter list, the
function cannot modify the variable that the pointer points to. For example,

int printf (const char *format, ...);

printf is prevented from modifying the format string.

See also const_cast, mutable, volatile

Example 1
class X {

int j;
public:
X::X() { j = 0; };

int lowerBound() const; // DOES'NT MODIFY ANY DATA MEMBERS

Warning

Paradigm C++ Language Reference22

int dimension(X x1, const X &x2) { // x2 DATA MEMBERS WON'T BE
// MODIFIED

x1.j = 3; // OKAY; x1 OBJECT IS MODIFIABLE
x2.j = 5; // ERROR; x2 IS NOT MODIFIABLE
return x2.j;
}

};

Example 2
#include <iostream.h>

class Alpha {
int num;

public:
Alpha(int j = 0) { num = j; }
int func(int i) const {

cout << "Non-modifying function." << endl;
return i++;
}

int func(int i) {
cout << "Modify private data" << endl;
return num = i;
}

int f(int i) { cout << "Non-
const function called with i = " << i << endl; return i;}
};

void main() {
Alpha alpha_mod; // Calls the non-const functions.
const Alpha alpha_inst; // Attempts to call const functions.

alpha_mod.func(1);
alpha_mod.f(1); // Causes a compiler warning.

alpha_inst.func(1);
alpha_inst.f(1);
}

Output:
Modify private data
Non-const function called with i = 1
Non-modifying function.
Non-const function called with i = 1

continue

continue ;

Use the continue statement within loops to pass control to the end of the innermost
enclosing brace; at which point the loop continuation condition is re-evaluated.

See also while, do, for

Chapter 2, Keywords 23

Example
void main ()
{
for (i = 0; i < 20; i++) {

if (array[i] == 0)
continue;

array[i] = 1/array[i];
}

}

_cs, _ _cs

<type> _cs <pointer definition> ;

<type> __cs <pointer definition> ;

Use the _cs and _ _cs keywords to define special versions of near data pointers.

These pointers are 16-bit offsets associated with the specified segment register: CS.

Example
char _cs *s; /* in cs code segment */

See also _ds, _ _ds, _es, _ _es, _ss, _ _ss

default

switch (<switch variable>){

case <constant expression> : <statement>; [break;]

…
default : <statement>;

}

Use the default statement in switch statement blocks.

� If a case match is not found and the default statement is found within the switch
statement, the execution continues at this point.

� If no default is defined in the switch statement, control passes to the next statement
that follows the switch statement block.

See also break

delete

<::> delete <cast-expression>

<::> delete [] <cast-expression>

delete <array-name> [];

The delete operator offers dynamic storage deallocation, deallocating a memory block
allocated by a previous call to new. It is similar but superior to the standard library
function free.

You should use the delete operator to remove arrays that you no longer need. Failure to
free memory can result in memory leaks.

The delete operator with arrays
Arrays are deleted by operator delete[](). You must use the syntax delete [] expr when
deleting an array:

Paradigm C++ Language Reference24

char * p;

void func()
{

p = new char[10]; // allocate 10 chars
delete[] p; // delete 10 chars

}

Paradigm C++ issues a warning and simply ignores any size that is specified. For
example, if the preceding example reads delete[10] p and is compiled, the warning is as
follows:

Warning: Array size for 'delete' ignored in function func()

Overloading the operator delete
The global operators, ::operator delete(), and ::operator delete[]() cannot be
overloaded. However, you can override the default version of each of these operators
with your own implementation. Only one instance of the each global delete function
can exist in the program.

The user-defined operator delete must have a void return type and void* as its first
argument; a second argument of type size_t is optional. A class T can define at most one
version of each of T::operator delete[]() and T::operator delete(). To overload the
delete operators, use the following prototypes.

void operator delete(void *Type_ptr, [size_t Type_size]);
// For Non-array

void operator delete[](size_t Type_ptr, [size_t Type_size]);
// For arrays

do

do <statement> while (<condition>);

The do statement executes until the condition becomes false.

<statement> is executed repeatedly as long as the value of <condition> remains true.

Since the condition tests after each the loop executes the <statement>, the loop will
execute at least once.

Example
/* This example prompts users for a password */
/* and continued to prompt them until they */
/* enter one that matches the value stored in */
/* checkword. */

#include <stdio.h>
#include <string.h>

int main ()
{
char checkword[80] = "password";
char password[80] = "";

Chapter 2, Keywords 25

do {
printf ("Enter password: ");
scanf("%s", password);

} while (strcmp(password, checkword));

return 0;
}

See also while, bool

double

[long] double <identifier>

Use the double type specifier to define an identifier to be a floating-point data type. The
optional modifier long extends the accuracy of the floating-point value.

See also data types (16-bit), data types (32-bit), float, long

_ds, _ _ds

<type> _ds <pointer definition> ;

<type> __ds <pointer definition> ;

Use the _ds and _ds keywords to define special versions of near data pointers.

These pointers are 16-bit offsets associated with the specified segment register: DS.

Example
long _ds l[4] ; /* in ds data segment */

See also _cs, _ _cs, _es, _ _es, _ss, _ _ss

enum

enum [<type_tag>] {<constant_name> [= <value>], ...} [var_list];

� <type_tag> is an optional type tag that names the set.
� <constant_name> is the name of a constant that can optionally be assigned the value

of <value>. These are also called enumeration constants.
� <value> must be an integer. If <value> is missing, it is assumed to be:

� <prev> + 1
� where <prev> is the value of the previous integer constant in the list. For the

first integer constant in the list, the default value is 0.
� <var_list> is an optional variable list that assigns variables to the enum type.

Use the enum keyword to define a set of constants of type int, called an enumeration
data type.

An enumeration data type provides mnemonic identifiers for a set of integer values.
Paradigm C++ stores enumerators in a single byte if you uncheck Treat Enums As Ints
(Options|Compiler|Code Generation) or use the -b flag.

Enums are always interpreted as ints if the range of values permits, but if they are not
ints the value gets promoted to an int in expressions. Depending on the values of the
enumerators, identifiers in an enumerator list are implicitly of type signed char,
unsigned char, or int.

Paradigm C++ Language Reference26

In C, an enumerated variable can be assigned any value of type int--no type checking
beyond that is enforced. In C++, an enumerated variable can be assigned only one of its
enumerators.

C++ lets you omit the enum keyword if <tag_type> is not the name of anything else in
the same scope. You can also omit <tag_type> if no further variables of this enum type
are required.

In the absence of a <value> the first enumerator is assigned the value of zero. Any
subsequent names without initializers will then increase by one. <value> can be any
expression yielding a positive or negative integer value (after possible integer
promotions). These values are usually unique, but duplicates are legal.

Enumeration tags share the same name space as structure and union tags. Enumerators
share the same name space as ordinary variable identifiers.

In C++, enumerators declared within a class are in the scope of that class.

Example
enum days { sun, mon, tues, wed, thur, fri, sat } anyday;

establishes a unique integral type, enum days, a variable anyday of this type, and a set
of enumerators (sun, mon,...) with constant integer values.

enum modes { LASTMODE = -1, BW40=0, C40, BW80, C80, MONO = 7 };
/*

"modes" is the type tag.
"LASTMODE", "BW40", "C40", etc. are the constant names.
The value of C40 is 1 (BW40 + 1); BW80 = 2 (C40 + 1), etc.

*/

_es, _ _es

<type> _es <pointer definition> ;

<type> __es <pointer definition> ;

Use the _es and _ _es keywords to define special versions of near data pointers.

These pointers are 16-bit offsets associated with the specified segment register: CS, DS,
SS or ES.

Example

char _es m[8] ; /* in es segment */

See also _cs, _ _cs, _ds, _ _ds, _ss, _ _ss

_ _except

__except (expression) compound-statement

The _ _except keyword specifies the action that should be taken when the exception
specified by expression has been raised.

explicit

explicit <single-parameter constructor declaration>

Normally, a class with a single-parameter constructor can be assigned a value that
matches the constructor type. This value is automatically (implicitly) converted into an
object of the class type to which it is being assigned. You can prevent this kind of
implicit conversion from occurring by declaring the constructor of the class with the

Chapter 2, Keywords 27

explicit keyword. Then all objects of that class must be assigned values that are of the
class type; all other assignments result in a compiler error.

Objects of the following class can be assigned values that match the constructor type or
the class type:

class X {
public:
X(int);
X(const char*, int = 0);

};

Then, the following assignment statements are legal.

void f(X arg) {
X a = 1;
X B = "Jessie";
a = 2;

}

See also C-based Structured Exceptions, _ _finally, _ _try, try

_export, _ _export

Form 1: class_export <class name> //32-bit only

Form 2: return_type _export <function name> //32-bit only

Form 3: data_type _export <data name> //32-bit only

These modifiers are used to export classes, functions, and data.

The linker enters functions flagged with _export or _ _export into an export table for
the module.

Using _export or _ _export eliminates the need for EXPORTS section in your module
definition file.

Functions that are not modified with _export or _ _export receive abbreviated prolog
and epilog code, resulting in a smaller object file and slightly faster execution.

If you use _export or _ _export to export a function, that function will be exported by
name rather than by ordinal (ordinal is usually more efficient).

If you want to change various attributes from the default, you'll need a module
definition file.

Prologs, epilogs, and exports: a summary
Prologs and epilogs are required when exporting functions in a 16-bit Windows
application. They ensure that the correct data segment is active during callback
functions and mark near and far stack frames for Windows stack crawling.

Two steps are required to export a function.

1. The compiler must create the correct prolog and epilog for the function.
2. The linker must create an entry for every export function in the header section of the

executable.

In 32-bit Windows the binding of data segments does not apply. However, DLLs must
have entries in the header so the loader can find the function to link to when an .EXE
loads the DLL.

☞☞☞☞

Paradigm C++ Language Reference28

If a function is flagged with the _ _export keyword and any of the Windows compiler
options are used, it will be compiled as exportable and linked as an export.

If a function is not flagged with the _ _export keyword, then one of the following
situations will determine whether the function is exportable:

� If you compile with the -tW / -tWC or -tWD / -tWCD option (or with the All
Functions Exportable IDE equivalent), the function will be compiled as exportable.

� If the function is listed in the EXPORTS section of the module definition file, the
function will be linked as an export. If it is not listed in the module definition file, or
if no module definition file is linked, it won't be linked as an export.

� If you compile with the -tWE or -tWDE / -tWCDE option (or with the Explicit
Functions Exported IDE equivalent), the function will not be compiled as
exportable. Including this function in the EXPORTS section of the module
definition will cause it be exported, but, because the prolog is incorrect, the program
will run incorrectly. You may get a Windows error message in the 16-bit
environment.

See the table, Compiler options and the _export keyword, for a summary of the effect of
the combination of the Windows compiler options and the _ _export keyword.

See also _export, _import

Compiler options and the _ _export keyword
This table summarizes the effect of the combination of various Windows options and
the _ _export keyword:

The compiler tW2 or -tWE2 or tW2 or -tWE2 or -tW2 or-tWE2 or -tW2 or-tWE2 or
option is * -tWD -tWDE -tWD -tWDE - tWD -tWDE - tWD -tWDE

Function flagged Yes Yes Yes Yes No No No No

with __export?

Function2 listed Yes Yes No No Yes Yes No No

in EXPORTS?

Isfunction2 Yes Yes Yes Yes Yes No Yes No

exportable?

Will function be Yes Yes Yes Yes Yes Yes ** No *** No

exported?

*Or the 32-bit console-mode application equivalents.

**The function will be exported in some sense, but because the prolog and epilog will
not be correct, the function will not work as expected.

***This combination also makes little sense. It is inefficient to compile all functions as
exportable if you do not actually export some of them.

See also _export

Smart callbacks and the _export keyword
If you use the Smart Callbacks IDE option at compile time, callback functions do not
need to be listed in the EXPORTS statement or flagged with the _export keyword.

Functions compile them so that they are callback functions.

Chapter 2, Keywords 29

Exportable functions in DLLs
There are two ways to compile a function f1() in a DLL as exportable and then export
it.

� Compile the DLL with all functions exportable (with the Windows DLL All
Functions Exportable option in the IDE) and list f1() in the EXPORTS section of
the module definition file, or

� Flag the function f1() with the _export keyword.

Using _export with C++ classes
Whenever you declare a class as export, the compiler treats it as huge (with 32-bit
pointers), and exports all of its non-inline member functions and static data members.

You cannot declare a class as export and as far or huge (export implies huge, which
implies far).

If you declare the class in an include file that is included in both the DLL source files
and the source files of the application that use the DLL, declare the class

� as export when compiling the DLL
� as huge when compiling the application

To do this, use the _ _DLL_ _ macro, which the compiler defines when it's building a
DLL.

In the mangled name, the compiler encodes the information that a given class member
is a member of a huge class. This ensures that the linker will catch any mismatches
when a program is using huge and non-huge classes.

extern

extern <data definition> ;

[extern] <function prototype> ;

Use the extern modifier to indicate that the actual storage and initial value of a variable,
or body of a function, is defined in a separate source code module. Functions declared
with extern are visible throughout all source files in a program, unless you redefine the
function as static.

The keyword extern is optional for a function prototype.

Use extern "C" to prevent function names from being mangled in C++ programs.

Examples
extern int _fmode;
extern void Factorial(int n);
extern "C" void cfunc(int);

far, _far, _ _far

<type> far <pointer definition> ;

<type> far <function definition>

<type> _far <pointer definition> ;

<type> _far <function definition>

<type> __far <pointer definition> ;

<type> __far <function definition>

☞☞☞☞

Paradigm C++ Language Reference30

Use the far, _far, _ _far modifiers to generate function code for calls and returns using
variables that are outside of the data segment.

The first version of far, _far, or _ _far declares a pointer to be two words with a range
of 1 megabyte. Use _ _far when compiling small or compact models to force pointers to
be _ _far.

Examples
char __far *s;
void * __far * p;
int __far my_func() {}

_fastcall, _ _fastcall

return-value _fastcall function-name(parm-list)

return-value __fastcall function-name(parm-list)

Use the _fastcall modifiers to declare functions that expect parameters to be passed in
registers.

The compiler treats this calling convention as a new language specifier, along the lines
of _cdecl and pascal.

Functions declared using _cdecl or _pascal cannot also have the _fastcall modifiers
because they use the stack to pass parameters.

The compiler generates a warning if you mix functions of these types or if you use the
_fastcall modifiers in a dangerous situation. You can, however, use functions that use
the _fastcall or __fastcall conventions in overlaid modules.

The compiler prefixes the _fastcall function name with an at-sign ("@"). This prefix
applies to both unmangled C function names and to mangled C++ function names.

The __fastcall modifier is subject to name mangling. See the description of the -VC
option.

_ _finally

__finally {compound-statement}

The _ _finally keyword specifies actions that should be taken regardless of how the
flow within the preceding _ _try exits.

The _ _finally keyword is supported only in C programs.

See also "C-based structured exceptions"

float

float <identifier>

Use the float type specifier to define an identifier to be a floating-point data type.

Type Length Range

float 32 bits 3.4 * (10**-38) to

3.4 * (10**+38)

The Paradigm C++ automatically links the floating-point math package into your
program if you use floating-point values or operators.

☞☞☞☞

Chapter 2, Keywords 31

See also double

for

for ([<initialization>] ; [<condition>] ; [<increment>]) <statement>

The for statement implements an iterative loop.

<statement> is executed repeatedly UNTIL the value of <condition> is false.

� Before the first iteration of the loop, <initialization> initializes variables for the
loop.

� After each iteration of the loop, <increments> increments a loop counter.
Consequently, j++ is functionally the same as ++j.

In C++, <initialization> can be an expression or a declaration.

The scope of any identifier declared within the for loop extends to the end of the control
statement only.

A variable defined in the for-initialization expression is in scope only within the for-
block. See the description of the -Vd option.

All the expressions are optional. If <condition> is left out, it is assumed to be always
true.

Examples
// An example of the scope of variables in for-expressions.
// The example compiles if you use the -Vd option.
#include <iostream.h>

int main() {
for (int i = 0; i < 10; i++)

if (i == 8)
cout << "\ni = " << i;

return i; // Undefined symbol 'i' in function main().
}

friend

friend <identifier>;

Use friend to declare a function or class with full access rights to the private and
protected members of an outside class, without being a member of that class.

In all other respects, the friend is a normal function in terms of scope, declarations, and
definitions.

Example
class stars {

friend galaxy;
int magnitude;
int starfunc(void);

};

class galaxy {
long int number_of_stars;
void stars_magnitude(stars&);
void stars_func(stars*);

}

Paradigm C++ Language Reference32

goto

goto <identifier> ;

Use the goto statement to transfer control to the location of a local label specified by
<identifier>.

Labels are always terminated by a colon.

Example
Again: /* this is the label */
;
…
goto Again;

huge, _huge, _ _huge

<type> _ _huge <pointer-definition> ;

The huge modifiers are similar to the far modifier except for two additional features.

� Its segment is normalized during pointer arithmetic so that pointer comparisons are
accurate.

� Huge pointers can be incremented without suffering from segment wrap-around.

See also far

if

if (<condition>) <statement1>;

if (<condition>) <statement1>;

else <statement2>;

Use if to implement a conditional statement.

You can declare variables in the condition expression. For example,

if (int val = func(arg))

is valid syntax. The variable val is in scope for the if statement and extends to an else
block when it exists.

The condition statement must convert to a bool type. Otherwise, the condition is ill-
formed.

When <condition> evaluates to true, <statement1> executes.

If <condition> is false, <statement2> executes.

The else keyword is optional, but no statements can come between an if statement and
an else.

The #if and #else preprocessor statements (directives) look similar to the if and else
statements, but have very different effects. They control which source file lines are
compiled and which are ignored.

See also bool

Chapter 2, Keywords 33

Examples
if (int val = func(count)) { /* statements */ }
else {

/* take other action */
cout << "val is false"
}

_import, _ _import

Form 1: class _import <class name> //32-bit only

class _ _import <class name> //32-bit only

Form 2: return_type _import <function name> //32-bit only

return_type _ _import <function name> //32-bit only

Form 3: data_type _import <data name> //32-bit only

data_type _ _import <data name> //32-bit only

This keyword can be used as a class, function, or data modifier in 32-bit programs.

inline

inline <datatype> <class>_<function> (<parameters>) { <statements>; }

Use the inline keyword to declare or define C++ inline functions.

Inline functions are best reserved for small, frequently used functions.

Example
inline char* cat_func(void) { return char*; }

int

[signed|unsigned] int <identifier> ;

Use the int type specifier to define an integer data type.

Variables of type int can be signed (default) or unsigned.

See also data types (16-bit), data types (32-bit), double

_ _interrupt functions

interrupt <function-definition> ;

_interrupt <function-definition> ;

interrupt <function-definition> ;

Use the interrupt function modifier to define a function as an interrupt handler.

The interrupt modifier is specific to Paradigm C++. interrupt functions are designed
to be used with interrupt vectors.

Interrupt functions compile with extra function entry and exit code so that all CPU
registers are saved. The BP, SP, SS, CS, and IP registers are preserved as part of the C-
calling sequence or as part of the interrupt handling itself. The function uses an IRET
instruction to return, so that the function can be used as hardware and software
interrupts.

Declare interrupt functions to be of type void and they can be declared in any memory
model. For all memory models except huge, DS is set to the program data segment. For
the huge memory model, DS is set to the module's data segment.

Paradigm C++ Language Reference34

Example
void _ _interrupt myhandler()
{
…
}

_loadds, __loadds

_loadds <function-name>

__loadds <function-name>

Use the _ _loadds keyword to indicate that a function should set the DS register, just as
a huge function does.

These keywords are useful for writing low-level interface routines, such as mouse
support routines.

long

long [int] <identifier> ;

[long] double <identifier> ;

When used to modify an int, it doubles the number of bytes available to store the
integer value.

When used to modify a double, it defines a floating-point data type with 80 bits of
precision instead of 64.

The Paradigm C++ automatically links the floating-point math package into your
program if you use floating-point values or operators anywhere in your program.

See also data types (16-bit), data types (32-bit), float

near, _near, _ _near

<type> near <pointer definition> ;

<type> near <function definition>

<type> _near <pointer definition> ;

<type> _near <function definition>

<type> _ _near <pointer definition> ;

<type> _ _near <function definition>

Use near and _near type modifiers to force pointers to be near and to generate function
code for a near call and a near return.

The first version of _near declares a pointer to be one word with a range of 64K.

Use this type modifier when compiling in the medium, large, or huge memory models
to force pointers to be near.

When near or _near is used with a function declaration, the compiler generates
function code for a near call and a near return.

Example
char _ _near *s;
int (_ _near *ip)[10];
int _ _near my_func() {}

Chapter 2, Keywords 35

new

<::> new <placement> type-name <(initializer)>

<::> new <placement> (type-name) <(initializer)>

The new operator offers dynamic storage allocation, similar but superior to the standard
library function malloc. The new operator must always be supplied with a data type in
place of type-name. Items surrounded by angle brackets are optional. The optional
arguments can be as follows:

� :: operator, invokes the global version of new.
� placement can be used to supply additional arguments to new. You can use this

syntax only if you have an overloaded version of new that matches the optional
arguments. See the discussion of the placement syntax.

� initializer, if present is used to initialize the allocation. Arrays cannot be initialized
by the allocation operator.

A request for non-array allocation uses the appropriate operator new() function. Any
request for array allocation will call the appropriate operator new[]() function. The
selection of the allocation operator is done as follows:

Allocation of arrays of Type:

� Attempts to use a class-specific array allocator:
Type::operator new[]()

� If the class-specific array allocator is not defined, the global version is used:
::operator new[]()

Allocation of non-arrays of Type:

� Attempts to used the class-specific allocator:
Type::operator new()

� If the class-specific array allocator is not defined, the global version is used:
::operator new()

Allocation of single objects (that are not class-type) which are not held in arrays:

� Memory allocation for a non-array object is by using the ::operator new(). Note
that this allocation function is always used for the predefined types. It is possible to
overload this global operator function. However, this is generally not advised.

Allocation of arrays:

� Use the global allocation operator:
::operator new[] ()

Arrays of classes require the default constructor.

new tries to create an object of type Type by allocating (if possible) sizeof (Type) bytes
in free store (also called the heap). new calculates the size of Type without the need for
an explicit sizeof operator. Further, the pointer returned is of the correct type, "pointer
to Type," without the need for explicit casting. The storage duration of the new object is
from the point of creation until the operator delete destroys it by deallocating its
memory, or until the end of the program.

If successful, new returns a pointer to the allocated memory. By default, an allocation
failure (such as insufficient or fragmented heap memory) results in the predefined

☞☞☞☞

☞☞☞☞

Paradigm C++ Language Reference36

exception xalloc being thrown. Your program should always be prepared to catch the
xalloc exception before trying to access the new object (unless you use a new-handler).

A request for allocation of 0 bytes returns a non-null pointer. Repeated requests for
zero-size allocations return distinct, non-null pointers.

Operator new placement syntax
The placement syntax for operator new() can be used only if you have overloaded the
allocation operator with the appropriate arguments. You can use the placement syntax
when you want to use and reuse a memory space which you set up once at the
beginning of your program.

When you use the overloaded operator new() to specify where you want an allocation
to be placed, you are responsible for deleting the allocation. Because you call your
version of the allocation operator, you cannot depend on the global ::operator delete()
to do the cleanup.

To release memory, you make an explicit call on the destructor. This method for
cleaning up memory should be used only in special situations and with great care. If you
make an explicit call of a destructor before an object that has been constructed on the
stack goes out of scope, the destructor will be called again when the stackframe is
cleaned up.

operator new placement syntax example
// An example of the placement syntax for operator new()
#include <iostream.h>

class Alpha {
union {
char ch;
char buf[10];
};

public:
Alpha(char c = '\0') : ch(c) {

cout << "character constructor" << endl;
}

Alpha(char *s) {
cout << "string constructor" << endl;
strcpy(buf,s);
}

~Alpha() { cout << "Alpha::~Alpha() " << endl; }

void * operator new(size_t, void * buf) {
return buf;
}

};

void main() {
char *str = new char[sizeof(Alpha)];

// Place 'X' at start of str.
Alpha* ptr = new(str) Alpha('X');
cout << "str[0] = " << str[0] << endl;

// Explicit call of the destructor
ptr -> Alpha::~Alpha();

Chapter 2, Keywords 37

// Place a string in str buffer.
ptr = new(str) Alpha("my string");
cout << "\n str = " << str << endl;

// Explicit call of the destructor
ptr -> Alpha::~Alpha();
delete[] str;
}

Output
character constructor
str[0] = X
Alpha::~Alpha()
string constructor

str = my string
Alpha::~Alpha()

Handling errors for the new operator
You can define a function to be called if the new operator fails. To tell the new operator
about the new-handler function, use set_new_handler and supply a pointer to the new-
handler. If you want new to return null on failure, you must use set_new_handler(0).

The operator new with arrays
If Type is an array, the pointer returned by operator new[]() points to the first element of
the array. When creating multidimensional arrays with new, all array sizes must be
supplied (although the leftmost dimension doesn't have to be a compile-time constant):

mat_ptr = new int[3][10][12]; // OK
mat_ptr = new int[n][10][12]; // OK
mat_ptr = new int[3][][12]; // illegal
mat_ptr = new int[][10][12]; // illegal

Although the first array dimension can be a variable, all following dimensions must be
constants.

Example of the new and delete operators
// ALLOCATE A TWO-DIMENSIONAL SPACE, INITIALIZE, AND DELETE IT.
#include <except.h>
#include <iostream.h>

void display(long double **);
void de_allocate(long double **);

int m = 3; // THE NUMBER OF ROWS.
int n = 5; // THE NUMBER OF COLUMNS.

int main(void) {
long double **data;

Paradigm C++ Language Reference38

try { // TEST FOR EXCEPTIONS.
data = new long double*[m]; // STEP 1: SET UP THE ROWS.
for (int j = 0; j < m; j++)

data[j] = new long double[n]; // STEP 2: SET UP THE COLS
}

catch (xalloc) { // ENTER THIS BLOCK ONLY IF xalloc IS THROWN.
// YOU COULD REQUEST OTHER ACTIONS BEFORE TERMINATING
cout << "Could not allocate. Bye ...";
exit(-1);
}

for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)

data[i][j] = i + j; // ARBITRARY INITIALIZATION

display(data);
de_allocate(data);
return 0;
}

void display(long double **data) {

for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++)

cout << data[i][j] << " ";
cout << "\n" << endl;
}

}

void de_allocate(long double **data) {
for (int i = 0; i < m; i++)

delete[] data[i]; // STEP 1: DELETE THE COLS

delete[] data; // STEP 2: DELETE THE ROWS
}

::operator new
By default, if there is no overloaded version of new, a request for dynamic memory
allocation always uses the global version of new, ::operator new(). A request for array
allocation calls ::operator new[](). With class objects of type name, a specific operator
called name::operator new() or name::operator new[]() can be defined. When new is
applied to class name objects it invokes the appropriate name::operator new if it is
present; otherwise, the global ::operator new is used.

Only the operator new() function will accept an optional initializer. The array allocator
version, operator new[](), will not accept initializers. In the absence of explicit
initializers, the object created by new contains unpredictable data (garbage). The
objects allocated by new, other than arrays, can be initialized with a suitable expression
between parentheses:

int_ptr = new int(3);

Arrays of classes with constructors are initialized with the default constructor. The user-
defined new operator with customized initialization plays a key role in C++
constructors for class-type objects.

Chapter 2, Keywords 39

Overloading the operator new
The global ::operator new() and ::operator new[]() can be overloaded. Each
overloaded instance must have a unique signature. Therefore, multiple instances of a
global allocation operator can co-exist in a single program.

Class-specific memory allocation operators can also be overloaded. The operator new
can be implemented to provide alternative free storage (heap) memory-management
routines, or implemented to accept additional arguments. A user-defined operator new
must return a void* and must have a size_t as its first argument. To overload the new
operators, use the following prototypes declared in the new.h header file.

void * operator new(size_t Type_size); // For Non-array

void * operator new[](size_t Type_size); // For arrays

The Paradigm C++ compiler provides Type_size to the new operator. Any data type
may be substitued for Type_size except function names (although a pointer to function
is permitted), class declarations, enumeration declarations, const, volatile.

Example of overloading the new and delete operators
#include <stdlib.h>

class X {
…

public:
void* operator new(size_t size) { return newalloc(size);}
void operator delete(void* p) { newfree(p); }
X() { /* initialize here */ }
X(char ch) { /* and here */ }

~X() { /* clean up here */ }
…

};

The size argument gives the size of the object being created, and newalloc and newfree
are user-supplied memory allocation and deallocation functions. Constructor and
destructor calls for objects of class X (or objects of classes derived from X that do not
have their own overloaded operators new and delete) will invoke the matching user-
defined X::operator new() and X::operator delete(), respectively. (Destructors will be
called only if you use the -xd compiler option and an exception is thrown.)

The X::operator new(), X::operator new[](), X::operator delete() and X::operator
delete[]() operator functions are static members of X whether explicitly declared as
static or not, so they cannot be virtual functions.

The standard, predefined (global) ::operator new(), ::operator new[](), :: operator
delete(), and ::operator delete[]() operators can still be used within the scope of X,
either explicitly with the global scope or implicitly when creating and destroying non-X
or non-X-derived class objects. For example, you could use the standard new and delete
when defining the overloaded versions:

void* X::operator new(size_t s)
{

void* ptr = new char[s]; // standard new cal .
…
return ptr;

}

Paradigm C++ Language Reference40

void X::operator delete(void* ptr)
{

…
delete (void*) ptr; // standard delete called

}

The reason for the size argument is that classes derived from X inherit the X::operator
new() and X::operator new[](). The size of a derived class object may well differ from
that of the base class.

operator

operator <operator symbol>(<parameters>)

{

<statements>;

}

Use the operator keyword to define a new (overloaded) action of the given operator.
When the operator is overloaded as a member function, only one argument is allowed,
as *this is implicitly the first argument.

When you overload an operator as a friend, you can specify two arguments.

Example
new_complex operator +(complex c1, complex c2)
{

return complex(c1.real + c2.real, c1.imag + c2.imag);
}

See also class, overloading operators

pascal, _pascal, _ _pascal

pascal <data-definition/function-definition> ;

_pascal <data-definition/function-definition> ;

__pascal <data-definition/function-definition> ;

Use the pascal, _pascal, and _ _pascal keywords to declare a variable or a function
using a Pascal-style naming convention (the name is in uppercase).

In addition, pascal declares Pascal-style parameter-passing conventions when applied to
a function header (first parameter pushed first; the called function cleans up the stack).

In C++ programs, functions declared with the pascal modifer will still be mangled.

Examples
int pascal FileCount;
far pascal long ThisFunc(int x, char *s);

private

private: <declarations>

A private member can be accessed only by member functions and friends of the class
in which it is declared.

Class members are private by default.

You can override the default struct access with private or protected but you cannot
override the default union access.

Chapter 2, Keywords 41

Friend declarations are not affected by these access specifiers.

See also class, friend, protected, public

protected

protected: <declarations>

A protected member can be accessed by member functions and friends of the class in
which it was declared, and by classes derived from the declared class.

You can override the default struct access with private or protected but you cannot
override the default union access.

Friend declarations are not affected by these access specifiers.

See also class, friend, private, public

public

public: <declarations>

A public member can be accessed by any function.

Members of a struct or union are public by default.

You can override the default struct access with private or protected but you cannot
override the default union access.

Friend declarations are not affected by these access specifiers.

See also class, friend, private, protected, struct, union

register

register <data definition> ;

Use the register storage class specifier to store the variable being declared in a CPU
register (if possible), to optimize access and reduce code.

Items declared with the register keyword have a global lifetime.

The Paradigm C++ compiler can ignore requests for register allocation. Register
allocation is based on the compiler's analysis of how a variable is used.

Example
register int i;

return

return [<expression>] ;

Use the return statement to exit from the current function back to the calling routine,
optionally returning a value.

Example
double sqr(double x)
{
return (x*x);

}

☞☞☞☞

Paradigm C++ Language Reference42

_ _rtti and the -RT option

RTTI is enabled by default in Paradigm C++. You can use the -RT command-line
option to disable it (-RT-) or to enable it (-RT). If RTTI is disabled, or if the
argument to typeid is a pointer or a reference to a non-polymorphic class, typeid
returns a reference to a const typeinfo object that describes the declared type of the
pointer or reference, and not the actual object that the pointer or reference is bound to.

In addition, even when RTTI is disabled, you can force all instances of a particular class
and all classes derived from that class to provide polymorphic run-time type
identification (where appropriate) by using the Paradigm C++ keyword _ _rtti in the
class definition.

When you use the -RT- compiler option, if any base class is declared _ _rtti, then all
polymorphic base classes must also be declared _ _rtti.

struct _ _rtti S1 { virtual s1func(); }; /* Polymorphic */
struct _ _rtti S2 { virtual s2func(); }; /* Polymorphic */
struct X : S1, S2 { };

If you turn off the RTTI mechanism (by using the -RT- compiler option), RTTI might
not be available for derived classes. When a class is derived from multiple classes, the
order and type of base classes determines whether or not the class inherits the RTTI
capability.

When you have polymorphic and non-polymorphic classes, the order of inheritance is
important. If you compile the following declarations with -RT-, you should declare X
with the _ _rtti modifier. Otherwise, switching the order of the base classes for the class
X results in the compile-time error: Can't inherit non-RTTI class from RTTI base 'S1'.

struct _ _rtti S1 { virtual func(); }; /* Polymorphic class */
struct S2 { }; /* Non-polymorphic class */
struct _ _rtti X : S1, S2 { };

The class X is explicitly declared with _ _rtti. This makes it safe to mix the order and
type of classes.

In the following example, class X inherits only non-polymorphic classes. Class X does
not need to be declared _ _rtti.

struct _ _rtti S1 { }; // Non-polymorphic class
struct S2 { };
struct X : S2, S1 { }; // The order is not essential

Applying either _ _rtti or using the -RT compiler option will not make a static class
into a polymorphic class.

Run-time type identification (RTTI) overview
Run-time type identification (RTTI) lets you write portable code that can determine the
actual type of a data object at run-time even when the code has access only to a pointer
or reference to that object. This makes it possible, for example, to convert a pointer to a
virtual base class into a pointer to the derived type of the actual object. Use the
dynamic_cast operator to make run-time casts.

The RTTI mechanism also lets you check whether an object is of some particular type
and whether two objects are of the same type. You can do this with typeid operator,
which determines the actual type of its argument and returns a reference to an object of
type const typeinfo, which describes that type.

☞☞☞☞

Chapter 2, Keywords 43

You can also use a type name as the argument to typeid, and typeid will return a
reference to a const typeinfo object for that type. The class typeinfo provides an
operator= = and an operator!= that you can use to determine whether two objects are
of the same type. Class typeinfo also provides a member function name that returns a
pointer to a character string that holds the name of the type.

See also Bad_typeid class, typeinfo class

_ _rtti example
/* HOW TO GET RUN-TIME TYPE INFORMATION FOR POLYMORPHIC CLASSES.*/
#include <iostream.h>
#include <typeinfo.h>

class __rtti Alpha { /* Provide RTTI for this class and */
/* all classes derived from it */

virtual void func() {}; /* A virtual function makes */
/* Alpha a polymorphic class. */

};

class B : public Alpha {};

int main(void) {
B Binst; // Instantiate class B
B *Bptr; // Declare a B-type pointer
Bptr = &Binst; // Initialize the pointer

// THESE TESTS ARE DONE AT RUN-TIME
try {

if (typeid(*Bptr) == typeid(B))
// Ask "WHAT IS THE TYPE FOR *Bptr?"
cout << "Name is " << typeid(*Bptr).name();

if (typeid(*Bptr) != typeid(Alpha))
cout << "\nPointer is not an Alpha-type.";

return 0;
}

catch (Bad_typeid) {
cout << "typeid() has failed.";
return 1;
}

}

Output
Name is B
Pointer is not an Alpha-type.

-RT option and destructors
When -xd is enabled, a pointer to a class with a virtual destructor can't be deleted if that
class is not compiled with -RT. The -RT and -xd options are on by default.

Example
class Alpha {
public:

virtual ~Alpha() { }
};
void func(Alpha *Aptr) {

delete Aptr; // Error. Alpha is not a polymorphic class type
}

Paradigm C++ Language Reference44

_saveregs, _ _saveregs

_saveregs <function-name>;

__saveregs <function-name>;

The _ _saveregs modifier causes the function to preserve all register values and restore
them before returning (except for explicit return values passed in registers such as AX
or DX). _ _saveregs is not available in flat mode.

Use this keyword with functions; it is useful for writing low-level interface routines,
such as mouse support routines.

The _ _saveregs modifier is subject to name mangling. See the description of the -VC
option.

See also _loadds

_seg, _ _seg

<datatype> _seg *<identifier> ;

<datatype> __seg *<identifier> ;

Use _seg in 16-bit segment pointer type declarators. _seg is not available in flat mode.

Any indirection through <identifier> has an assumed offset of 0. In arithmetic involving
segment pointers they are treated like pointers except for the following restrictions.

� You cannot use the ++, --, +=, or -= operators with segment pointers.
� You cannot subtract one segment pointer from another.
� If you add a near pointer to a segment pointer, the operation creates a far pointer

result by using the segment from the segment pointer and the offset from the near
pointer.
Therefore, the two pointers must point to the same type, or one must be a pointer to
void.

There is no multiplication of the offset, regardless of the type pointed to.

� When a segment pointer is used in an indirection expression, it also implicitly
converts to a far pointer.

� If you add or subtract an integer operand to or from a segment pointer, the result is a
far pointer. The segment is taken from the segment pointer; the offset is calculated
by multiplying the size of the object pointed to by the integer operand.

� Segment pointers can be assigned, initialized, passed into and out of functions, and
compared.

Example
int _seg *name;

short

short int <variable> ;

Use the short type modifier when you want a variable smaller than an int. This
modifier can be applied to the base type int.

When the base type is omitted from a declaration, int is assumed.

☞☞☞☞

Chapter 2, Keywords 45

Examples
short int i;
short i; /* same as "short int i;" */

See also long, signed, unsigned

signed

signed <type> <variable> ;

Use the signed type modifier when the variable value can be either positive or negative.
The signed modifier can be applied to base types int, char, long and short.

When the base type is omitted from a declaration, int is assumed.

Example
signed int i; /* signed is default */
signed i; /* same as "signed int i;" */
unsigned long int l; /* int OK, not needed */
signed char ch; /* unsigned is default */

See also char, int, long, short, unsigned

sizeof

The sizeof operator has two distinct uses:

� sizeof unary-expression
� sizeof (type-name)

The result in both cases is an integer constant that gives the size in bytes of how much
memory space is used by the operand (determined by its type, with some exceptions).
The amount of space that is reserved for each type depends on the machine.

In the first use, the type of the operand expression is determined without evaluating the
expression (and therefore without side effects). When the operand is of type char
(signed or unsigned), sizeof gives the result 1. When the operand is a non-parameter of
array type, the result is the total number of bytes in the array (in other words, an array
name is not converted to a pointer type). The number of elements in an array equals
sizeof array/ sizeof array[0].

If the operand is a parameter declared as array type or function type, sizeof gives the
size of the pointer. When applied to structures and unions, sizeof gives the total number
of bytes, including any padding.

You cannot use sizeof with expressions of function type, incomplete types,
parenthesized names of such types, or with an lvalue that designates a bit field object.

The integer type of the result of sizeof is size_t, defined in stddef.h.

You can use sizeof in preprocessor directives; this is specific to Paradigm C++.

In C++, sizeof(classtype), where classtype is derived from some base class, returns the
size of the object (remember, this includes the size of the base class).

Example
/* USE THE sizeof OPERATOR TO GET SIZES OF DIFFERENT DATA TYPES. */
#include <stdio.h>
struct st {

char *name; /* 2 BYTES IN SML-DATA MODELS; 4 IN LRG-DATA */

Paradigm C++ Language Reference46

int age; /* 2 BYTES IN SMALL-DATA MODELS; 4 IN LARGE-DATA */
double height; /* ALWAYS EIGHT BYTES */

};

struct st St_Array[]= { /* AN ARRAY OF structs */
{ "Jr.", 4, 34.20 }, /* ST_Array[0] */
{ "Suzie", 23, 69.75 }, /* ST_Array[1] */
};

int main() {
long double LD_Array[] = { 1.3, 501.09, 0.0007, 90.1, 17.08 };

printf("("\nNumber of elements in LD_Array = %d",
sizeof(LD_Array) / sizeof(LD_Array[0]));

/**** THE NUMBER OF ELEMENTS IN THE ST_Array. ****/
printf("\nSt_Array has %d elements",

sizeof(St_Array)/sizeof(St_Array[0]));

/**** THE NUMBER OF BYTES IN EACH ST_Array ELEMENT. ****/
printf("\nSt_Array[0] = %d", sizeof(St_Array[0]));

/**** THE TOTAL NUMBER OF BYTES IN ST_Array. ****/
printf("\nSt_Array=%d", sizeof(St_Array));

return 0;
}

Output
Number of elements in LD_Array = 5
St_Array has 2 elements
St_Array[0] = 12
St_Array= 24

_ss, _ _ss

<type> _ss <pointer definition> ;

<type> __ss <pointer definition> ;

Use the _ss and _ _ss keywords to define special versions of near data pointers.

These pointers are 16-bit offsets associated with the specified segment register: SS.

Example
int _ss ix ; /* in ss stack segment */

See also _cs, _ _cs, _ds, _ _ds, _es, _ _es

static

static <data definition> ;

static <function name> <function definition> ;

Use the static storage class specifier with a local variable to preserve the last value
between successive calls to that function. A static variable acts like a local variable but
has the lifetime of an external variable.

In a class, data and member functions can be declared static. Only one copy of the static
data exists for all objects of the class.

Chapter 2, Keywords 47

A static member function of a global class has external linkage. A member of a local
class has no linkage. A static member function is associated only with the class in
which it is declared. Therefore, such member functions cannot be virtual.

Static member functions can only call other static member functions and only have
access to static data. Such member functions do not have a this pointer.

Examples
static int i;
static void printnewline(void) {}

_stdcall, _ _stdcall

__stdcall <function-name>

_stdcall <function-name>

The _stdcall and _ _stdcall keywords force the compiler to generate function calls
using the Standard calling convention. The resulting function calls are smaller and
faster. Functions must pass the correct number and type of arguments; this is unlike
normal C use, which permits a variable number of function arguments.

The _ _stdcall modifier is subject to name mangling. See the description of the -VC
option.

struct

struct [<struct type name>] {

[<type> <variable-name[, variable-name, ...]>] ;

…
} [<structure variables>] ;

Use a struct to group variables into a single record.

<struct type name> An optional tag name that refers to the structure type.

<structure variables> The data definitions, also optional.

Though both <struct type name> and <structure variables> are optional, one of the two
must appear.

You define elements in the record by naming a <type>, followed by one or more
<variable-name> (separated by commas).

Separate different variable types by a semicolon.

To access elements in a structure, use a record selector (.).

To declare additional variables of the same type, use the keyword struct followed by
the <struct type name>, followed by the variable names.

Paradigm C++ allows the use of anonymous struct embedded within another structure.

☞☞☞☞

☞☞☞☞

Paradigm C++ Language Reference48

Example
struct my_struct {
char name[80], phone_number[80];
int age, height;

} my_friend;

strcpy(my_friend.name,"Mr. Wizard"); /* accessing an element */

struct my_struct my_friends[100]; /* declaring additional
variables */

See also class, public, union, #pragma anon_struct

switch

switch (<switch variable>) {

case <constant expression> : <statement>; [break;]

…
default : <statement>;

}

Use the switch statement to pass control to a case which matches the <switch variable>.
At which point the statements following the matching case evaluate.

If no case satisfies the condition the default case evaluates.

To avoid evaluating any other cases and reliquish control from the switch, terminate
each case with break;.

See also break, case, default

Example
/* Illustrates the use of keywords break, case, default, and
switch. */
#include <conio.h>
#include <stdio.h>

int main(void) {
int ch;

printf("\tPRESS a, b, OR c. ANY OTHER CHOICE WILL "
"TERMINATE THIS PROGRAM.");

for (/* FOREVER */; ((ch = getch()) != EOF);)
switch (ch) {

case 'a' : /* THE CHOICE OF a HAS ITS OWN ACTION. */
printf("\nOption a was selected.\n");
break;

case 'b' : /* BOTH b AND c GET THE SAME RESULTS. */
case 'c' :

printf("\nOption b or c was selected.\n");
break;

default :
printf("\nNOT A VALID CHOICE! Bye ...");
return(-1);

}
return(0);
}

Chapter 2, Keywords 49

template

template-declaration:

template < template-argument-list > declaration

template-argument-list:

template-argument

template-argument-list, template argument

template-argument:

type-argument

argument-declaration

type-argument:

class identifier

template-class-name:

template-name < template-arg-list >

template-arg-list:

template-arg

template-arg-list , template-arg

template-arg:

expression

type-name

< template-argument-list > declaration

Use templates (also called generics or parameterized types) to construct a family of
related functions or classes.

this

class X {

int a;

public:

X (int b) {this -> a = b;}

In non-static member functions, the keyword this is a pointer to the object for which the
function is called. All calls to non-static member functions pass this as a hidden
argument.

this is a local variable available in the body of any non-static member function. Use it
implicitly within the function for member references. It does not need to be declared
and it is rarely referred to explicitly in a function definition.

For example, in the call x.func(y) , where y is a member of X, the keyword this is set to
&x and y is set to this->y, which is equivalent to x.y.

Static member functions do not have a this pointer because they are called with no
particular object in mind. Thus, a static member function cannot access non-static
members without explicitly specifying an object with . or ->.

Paradigm C++ Language Reference50

See also ., ->, class, new

throw

throw assignment-expression

When an exception occurs, the throw expression initializes a temporary object of the
type T (to match the type of argument arg) used in throw(T arg). Other copies can be
generated as required by the compiler. Consequently, it can be useful to define a copy
constructor for the exception object.

See also catch, C++ exception handling, try

_ _try

_ _try compound-statement handler-list

_ _try compound-statement termination-statement

The _ _try keyword is supported only in C programs. Use try in C++ programs.

A block of code in which an exception can occur must be prefixed by the keyword
_ _try. Following the try keyword is a block of code enclosed by braces. This indicates
that the program is prepared to test for the existence of exceptions. If an exception
occurs, the normal program flow is interrupted. The program begins a search for a
handler that matches the exception. If the exception is generated in a C module, it is
possible to handle the structured exception in either a C module or a C++ module.

If a handler can be found for the generated structured exception, the following actions
can be taken:

� Execute the actions specified by the handler
� Ignore the generated exception and resume program execution
� Continue the search for some other handler (regenerate the exception)

If no handler is found, the program will call the terminate function. If no exceptions are
thrown, the program executes in the normal fashion.

See also C-based structured exceptions, _ _except, catch, _ _finally, throw

Example
// In PROG.C
void func(void) {

// generate an exception
RaiseException(// specify your arguments);

}

// In CALLER.CPP
// How to test for C++ or C-based exceptions.
#include <excpt.h>
#include <iostream.h>

Chapter 2, Keywords 51

int main(void) {
try
{ // test for C++ exceptions

try
{ // test for C-based structured exceptions

func();
}
__except(/* filter-expression */)
{
cout << "A structured exception was generated.";
/* specify actions to take for this structured exception */
return -1;
}
return 0;

}
catch (...)
{
// handler for any C++ exception
cout << "A C++ exception was thrown.";
return 1;
}

}

try

try compound-statement handler-list

The try keyword is supported only in C++ programs. Use _ _try in C programs.

A block of code in which an exception can occur must be prefixed by the keyword try.
Following the try keyword is a block of code enclosed by braces. This indicates that the
program is prepared to test for the existence of exceptions. If an exception occurs, the
program flow is interrupted. The sequence of steps taken is as follows:

� The program searches for a matching handler
� If a handler is found, the stack is unwound to that point
� Program control is tranferred to the handler

If no handler is found, the program will call the terminate function. If no exceptions are
thrown, the program executes in the normal fashion.

See also catch, throw C++ exception handling

typedef

typedef <type definition> <identifier> ;

Use the typedef keyword to assign the symbol name <identifier> to the data type
definition <type definition>.

typeid

typeid(expression)

typeid(type-name)

You can use typeid to get run-time identification of types and expressions. A call to
typeid returns a reference to an object of type const typeinfo. The returned object
represents the type of the typeid operand.

Paradigm C++ Language Reference52

If the typeid operand is a dereferenced pointer or a reference to a polymorphic type,
typeid returns the dynamic type of the actual object pointed or referred to. If the
operand is non-polymorphic, typeid returns an object that represents the static type.

You can use the typeid operator with fundamental data types as well as user-defined
types.

If the typeid operand is a dereferenced NULL pointer, the Bad_typeid exception is
thrown.

See also Bad_typeid class, _ _rtti

Example
// HOW TO USE operator typeid, Type_info::before(), AND
// Type_info::name()
#include <iostream.h>
#include <typeinfo.h>

class A { };
class B : A { };

void main() {
char C;
float X;

// USE THE typeinfo::operator==()TO MAKE COMPARISON
if (typeid(C) == typeid(X))

cout << "C and X are the same type." << endl;
else cout << "C and X are NOT the same type." << endl;

// USE true AND false LITERALS TO MAKE COMPARISON
cout << typeid(int).name();
cout << " before " << typeid(double).name() << ": " <<

(typeid(int).before(typeid(double)) ? true : false) << endl;
cout << typeid(double).name();

cout << " before " << typeid(int).name() << ": " <<
(typeid(double).before(typeid(int)) ? true : false) << endl;

cout << typeid(A).name();
cout << " before " << typeid(B).name() << ": " <<

(typeid(A).before(typeid(B)) ? true : false) << endl;
}

Output
C and X are NOT the same type.
int before double: 0
double before int: 1
A before B: 1

typename

Syntax 1

typename <identifier>

Syntax 2

template < typename <identifier> > class <identifier>

Chapter 2, Keywords 53

Use the syntax 1 to reference a type that you have not yet defined. See Example1.

Use syntax 2 in place of the class keyword in a template declaration. See Example2.

Example 1
/* This example uses the typename keyword to declare variables as

type T::A, which has not yet been defined. */

void f() {
typedef typename T::A TA; // declare TA as type T::A
TA a5; // declare a5 as type TA
typename T::A a6; // declare a6 as type T::A
TA * pta6; // declare pta6 as pointer to type TA

}

Example 2
/* This example shows how the typename keyword can be used to

replace the class keyword in a template declaration. */

#include <iostream.h>

template <typename T1, typename T2> T2 convert (T1 t1)
// use typename instead of class.

{ return (T2)t1; }

template <typename X, class Y> bool isequal (X x, Y y)
// mix typename and class.

{ if (x==y)return 1; return 0; }

Example 3
typedef unsigned char byte;
typedef char str40[41];
typedef struct {

double re, im;
} complex;

union

union [<union type name>] {

<type> <variable names> ;

...

} [<union variables>] ;

Use unions to define variables that share storage space.

Example
union int_or_long {
int i;
long l;

} a_number;

The compiler allocates enough storage in a_number to accommodate the largest
element in the union.

Unlike a struct, the variables a_number.i and a_number.l occupy the same location in
memory. Thus, writing into one overwrites the other.

Use the record selector (.) to access elements of a union.

Paradigm C++ Language Reference54

See also bit fields, class, public, struct

unsigned

unsigned <type> <variable> ;

Use the unsigned type modifier when variable values will always be positive. The
unsigned modifer can be applied to base types int, char, long, and short.

When the base type is omitted from a declaration, int is assumed.

Examples
unsigned int i;
unsigned i; /* same as "unsigned int i;" */
unsigned long int l; /* int OK, not needed */
unsigned char ch; /* unsigned is default for char */

See also char, int, long, short, unsigned

virtual

virtual class-name

virtual function-name

Use the virtual keyword to allow derived classes to provide different versions of a base
class function. Once you declare a function as virtual, you can redefine it in any
derived class, even if the number and type of arguments are the same.

The redefined function overrides the base class function.

void

void identifier

void is a special type indicating the absence of any value. Use the void keyword as a
function return type if the function does not return a value.

void hello(char *name)
{
printf("Hello, %s.",name);

}

Use void as a function heading if the function does not take any parameters.

int init(void)
{
return 1;

}

Void pointers
Generic pointers can also be declared as void, meaning that they can point to any type.

void pointers cannot be dereferenced without explicit casting because the compiler
cannot determine the size of the pointer object.

Chapter 2, Keywords 55

Example
int x;
float r;
void *p = &x; /* p points to x */
int main (void)

*(int *) p = 2;
p = &r; /* p points to r */
*(float *)p = 1.1;

}

volatile

volatile <data definition> ;

Use the volatile modifier to indicate that a variable can be changed by a background
routine, an interrupt routine, or an I/O port. Declaring an object to be volatile warns the
compiler not to make assumptions concerning the value of the object while evaluating
expressions in which it occurs because the value could change at any moment. It also
prevents the compiler from making the variable a register variable.

The routines in this example (assuming timer has been properly associated with a
hardware clock interrupt) implement a timed wait of ticks specified by the argument
interval. A highly optimizing compiler might not load the value of ticks inside the test
of the while loop since the loop doesn't change the value of ticks.

C++ extends volatile to include classes and member functions. If you've declared a
volatile object, you can use only its volatile member functions.

See also const

while

while (<condition>) <statement>

Use the while keyword to conditionally iterate a statement.

<statement> executes repeatedly until the value of <condition> is false. If no condition
is specified, the while clause is equivalent to while(true).

The test takes place before <statement> executes. Thus, if <condition> evaluates to
false on the first pass, the loop does not execute.

Example
while (*p == ' ') p++;

See also do

Data types

16-bit

Type Length Range

unsigned char 8 bits 0 to 255

char 8 bits -128 to 127

enum 16 bits -32,768 to 32,767

unsigned int 16 bits 0 to 65,535

short int 16 bits -32,768 to 32,767

☞☞☞☞

Paradigm C++ Language Reference56

int 16 bits -32,768 to 32,767

unsigned long 32 bits 0 to 4,294,967,295

long 32 bits -2,147,483,648 to 2,147,483,647

float 32 bits 3.4 x 10-38 to 3.4 x 10+38

double 64 bits 1.7 x 10-308 to 1.7 x 10+308

long double 80 bits 3.4 x 10-4932 to 1.1 x 10+4932

near (pointer) 16 bits not applicable

far (pointer) 32 bits not applicable

Data types

32-bit

Type Length Range

unsigned char 8 bits 0 to 255

char 8 bits -128 to 127

short int 16 bits -32,768 to 32,767

unsigned int 32 bits 0 to 4,294,967,295

int 32 bits -2,147,483,648 to 2,147,483,647

unsigned long 32 bits 0 to 4,294,967,295

enum 16 bits -2,147,483,648 to 2,147,483,647

long 32 bits -2,147,483,648 to 2,147,483,647

float 32 bits 3.4 x 10-38 to 3.4 x 10+38

double 64 bits 1.7 x 10-308 to 1.7 x 10+308

long double 80 bits 3.4 x 10-4932 to 1.1 x 10+4932

near (pointer) 32 bits not applicable

far (pointer) 32 bits not applicable

Chapter 3, Library routines 57

C h a p t e r

3

Library routines

Paradigm C++ has several hundred classes, functions, and macros that you call from
within your C and C++ programs. They perform a wide variety of tasks, including low-
and high-level I/O, string and file manipulation, memory allocation, process control,
data conversion, mathematical calculations, and much more. These classes, functions,
and macros are collectively referred to as library routines.

Reasons to access the run-time library source code

There are some reasons why you might want to obtain the source code for run-time
library routines:

� To write a function similar to, but not the same as, a Paradigm C++ function. With
access to the run-time library source code, you can tailor the library function to suit
your needs, and avoid having to write a separate function of your own.

� To know more about the internals of a library function when you debug your code.
� To delete the leading underscores on C symbols.

To learn programming techniques by studying tight, professionally written library
source code.

Because Paradigm believes strongly in the concept of open architecture, the Paradigm
C++ run-time library source code is available for licensing. Just fill out the order form
distributed with your Paradigm C++ package, include your payment, and Paradigm will
ship you the Paradigm C++ run-time library source code.

Guidelines for selecting run-time libraries

Use the following guideline when selecting which run-time libraries to use:

� 16-bit DLLs are supported only in the large memory model.

Run-time libraries overview

Paradigm C++ has several hundred classes, functions, and macros that you call from
within your C and C++ programs. They perform a wide variety of tasks, including low-
and high-level I/O, string and file manipulation, memory allocation, process control,
data conversion, mathematical calculations, and much more. These classes, functions,
and macros are collectively referred to as library routines.

Several versions of the run-time libraries are available. For example, there are specific
versions for each memory-model, debugging, and 16- and 32-bit versions. There are
also optional libraries to provide mathematics, containers, etc.

The Paradigm C++ run-time libraries are divided into static (OBJ and LIB) and
dynamic-link (DLL) versions.

� Static libraries are located in the LIB subdirectory of your installation.
� Dynamic-link libraries are located in the BIN subdirectory of your installation.

Paradigm C++ Language Reference58

Static run-time libraries

Listed below are each of the Paradigm C++ static library names, the operating
environment in which it is available, and its use.

Paradigm C++ LIB Directory

File name Environment Use

CS.LIB Real, Extended Small memory model library

CM.LIB Real, Extended Medium memory model library

CCLIB Real, Extended Compact memory model library

CL.LIB Real, Extended Large memory model library

CH.LIB Real, Extended Huge memory model library

NOEH?.LIB Real, Extended Eliminate exception handling code in run-time libraries

EMU.LIB Real, Extended Floating point emulator library

FP87.LIB Real, Extended Math coprocessor library

MATH?.LIB Real, Extended Math functions libraries

C0x32.OBJ Protected Application software startup code

C0x32.OBJ contains no target-specific initialization and
is called after the boot code is executed.

CW32.LIB Protected 32-bit run-time library

NOEH32.LIB Protected "no-exception" library for applications with no exception
handling

EMBED32.LIB Protected Used with CW32.LIB for Win32 Embedded applications

EMUWIN32.LIB Protected Used with CW32.LIB for Win32 Emulation applications
to be executed on your PC

Paradigm C++ SOURCE\STARTUP Directory
C0.ASM Real, Extended Source for C0?.OBJ

Table legend
Each memory model has its own startup code and run-time library and math files that
contain versions of the routines written for that particular memory model.

The ? placeholder in each of the library file names represents one of the supported
memory models (S = small, M = Medium, C = compact, L = large, and H = huge).

For example, the available versions of the real mode startup module (C0?.OBJ) are:

� C0S.OBJ (small)
� C0M.OBJ (medium)
� C0C.OBJ (compact)
� C0L.OBJ (large)
� C0H.OBJ (huge)

Startup modules for extended and protected address modes use the 'X' suffix:

� C0LX.OBJ (large, extended address mode)

� C0x32.LIB (protected address mode)

Chapter 3, Library routines 59

Dynamic-link libraries

The dynamic-link library (DLL) version of the run-time library is contained in the BIN
subdirectory of your installation. Several versions of the dynamic-link libraries are
available.

In the 16-bit specific version, only the large-memory model DLL is provided. No other
memory-model is supported in a 16-bit DLL.

Listed below is the Paradigm C++ DLL name, the operating environment in which it is
available, and its use.

Directory: PC5\BIN

File Name Environment Use

PC500RTL.DLL Win 16 16-bit, large-memory model

C++ prototyped routines

Certain routines described in this book have multiple declarations. You must choose the
prototype appropriate for your program. In general, the multiple prototypes are required
to support the original C implementation and the stricter and sometimes different C++
function declaration syntax. For example, some string-handling routines have multiple
prototypes because in addition to the ANSI-C specified prototype, Paradigm C++
provides prototypes consistent with the ANSI C++ draft.

Function Header

getvect dos.h

max stdlib.h

memchr string.h

min stdlib.h

setvect dos.h

strchr string.h

strpbrk string.h

strrchr string.h

strstr string.h

Paradigm C++ library routines by category

The following sections list the library routines by category.

Classification routines

The following routines classify ASCII characters as letters, control characters,
punctuation, uppercase, and so on.

These routines are all declared in ctype.h.

isalnum islower

isalpha isprint

isascii ispunct

iscntrl isspace

Paradigm C++ Language Reference60

isdigit isupper

isgraph isxdigit

Console I/O routines

The following routine outputs text to the screen or reads from the keyboard.

Function Header

ungetc stdio.h

Conversion routines

The following routines convert characters and strings from

� Alpha to different numeric representations (floating-point, integers, longs)
� Numeric to alpha representations
� Uppercase to lowercase (and vice versa).

Function Header Function Header

atof stdlib.h strtol stdlib.h

atoi stdlib.h _strtold stdlib.h

atol stdlib.h strtoul stdlib.h

ecvt stdlib.h toascii ctype.h

fcvt stdlib.h _tolower ctype.h

gcvt stdlib.h tolower ctype.h

itoa stdlib.h _toupper ctype.h

ltoa stdlib.h toupper ctype.h

strtod stdlib.h ultoa stdlib.h

Diagnostic routines

The following routines provide built-in troubleshooting capability.

Function Header

assert assert.h

_matherr math.h

_matherrl math.h

perror errno.h

Inline routines

The following routines have inline versions. The compiler will generate code for the
inline versions when you use #pragma intrinsic or if you specify program optimization.

Function Header Function Header

abs math.h stpcpy string.h

alloca malloc.h strcat string.h

_crotl stdlib.h strchr string.h

Chapter 3, Library routines 61

_crotr stdlib.h strcmp string.h

_lrotl stdlib.h strcpy string.h

_lrotr stdlib.h strlen string.h

memchr mem.h strncat string.h

memcmp mem.h strncmp string.h

memcpy mem.h strncpy string.h

memset mem.h strnset string.h

_rotl stdlib.h strrchr string.h

_rotr stdlib.h strset string.h

Input/output routines

The following routines provide stream- and operating-system level I/O capability.

Function Header Function Header

clearerr stdio.h printf stdio.h

fclose stdio.h putc stdio.h

fcloseall stdio.h putchar stdio.h

feof stdio.h puts stdio.h

ferror stdio.h putw stdio.h

fflush stdio.h scanf stdio.h

fgetc stdio.h setbuf stdio.h

fgetchar stdio.h setmode io.h

fgetpos stdio.h setvbuf stdio.h

fgets stdio.h sprintf stdio.h

fileno stdio.h sscanf stdio.h

flushall stdio.h strerror stdio.h

freopen stdio.h _strerror string.h, stdio.h

getc stdio.h vprintf stdio.h

getchar stdio.h vscanf stdio.h

gets stdio.h vsprintf stdio.h

getw stdio.h vsscanf stdio.h

perror stdio.h

Interface routines (DOS, 8086, BIOS)

The following routines provide operating system, BIOS and machine-specific
capabilities.

Function Header Function Header

_chain_intr dos.h intr dos.h

_disable dos.h MK_FP dos.h

disable dos.h outport dos.h

_enable dos.h outportb dos.h

enable dos.h peek dos.h

FP_OFF dos.h peekb dos.h

FP_SEG dos.h poke dos.h

getvect dos.h pokeb dos.h

Paradigm C++ Language Reference62

inport dos.h segread dos.h

inportb dos.h setvect dos.h

int86 dos.h

int86x dos.h

Manipulation routines

The following routines handle strings and blocks of memory: copying, comparing,
converting, and searching.

Function Header Function Header

mblen stdlib.h strerror string.h

mbstowcs stdlib.h stricmp string.h

mbtowc stdlib.h strlen string.h

memccpy mem.h, string.h strlwr string.h

memchr mem.h, string.h strncat string.h

memcmp mem.h, string.h strncmpi string.h

memcpy mem.h, string.h strncmp string.h

memicmp mem.h, string.h strncpy string.h

memmove mem.h, string.h strnicmp string.h

memset mem.h, string.h strnset string.h

movedata mem.h, string.h strpbrk string.h

movmem mem.h, string.h strrchr string.h

setmem mem.h strrev string.h

stpcpy string.h strset string.h

strcat string.h strspn string.h

strchr string.h strstr string.h

strcmpi string.h strtok string.h

strcmp string.h strupr string.h

strcoll string.h strxfrm string.h

strcpy string.h wcstombs stdlib.h

strcspn string.h wctomb stdlib.h

strdup string.h

Math routines

The following routines perform mathematical calculations and conversions.

Function Header Function Header

abs complex.h, stdlib.h labs stdlib.h

acos complex.h, math.h ldexp math.h

acosl math.h ldexpl math.h

asin complex.h, math.h ldiv math.h

asinl math.h log complex.h, math.h

atan complex.h, math.h logl math.h

atan2 complex.h, math.h log10 complex.h, math.h

atan2l math.h log10l math.h

atanl math.h _lrotl stdlib.h

Chapter 3, Library routines 63

atof stdlib.h, math.h _lrotr stdlib.h

atoi stdlib.h ltoa stdlib.h

atol stdlib.h _matherr math.h

_atold math.h _matherrl math.h

bcd (class) bcd.h modf math.h

cabs math.h modfl math.h

cabsl math.h polar complex.h

ceil math.h poly math.h

ceill math.h polyl math.h

_clear87 float.h pow complex.h, math.h

complex (class) complex.h pow10 math.h

_control87 float.h pow10l math.h

cos complex.h, math.h powl math.h

cosh complex.h, math.h rand stdlib.h

coshl math.h random stdlib.h

cosl math.h randomize stdlib.h

div math.h _rotl stdlib.h

ecvt stdlib.h _rotr stdlib.h

exp complex.h, math.h sin complex.h, math.h

expl math.h sinh complex.h, math.h

fabs math.h sinhl math.h

fabsl math.h sinl complex.h, math.h

fcvt stdlib.h sqrt complex.h, math.h

floor math.h sqrtl math.h

floorl math.h srand stdlib.h

fmod math.h _status87 float.h

fmodl math.h strtod stdlib.h

_fpreset float.h strtol stdlib.h

frexp math.h _strtold stdlib.h

frexpl math.h strtoul stdlib.h

gcvt stdlib.h tan complex.h, math.h

hypot math.h tanh complex.h, math.h

hypotl math.h tanhl complex.h, math.h

imag complex.h tanl math.h

itoa stdlib.h ultoa stdlib.h

Memory routines

The following routines provide dynamic memory allocation in the small-data and large-
data models.

Function Header Function Header

alloca malloc.h heapcheck alloc.h

calloc alloc.h, stdlib.h heapcheckfree alloc.h

coreleft alloc.h, stdlib.h heapchecknode alloc.h

farcalloc alloc.h heapwalk alloc.h

farfree alloc.h malloc alloc.h, stdlib.h

farmalloc alloc.h realloc alloc.h, stdlib.h

Paradigm C++ Language Reference64

free alloc.h, stdlib.h set_new_handler new.h

stackavail malloc.h

Miscellaneous routines

The following routines provide non-local goto capabilities and locale.

Function Header

longjmp setjmp.h

setjmp setjmp.h

Process control routines

The following routines invoke and terminate new processes from within another
routine.

Function Header Function Header

abort (process.h) exit (process.h)

_c_exit (process.h) _expand (process.h)

_cexit (process.h) raise (signal.h)

_exit (process.h) signal (signal.h)

Time and date routines

The following functions are time conversion and time manipulation routines.

Function Header Function Header

asctime time.h mktime time.h

clock time.h stime time.h

ctime time.h _strdate time.h

difftime time.h strftime time.h

gmtime time.h _strtime time.h

localtime time.h time time.h

Variable argument list routines

The following routines are for use when accessing variable argument lists (such as with
printf, vscanf, and so on).

Function Header

va_start stdarg.h

va_arg stdarg.h

va_end stdarg.h

Chapter 4, Run-time functions 65

C h a p t e r

4

Run-time functions

This chapter contains a detailed description of each function in the Paradigm C++
library. The functions are listed in alphabetical order.

Programming examples for each function are available in the online Help system. You
can easily copy them from Help and paste them into your files.

Each function entry provides certain standard information. For instance, the entry for
free.

� Tells you which header file(s) contains the prototype for free
� Summarizes what free does
� Gives the syntax for calling free

� Gives a detailed description of how free is implemented and how it relates to the
other memory-allocation routines

� Lists other language compilers that include similar functions
� Refers you to related functions

The following sample library entry lists each entry section and describes the
information it contains. The alphabetical listings follow.

Sample function entry header file name

The function is followed by the header file(s) containing the prototype for function or
definitions of constants, enumerated types, and so on used by function.

Syntax
function(modifier parameter([,…]);

This gives you the declaration syntax for function; parameter names are italicized. The
[,…] indicated that other parameters and their modifiers can follow.

Description

Summary of what this function does.

This section describes what function does, the parameters it takes, and any details you
need to use function and the related routines listed.

Return value

The value that function returns (if any) is given here. If function sets any global
variable, their values are also listed.

See also

Routines related to function that you might want to read about are listed here.

☞☞☞☞

Paradigm C++ Language Reference66

Portability

Portability is indicated by marks (+) in the columns of the portability table. A sample
portability table is shown here:

Real Extended Win32 ANSI C ANSI C++

+ + + + +

Each entry in the portability table is described in the following list. Any additional
restrictions are discussed in the Description section.

Real Available for DOS.

Extended Available under UNIX and/or POSIX.

Win32 Available to 32-bit Windows programs running on Win32s 1.0 and
Windows NT 3.1 applications.

ANSI C Defined by the ANSI C standard.

ANSI C++ Included in the ANSI C++ proposal.

abort stdlib.h

Syntax
void abort(void);

Description

Abnormally terminates a program.

abort causes an abnormal program termination by calling raise(SIGABRT). If there is
no signal handler for SIGABRT, then abort writes a termination message (Abnormal
program termination) on stderr, then aborts the program by a call to _exit with exit code
3.

Return Value

abort returns the exit code 3 to the parent process or to the operating system command
processor.

See also

assert, atexit, _c_exit, _exit, exit, raise, signal

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

Chapter 4, Run-time functions 67

abs stdlib.h

Syntax
int abs(int x);

Description

Returns the absolute value of an integer.

abs returns the absolute value of the integer argument x. If abs is called when stdlib.h
has been included, it's treated as a macro that expands to inline code.

If you want to use the abs function instead of the macro, include

#undef abs

in your program, after the #include <stdlib.h>.

This function can be used with bcd and complex types.

Return Value

The abs function returns an integer in the range of 0 to INT_MAX, with the exception
that an argument with the value INT_MIN is returned as INT_MIN. The values for
INT_MAX and INT_MIN are defined in header file limit.h.

limits_h

See also

bcd, cabs, complex, fabs, labs

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

acos, acosl math.h

Syntax
double acos(double x);

long double acosl(long double x);

Description

Calculates the arc cosine.

acos returns the arc cosine of the input value.

acosl is the long double version; it takes a long double argument and returns a long
double result.

Arguments to acos and acosl must be in the range -1 to 1, or else acos and acosl return
NAN and set the global variable errno to

EDOM Domain error

Paradigm C++ Language Reference68

This function can be used with bcd and complex types.

Return Value

acos and acosl of an argument between -1 and +1 return a value in the range 0 to pi.
Error handling for these routines can be modified through the functions _matherr and
_matherrl.

See also

asin, atan, atan2, bcd, complex, cos, _matherr, sin, tan

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

acos + + + + +

acosl + + +

alloca malloc.h

Syntax
void *alloca(size_t size);

Description

Allocates temporary stack space.

alloca allocates size bytes on the stack; the allocated space is automatically freed up
when the calling function exits.

Because alloca modifies the stack pointer, do not place calls to alloca in an expression
that is an argument to a function.

The alloca function should not be used in the try-block of a C++ program. If an
exception is thrown, any values placed on the stack by alloca will be corrupted.

If the calling function does not contain any references to local variables in the stack, the
stack will not be restored correctly when the function exits, resulting in a program
crash. To ensure that the stack is restored correctly, use the following code in the calling
function:

char *p;
char dummy[5];

dummy[0] = 0;
…
p = alloca(nbytes);

Return Value

If enough stack space is available, alloca returns a pointer to the allocated stack area.
Otherwise, it returns NULL.

Chapter 4, Run-time functions 69

See also

malloc

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

asctime time.h

Syntax
char *asctime(const struct tm *tblock);

Description

Converts date and time to ASCII.

asctime converts a time stored as a structure in *tblock to a 26-character string of the
same form as the ctime string:

Sun Sep 16 01:03:52 1973\n\0

Return Value

asctime returns a pointer to the character string containing the date and time. This string
is a static variable that is overwritten with each call to asctime.

See also

ctime, difftime, gmtime, localtime, mktime, strftime, stime, time

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

asin, asinl math.h

Syntax

double asin(double x);

long double asinl(long double x);

Description

Calculates the arc sine.

asin of a real argument returns the arc sine of the input value.

Paradigm C++ Language Reference70

asinl is the long double version; it takes a long double argument and returns a long
double result.

Real arguments to asin and asinl must be in the range -1 to 1, or else asin and asinl
return NAN and set the global variable errno to

EDOM Domain error

This function can be used with bcd and complex types.

Return Value

asin and asinl of a real argument return a value in the range -pi/2 to pi/2. Error handling
for these functions may be modified through the functions _matherr and _matherrl.

See also

acos, atan, atan2, bcd, complex, cos, _matherr, sin, tan

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

asin + + + + +

asinl + + +

assert assert.h

Syntax
void assert(int test);

Description

Tests a condition and possibly aborts.

assert is a macro that expands to an if statement; if test evaluates to zero, assert aborts
the program (by calling abort) and asserts the following a message on stderr:

Assertion failed: test, file filename, line linenum

The filename and linenum listed in the message are the source file name and line
number where the assert macro appears.

If you place the #define NDEBUG directive ("no debugging") in the source code
before the #include <assert.h> directive, the effect is to comment out the assert
statement.

Return Value

None

See also

abort

Chapter 4, Run-time functions 71

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

atan, atanl math.h

Syntax
double atan(double x);

long double atanl(long double x);

Description

Calculates the arc tangent.

atan calculates the arc tangent of the input value.

atanl is the long double version; it takes a long double argument and returns a long
double result. This function can be used with bcd and complex types.

Return Value

atan and atanl of a real argument return a value in the range -pi/2 to pi/2. Error handling
for these functions can be modified through the functions _matherr and _matherrl.

See also

acos, asin, atan2, bcd, complex, cos, _matherr, sin, tan

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

atan + + + + +

atanl + + +

atan2, atan2l math.h

Syntax

double atan2(double y, double x);

long double atan2l(long double y, long double x);

Description

Calculates the arc tangent of y/x.

Paradigm C++ Language Reference72

atan2 returns the arc tangent of y/x; it produces correct results even when the resulting
angle is near pi/2 or -pi/2 (x near 0). If both x and y are set to 0, the function sets the
global variable errno to EDOM, indicating a domain error.

atan2l is the long double version; it takes long double arguments and returns a long
double result.

Return Value

atan2 and atan2l return a value in the range -pi to pi. Error handling for these functions
can be modified through the functions _matherr and _matherrl.

See also

acos, asin, atan, cos, _matherr, sin, tan

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

atan2 + + + + +

atan2l + + +

atexit stdlib.h

Syntax
int atexit(void (_USERENTRY * func)(void));

Description

Registers termination function.

atexit registers the function pointed to by func as an exit function. Upon normal
termination of the program, exit calls func just before returning to the operating system.
fcmp must be used with the _USERENTRY calling convention.

Each call to atexit registers another exit function. Up to 32 functions can be registered.
They are executed on a last-in, first-out basis (that is, the last function registered is the
first to be executed).

Return Value

atexit returns 0 on success and nonzero on failure (no space left to register the function).

See also

abort, _c_exit, _cexit, _exit, exit

Reentrant

No

Chapter 4, Run-time functions 73

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

atof, _atold math.h

Syntax

double atof(const char *s);

long double _atold(const char *s);

Description

Converts a string to a floating-point number.

atof converts a string pointed to by s to double; this function recognizes the character
representation of a floating-point number, made up of the following:

� An optional string of tabs and spaces
� An optional sign
� A string of digits and an optional decimal point (the digits can be on both sides of

the decimal point)
� An optional e or E followed by an optional signed integer

The characters must match this generic format:

[whitespace] [sign] [ddd] [.] [ddd] [e|E[sign]ddd]

atof also recognizes +INF and -INF for plus and minus infinity, and +NAN and -NAN
for Not-a-Number.

In this function, the first unrecognized character ends the conversion.

_atold is the long double version; it converts the string pointed to by s to a long
double.

The functions strtod and _strtold are similar to atof and _atold; they provide better error
detection, and hence are preferred in some applications.

Return Value

atof and _atold return the converted value of the input string.

If there is an overflow, atof (or _atold) returns plus or minus HUGE_VAL (or
_LHUGE_VAL), errno is set to ERANGE (Result out of range), and _matherr (or
_matherrl) is not called.

See also

atoi, atol, ecvt, fcvt, gcvt, scanf, strtod

Reentrant

Yes

Paradigm C++ Language Reference74

Portability

Real Extended Win32 ANSI C ANSI C++

atof + + + + +

_atold + + +

atoi stdlib.h

Syntax
int atoi(const char *s);

Description

Converts a string to an integer.

atoi converts a string pointed to by s to int; atoi recognizes (in the following order)

� An optional string of tabs and spaces
� An optional sign
� A string of digits

The characters must match this generic format:

[ws] [sn] [ddd]

In this function, the first unrecognized character ends the conversion. There are no
provisions for overflow in atoi (results are undefined).

Return Value

atoi returns the converted value of the input string. If the string cannot be converted to a
number of the corresponding type (int), atoi returns 0.

See also

atof, atol, ecvt, fcvt, gcvt, scanf, strtod

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

atol stdlib.h

Syntax
long atol(const char *s);

Description

Converts a string to a long.

atol converts the string pointed to by s to long. atol recognizes (in the following order)

Chapter 4, Run-time functions 75

� An optional string of tabs and spaces
� An optional sign
� A string of digits

The characters must match this generic format:

[ws] [sn] [ddd]

In this function, the first unrecognized character ends the conversion. There are no
provisions for overflow in atol (results are undefined).

Return Value

atol returns the converted value of the input string. If the string cannot be converted to a
number of the corresponding type (b), atol returns 0.

See also

atof, atoi, ecvt, fcvt, gcvt, scanf, strtod, strtol, strtoul

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

bsearch stdlib.h

Syntax
void *bsearch(const void *key, const void *base, size_t nelem, size_t width,

int (_USERENTRY *fcmp)(const void *, const void *));

Description

Binary search of an array.

bsearch searches a table (array) of nelem elements in memory, and returns the address
of the first entry in the table that matches the search key. The array must be in order. If
no match is found, bsearch returns 0.

Because this is a binary search, the first matching entry is not necessarily the first entry
in the table.

The type size_t is defined in stddef.h header file.

� nelem gives the number of elements in the table.
� width specifies the number of bytes in each table entry.

The comparison routine fcmp must be used with the _USERENTRY calling convention.

fcmp is called with two arguments: elem1 and elem2. Each argument points to an item
to be compared. The comparison function compares each of the pointed-to items
(*elem1 and *elem2), and returns an integer based on the results of the comparison.

For bsearch, the fcmp return value is

☞☞☞☞

Paradigm C++ Language Reference76

� < 0 if *elem1 < *elem2
� = = 0 if *elem1 = = *elem2
� > 0 if *elem1 > *elem2

Return Value

bsearch returns the address of the first entry in the table that matches the search key. If
no match is found, bsearch returns 0.

See also

lfind, lsearch, qsort

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

cabs, cabsl math.h

Syntax
double cabs(struct complex z);

long double cabsl(struct _complexl z);

Description

cabs calculates the absolute value of a complex number. cabs is a macro that calculates
the absolute value of z, a complex number. z is a structure with type complex; the
structure is defined in math.h as

struct complex {
double x, y;
};

where x is the real part, and y is the imaginary part.

Calling cabs is equivalent to calling sqrt with the real and imaginary components of z,
as shown here:

sqrt(z.x * z.x + z.y * z.y)

cabsl is the long double version; it takes a structure with type _complexl as an
argument, and returns a long double result. The structure is defined in math.h as

struct _complexl {
long double x, y;

};

If you are using C++, you may also use the complex class defined in complex.h, and use
the function abs to get the absolute value of a complex number.☞☞☞☞

Chapter 4, Run-time functions 77

Return Value

cabs (or cabsl) returns the absolute value of z, a double. On overflow, cabs (or cabsl)
returns HUGE_VAL (or _LHUGE_VAL) and sets the global variable errno to

ERANGE Result out of range

Error handling for these functions can be modified through the functions _matherr and
_matherrl.

See also

abs, complex, errno (global variable), fabs, labs, _matherr

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

cabs + + +

cabsl + + +

calloc stdlib.h

Syntax
void *calloc(size_t nitems, size_t size);

Description

Allocates main memory.

calloc provides access to the C memory heap. The heap is available for dynamic
allocation of variable-sized blocks of memory. Many data structures, such as trees and
lists, naturally employ heap memory allocation.

All the space between the end of the data segment and the top of the program stack is
available for use small and medium data models, except for a small margin immediately
before the top of the stack. This margin allows room for the application to grow on the
stack, and provides a small amount of room needed by the operating system.

In the large data models (compact, large, and huge), all space beyond the program stack
to the end of physical memory is available for the heap.

Memory models are available only for 16-bit applications.

calloc allocates a block of size nitems * size. The block is cleared to 0. If you want to
allocate a block larger than 64K, you must use farcalloc.

Return Value

calloc returns a pointer to the newly allocated block. If not enough space exists for the
new block or if nitems or size is 0, calloc returns NULL.

See also

farcalloc, free, malloc, realloc

☞☞☞☞

Paradigm C++ Language Reference78

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

ceil, ceill math.h

Syntax

double ceil(double x);

long double ceill(long double x);

Description

Rounds up.

ceil finds the smallest integer not less than x.

ceill is the long double version; it takes a long double argument and returns a long
double result.

Return Value

These functions return the integer found as a double (ceil) or a long double (ceill).

See also

floor, fmod

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

ceil + + + + +

ceill + + +

_c_exit process.h

Syntax
void _c_exit(void);

Description

Performs _exit cleanup without terminating the program.

_c_exit performs the same cleanup as _exit, except that it does not terminate the calling
process.

Chapter 4, Run-time functions 79

Return Value

None

See also

abort, atexit, _c_exit, exec, _exit, exit, signal

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

_cexit process.h

Syntax
void _cexit(void);

Description

Performs exit cleanup without terminating the program.

_cexit performs the same cleanup as exit, closing all files but without terminating the
calling process. The _cexit function calls any registered "exit functions" (posted with
atexit). Before _cexit returns, it flushes all input/output buffers and closes all streams
which were open.

Return Value

None

See also

abort, atexit, _c_exit, exec, _exit, exit, signal

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

_chain_intr dos.h, ebedded.h

Syntax
void _chain_intr(void (_ _interrupt _ _far *newhandler)());

Paradigm C++ Language Reference80

Description

Chains to another interrupt handler.

_chain_intr passes control from the currently executing interrupt handler to the new
interrupt handler whose address is newhandler. The current register set is not passed to
the new handler. Instead, the new handler receives the registers that were stacked (and
possibly modified in the stack) by the old handler. The new handler can simply return,
as if it were the original handler. The old handler is not entered again.

_chain_intr can be called only by C interrupt functions.

Return Value

None

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

_clear87 float.h

Syntax
unsigned int _clear87 (void);

Description

Clears floating-point status word.

_clear87 clears the floating-point status word, which is a combination of the 80x87
status word and other conditions detected by the 80x87 exception handler.

Return Value

The bits in the value returned indicate the floating-point status before it was cleared. For
information on the status word, refer to the constants defined in float.h.

See also

_control87, _fpreset, _status87

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

Chapter 4, Run-time functions 81

clearerr stdio.h

Syntax
void clearerr(FILE *stream);

Description

Resets error indication.

clearerr resets the named stream's error and end-of-file indicators to 0. Once the error
indicator is set, stream operations continue to return error status until a call is made to
clearerr or rewind. The end-of-file indicator is reset with each input operation.

Return Value

None

See also

feof, ferror, perror

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

clock time.h

Syntax
clock_t clock(void);

Description

Determines processor time.

clock can be used to determine the time interval between two events. To determine the
time in seconds, the value returned by clock should be divided by the value of the macro
CLK_TCK.

Return Value

On success, clock returns the processor time elapsed since the beginning of the program
invocation.

On error (if the processor time is not available or its value cannot be represented), clock
returns -1.

See also

time

Paradigm C++ Language Reference82

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

_control87 float.h

Syntax
unsigned int _control87(unsigned int newcw, unsigned int mask);

Description

Manipulates the floating-point control word.

_control87 retrieves or changes the floating-point control word.

The floating-point control word is an unsigned int that, bit by bit, specifies certain
modes in the floating-point package; namely, the precision, infinity, and rounding
modes. Changing these modes lets you mask or unmask floating-point exceptions.

_control87 matches the bits in mask to the bits in newcw. If a mask bit equals 1, the
corresponding bit in newcw contains the new value for the same bit in the floating-point
control word, and _control87 sets that bit in the control word to the new value.

Here is a simple illustration:

Original control word:0100 0011 0110 0011

mask: 1000 0001 0100 1111

newcw: 1110 1001 0000 0101

Changing bits: 1xxx xxx1 x0xx 0101

If mask equals 0, _control87 returns the floating-point control word without altering it.

Return Value

The bits in the value returned reflect the new floating-point control word. For a
complete definition of the bits returned by _control87, see the header file float.h.

See also

_clear87, _fpreset, signal, _status87

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

Chapter 4, Run-time functions 83

coreleft alloc.h

Syntax

In small and medium models:

unsigned coreleft(void);

Syntax

In compact, large, and huge models:

unsigned long coreleft(void);

Description

Returns a measure of unused RAM memory.

coreleft returns a measure of RAM memory not in use. It gives a different measurement
value, depending on whether the memory model is of the small data group or the large
data group.

Return Value

In the small data models, coreleft returns the amount of unused memory between the
top of the heap and the stack. In the large data models, coreleft returns the amount of
memory between the highest allocated block and the end of available memory.

See also

malloc

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

cos, cosl math.h

Syntax

double cos(double x);

long double cosl(long double x);

Description

Calculates the cosine of a value.

cos computes the cosine of the input value. The angle is specified in radians.

cosl is the long double version; it takes a long double argument and returns a long
double result.

This function can be used with bcd and complex types.

Paradigm C++ Language Reference84

Return Value

cos of a real argument returns a value in the range -1 to 1. Error handling for these
functions can be modified through _matherr (or _matherrl).

See also

acos, asin, atan, atan2, bcd, complex, _matherr, sin, tan

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

cos + + + + +

cosl + + +

cosh, coshl math.h

Syntax

double cosh(double x);

long double coshl(long double x);

Description

Calculates the hyperbolic cosine of a value.

cosh computes the hyperbolic cosine. coshl is the long double version; it takes a long
double argument and returns a long double result.

This function can be used with bcd and complex types.

Return Value

cosh returns the hyperbolic cosine of the argument.

When the correct value would create an overflow, these functions return the value
HUGE_VAL (cosh) or _LHUGE_VAL (coshl) with the appropriate sign, and the global
variable errno is set to ERANGE. Error handling for these functions can be modified
through the functions _matherr and _matherrl.

See also

acos, asin, atan, atan2, bcd, complex, cos, _matherr, sin, sinh, tan, tanh

Reentrant

Yes

Chapter 4, Run-time functions 85

Portability

Real Extended Win32 ANSI C ANSI C++

cosh + + + + +

coshl + + +

_crotl, _crotr stdlib.h

Syntax
unsigned char _crotl(unsigned char val, int count);

unsigned char _crotr(unsigned char val, int count);

Description

Rotates an unsigned char left or right.

_crotl rotates the given val to the left count bits. _crotr rotates the given val to the right
count bits.

The argument val is an unsigned char, or its equivalent in decimal or hexadecimal
form.

Return Value

The functions return the rotated word:

� _crotl returns the value of val left-rotated count bits.
� _crotr returns the value of val right-rotated count bits.

See also

_lrotl, _lrotr, _rotl, _rotr

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

ctime time.h

Syntax
char *ctime(const time_t *time);

Description

Converts date and time to a string.

ctime converts a time value pointed to by time (the value returned by the function time)
into a 26-character string in the following form, terminating with a newline character
and a null character:

Mon Nov 21 11:31:54 1983\n\0

Paradigm C++ Language Reference86

All the fields have constant width.

The global long variable _timezone contains the difference in seconds between GMT
and local standard time (in PST, _timezone is 8*60*60). The global variable _daylight
is nonzero if and only if the standard U.S. _daylight saving time conversion should be
applied. These variables are set by the tzset function, not by the user program directly.

Return Value

ctime returns a pointer to the character string containing the date and time. The return
value points to static data that is overwritten with each call to ctime.

See also

asctime, difftime, gmtime, localtime, settime, time

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

difftime time.h

Syntax
double difftime(time_t time2, time_t time1);

Description

Computes the difference between two times.

difftime calculates the elapsed time in seconds, from time1 to time2.

Return Value

difftime returns the result of its calculation as a double.

See also

asctime, ctime, gmtime, localtime, time

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

Chapter 4, Run-time functions 87

disable, _disable, enable, _enable dos.h, embedded.h

Syntax
void disable(void);

void disable(void);

void enable(void);

void _enable(void);

Description

Disables and enables interrupts.

These macros are designed to provide a programmer with flexible hardware interrupt
control.

disable and _disable macros disable interrupts. Only the NMI (non-maskable interrupt)
is allowed from any external device.

enable and _enable macros enable interrupts, allowing any device interrupts to occur.

Return Value

None

See also

getvect

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

div stdlib.h

Syntax
div_t div(int numer, int denom);

Description

Divides two integers, returning quotient and remainder.

div divides two integers and returns both the quotient and the remainder as a div_t type.
numer and denom are the numerator and denominator, respectively. The div_t type is a
structure of integers defined (with typedef) in stdlib.h as follows:

typedef struct {
int quot; /* quotient */
int rem; /* remainder */

} div_t;

Paradigm C++ Language Reference88

Return Value

div returns a structure whose elements are quot (the quotient) and rem (the remainder).

See also

ldiv

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

ecvt stdlib.h

Syntax
char *ecvt(double value, int ndig, int *dec, int *sign);

Description

Converts a floating-point number to a string.

ecvt converts value to a null-terminated string of ndig digits, starting with the leftmost
significant digit, and returns a pointer to the string. The position of the decimal point
relative to the beginning of the string is stored indirectly through dec (a negative value
for dec means that the decimal lies to the left of the returned digits). There is no decimal
point in the string itself. If the sign of value is negative, the word pointed to by sign is
nonzero; otherwise, it's 0. The low-order digit is rounded.

Return Value

The return value of ecvt points to static data for the string of digits whose content is
overwritten by each call to ecvt and fcvt.

See also

fcvt, gcvt, sprintf

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

Chapter 4, Run-time functions 89

_ _emit_ _ dos.h, embedded.h

Syntax
void _ _emit_ _(unsigned char _ _byte, ...);

Description

Inserts literal values directly into code.

_ _emit_ _ is an inline function that lets you insert literal values directly into object code
as it is compiling. It is used to generate machine language instructions without using
inline assembly language or an assembler.

Generally the arguments of an _ _emit_ _ call are single-byte machine instructions.
However, because of the capabilities of this function, more complex instructions,
complete with references to C variables, can be constructed.

You should use this function only if you are familiar with the machine language of the
80x86 processor family. You can use this function to place arbitrary bytes in the
instruction code of a function; if any of these bytes is incorrect, the program misbehaves
and can easily crash your machine. Paradigm C++ does not attempt to analyze your
calls for correctness in any way. If you encode instructions that change machine
registers or memory, Paradigm C++ will not be aware of it and might not properly
preserve registers, as it would in many cases with inline assembly language (for
example, it recognizes the usage of SI and DI registers in inline instructions). You are
completely on your own with this function.

You must pass at least one argument to _ _emit_ _; any number can be given. The
arguments to this function are not treated like any other function call arguments in the
language. An argument passed to _ _emit_ _ will not be converted in any way.

There are special restrictions on the form of the arguments to _ _emit_ _. Arguments
must be in the form of expressions that can be used to initialize a static object. This
means that integer and floating-point constants and the addresses of static objects can be
used. The values of such expressions are written to the object code at the point of the
call, exactly as if they were being used to initialize data. The address of a parameter or
auto variable, plus or minus a constant offset, can also be used. For these arguments, the
offset of the variable from BP is stored.

The number of bytes placed in the object code is determined from the type of the
argument, except in the following cases:

� If a signed integer constant (that is 0x90) appears that fits within the range of 0 to
255, it is treated as if it were a character.

� If the address of an auto or parameter variable is used, a byte is written if the offset
of the variable from BP is between -128 and 127; otherwise, a word is written.

Simple bytes are written as follows:

_ _emit_ _(0x90);

If you want a word written, but the value you are passing is under 255, simply cast it to
unsigned using one of these methods:

_ _emit_ _(0xB8, (unsigned)17);
_ _emit_ _(0xB8, 17u);

Two- or four-byte address values can be forced by casting an address to void near * or
void far *, respectively.

Paradigm C++ Language Reference90

Return Value

None

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

_exit stdlib.h

Syntax
void _exit(int status);

Description

Terminates program.

_exit terminates execution without closing any files, flushing any output, or calling any
exit functions.

The calling process uses status as the exit status of the process. Typically a value of 0 is
used to indicate a normal exit, and a nonzero value indicates some error.

Return Value

None

See also

abort, atexit, _c_exit, _cexit

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

exit stdlib.h

Syntax
void exit(int status);

Description

Terminates program.

Chapter 4, Run-time functions 91

exit terminates the calling process. Before termination, all files are closed, buffered
output (waiting to be output) is written, and any registered "exit functions" (posted with
atexit) are called.

status is provided for the calling process as the exit status of the process. Typically a
value of 0 is used to indicate a normal exit, and a nonzero value indicates some error. It
can be, but is not required, to be set with one of the following:

EXIT_FAILURE Abnormal program termination; signal to operating system that
program has terminated with an error

EXIT_SUCCESS Normal program termination

Return Value

None

See also

abort, atexit, _c_exit, _cexit, signal

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

exp, expl math.h

Syntax
double exp(double x);

long double expl(long double x);

Description

Calculates the exponential e to the x.

expl is the long double version; it takes a long double argument and returns a long
double result.

This function can be used with bcd and complex types.

Return Value

exp returns e to the x.

Sometimes the arguments passed to these functions produce results that overflow or are
incalculable. When the correct value overflows, exp returns the value HUGE_VAL and
expl returns _LHUGE_VAL. Results of excessively large magnitude cause the global
variable errno to be set to

ERANGE Result out of range

Paradigm C++ Language Reference92

On underflow, these functions return 0.0, and the global variable errno is not changed.
Error handling for these functions can be modified through the functions _matherr and
_matherrl.

See also

frexp, ldexp, log, log10, _matherr, pow, pow10, sqrt

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

exp + + + + +

expl + + +

_expand malloc.h

Syntax
void *_expand(void *block, size_t size);

Description

Grows or shrinks a heap block in place.

This function attempts to change the size of an allocated memory block without moving
the block's location in the heap. The data in the block are not changed, up to the smaller
of the old and new sizes of the block. The block must have been allocated earlier with
malloc, calloc, or realloc, and must not have been freed.

Return Value

If _expand is able to resize the block without moving it, _expand returns a pointer to the
block, whose address is unchanged. If _expand is unsuccessful, it returns a NULL
pointer and does not modify or resize the block.

See also

calloc, malloc, realloc

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+

Chapter 4, Run-time functions 93

fabs, fabsl math.h

Syntax
double fabs(double x);

long double fabsl(long double x);

Description

Returns the absolute value of a floating-point number.

fabs calculates the absolute value of x, a double. fabsl is the long double version; it
takes a long double argument and returns a long double result.

Return Value

fabs and fabsl return the absolute value of x.

See also

abs, cabs, labs

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

fabs + + + + +

fabsl + + +

farcalloc alloc.h

Syntax
void far *farcalloc(unsigned long nunits, unsigned long unitsz);

Description

Allocates memory from the far heap.

farcalloc allocates memory from the far heap for an array containing nunits elements,
each unitsz bytes long.

For allocating from the far heap, note that:

� All available RAM can be allocated.
� Blocks larger than 64K can be allocated.
� Far pointers (or huge pointers if blocks are larger than 64K) are used to access the

allocated blocks.

In the compact, large, and huge memory models, farcalloc is similar, though not
identical, to calloc. It takes unsigned long parameters, while calloc takes unsigned
parameters.

Paradigm C++ Language Reference94

Return Value

farcalloc returns a pointer to the newly allocated block, or NULL if not enough space
exists for the new block.

See also

calloc, farfree, farmalloc, malloc

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

farfree alloc.h

Syntax
void farfree(void far * block);

Description

Frees a block from far heap.

farfree releases a block of memory previously allocated from the far heap.

In the small and medium memory models, blocks allocated by farmalloc cannot be
freed with normal free, and blocks allocated with malloc cannot be freed with farfree. In
these models, the two heaps are completely distinct.

Return Value

None

See also

farcalloc, farmalloc

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

farmalloc alloc.h

Syntax
void far *farmalloc(unsigned long nbytes);

Chapter 4, Run-time functions 95

Description

Allocates from far heap.

farmalloc allocates a block of memory nbytes bytes long from the far heap.

For allocating from the far heap, note that

� All available RAM can be allocated.
� Blocks larger than 64K can be allocated.
� Far pointers are used to access the allocated blocks.

In the compact, large, and huge memory models, farmalloc is similar though not
identical to malloc. It takes unsigned long parameters, while malloc takes unsigned
parameters.

Return Value

farmalloc returns a pointer to the newly allocated block, or NULL if not enough space
exists for the new block.

See also

farcalloc, farfree, farrealloc, malloc

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

farrealloc alloc.h

Syntax
void far *farrealloc(void far *oldblock, unsigned long nbytes);

Description

Adjusts allocated block in far heap.

farrealloc adjusts the size of the allocated block to nbytes copying the contents to a new
location if necessary.

For allocating from the far heap:

� All available RAM can be allocated.
� Blocks larger than 64K can be allocated.
� Far pointers are used to access the allocated blocks.

Return Value

farrealloc returns the address of the reallocated block which might be different than the
address of the original block. If the block cannot be reallocated farrealloc returns
NULL.

Paradigm C++ Language Reference96

See also

realloc

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

fclose stdio.h

Syntax
int fclose(FILE *stream);

Description

Closes a stream.

fclose closes the named stream. All buffers associated with the stream are flushed
before closing. System-allocated buffers are freed upon closing. Buffers assigned with
setbuf or setvbuf are not automatically freed. (But if setvbuf is passed null for the buffer
pointer it will free it upon close.)

Return Value

fclose returns 0 on success. It returns EOF if any errors were detected.

See also

close, fcloseall, fflush, flushall, freopen

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

fcloseall stdio.h

Syntax
int fcloseall(void);

Description

Closes open streams.

fcloseall closes all open streams except

� stdin

Chapter 4, Run-time functions 97

� stdout
� stdprn
� stderr
� stdaux

stdprn and stdaux streams are not available in OS/2 and Win32.

Return Value

fcloseall returns the total number of streams it closed. It returns EOF if any errors were
detected.

See also

fclose, flushall, freopen

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

fcvt stdlib.h

Syntax
char *fcvt(double value, int ndig, int *dec, int *sign);

Description

Converts a floating-point number to a string.

fcvt converts value to a null-terminated string digit starting with the leftmost significant
digit with ndig digits to the right of the decimal point. fcvt then returns a pointer to the
string. The position of the decimal point relative to the beginning of the string is stored
indirectly through dec (a negative value for dec means to the left of the returned digits).
There is no decimal point in the string itself. If the sign of value is negative the word
pointed to by sign is nonzero; otherwise it is 0.

The correct digit has been rounded for the number of digits to the right of the decimal
point specified by ndig.

Return Value

The return value of fcvt points to static data whose content is overwritten by each call to
fcvt and ecvt.

See also

ecvt, gcvt, sprintf

Reentrant

No

☞☞☞☞

Paradigm C++ Language Reference98

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

feof stdio.h

Syntax
int feof(FILE *stream);

Description

Detects end-of-file on a stream.

feof is a macro that tests the given stream for an end-of-file indicator. Once the indicator
is set read operations on the file return the indicator until rewind is called or the file is
closed. The end-of-file indicator is reset with each input operation.

Return Value

feof returns nonzero if an end-of-file indicator was detected on the last input operation
on the named stream and 0 if end-of-file has not been reached.

See also

clearerr, eof, ferror, perror

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

ferror stdio.h

Syntax
int ferror(FILE *stream);

Description

Detects errors on stream.

ferror is a macro that tests the given stream for a read or write error. If the stream's error
indicator has been set it remains set until clearerr or rewind is called or until the stream
is closed.

Return Value

ferror returns nonzero if an error was detected on the named stream.

See also

clearerr, eof, feof, gets, perror

Chapter 4, Run-time functions 99

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

fflush stdio.h

Syntax
int fflush(FILE *stream);

Description

Flushes a stream.

If the given stream has buffered output fflush writes the output for stream to the
associated file.

The stream remains open after fflush has executed. fflush has no effect on an unbuffered
stream.

Return Value

fflush returns 0 on success. It returns EOF if any errors were detected.

See also

fclose, flushall, setbuf, setvbuf

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

fgetc stdio.h

Syntax
int fgetc(FILE *stream);

Description

Gets character from stream.

fgetc returns the next character on the named input stream.

Return Value

On success fgetc returns the character read after converting it to an int without sign
extension. On end-of-file or error it returns EOF.

Paradigm C++ Language Reference100

See also

getc, getchar, getche, ungetc

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

_fgetchar, _fgetwchar stdio.h

Syntax
int _fgetchar(void);

wint_t _fgetwchar(void);

Description

Reads a character from stdin.

_fgetchar returns the next character from stdin. It is defined as fgetc(stdin).

For Win32s or Win32 GUI applications, stdin must be redirected.

Return Value

On success _fgetchar returns the character read after converting it to an int without sign
extension. On end-of-file or error it returns EOF.

See also

fgetc, freopen, getchar

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

fgetpos stdio.h

Syntax
int fgetpos(FILE *stream, fpos_t *pos);

Description

Gets the current file pointer.

☞☞☞☞

Chapter 4, Run-time functions 101

fgetpos stores the position of the file pointer associated with the given stream in the
location pointed to by pos. The exact value is unimportant; its value is opaque except as
a parameter to subsequent fsetpos calls.

Return Value

On success fgetpos returns 0. On failure it returns a nonzero value and sets the global
variable errno to

EBADF Bad file number

EINVAL Invalid number

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

fgets, fgetws stdio.h

Syntax
char *fgets(char *s, int n, FILE *stream);

wchar_t *fgetws(wchar_t *s, int n, FILE *stream); // Unicode version

Description

Gets a string from a stream.

fgets reads characters from stream into the string s. The function stops reading when it
reads either n - 1 characters or a newline character whichever comes first. fgets retains
the newline character at the end of s. A null byte is appended to s to mark the end of the
string.

Return Value

On success fgets returns the string pointed to by s; it returns NULL on end-of-file or
error.

See also

gets

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

Paradigm C++ Language Reference102

fileno stdio.h

Syntax
int fileno(FILE *stream);

Description

Gets file handle.

fileno is a macro that returns the file handle for the given stream. If stream has more
than one handle fileno returns the handle assigned to the stream when it was first
opened.

Return Value

fileno returns the integer file handle associated with stream.

See also

freopen

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

floor, floorl math.h

Syntax
double floor(double x);

long double floorl(long double x);

Description

Rounds down.

floor finds the largest integer not greater than x.

floorl is the long double version; it takes a long double argument and returns a long
double result.

Return Value

floor returns the integer found as a double. floorl returns the integer found as a long
double.

See also

ceil, fmod

Reentrant

Yes

Chapter 4, Run-time functions 103

Portability

Real Extended Win32 ANSI C ANSI C++

floor + + + + +

floorl + + +

flushall stdio.h

Syntax
int flushall(void);

Description

Flushes all streams.

flushall clears all buffers associated with open input streams and writes all buffers
associated with open output streams to their respective files. Any read operation
following flushall reads new data into the buffers from the input files. Streams stay
open after flushall executes.

Return Value

flushall returns an integer the number of open input and output streams.

See also

fclose, fcloseall, fflush

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

fmod, fmodl math.h

Syntax

double fmod(double x, double y);

long double fmodl(long double x, long double y);

Description

Calculates x modulo y, the remainder of x/y.

fmod calculates x modulo y (the remainder f, where x = ay + f for some integer a, and 0
< f < y).

fmodl is the long double version; it takes long double arguments and returns a long
double result.

Paradigm C++ Language Reference104

Return Value

fmod and fmodl return the remainder f where x = ay + f (as described above). When y =
0, fmod and fmodl return 0.

See also

ceil, floor, modf

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

fmod + + + + +

fmodl + + +

FP_OFF, FP_SEG dos.h, embedd.h

Syntax

unsigned FP_OFF(void far *p);

unsigned FP_SEG(void far *p);

Description

Gets a far address offset or segment.

FP_OFF is a macro that gets or sets the offset of the far pointer p.

FP_SEG is a macro that gets or sets the segment value of the far pointer p.

Return Value

FP_OFF returns an unsigned integer value representing an offset value.

FP_SEG returns an unsigned integer representing a segment value.

See also

MK_FP, movedata, segread

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

Chapter 4, Run-time functions 105

_fpreset float.h

Syntax
void _fpreset(void);

Description

Reinitializes floating-point math package.

_fpreset reinitializes the floating-point math package. This function is used to recover
from floating-point errors before calling longjmp.

If you use an 80x87 take the following precaution:

� Call _fpreset to reset the floating-point state if there is any chance that the child
process performed a floating-point operation with the 80x87.

Return Value

None

See also

_clear87, _control87, _status87

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

free stdlib.h

Syntax
void free(void *block);

Description

Frees allocated block.

free deallocates a memory block allocated by a previous call to calloc, malloc, or
realloc.

Return Value

None

See also

calloc, malloc, realloc, strdup

Reentrant

No

Paradigm C++ Language Reference106

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

freopen, _wfreopen stdio.h

Syntax

FILE *freopen(const char *filename, const char *mode, FILE *stream);

FILE *_wfreopen(const wchar_t *filename, const wchar_t *mode, FILE *stream);

Description

Associates a new file with an open stream.

freopen substitutes the named file in place of the open stream. It closes stream
regardless of whether the open succeeds. freopen is useful for changing the file attached
to stdin, stdout, or stderr.

The mode string used in calls to fopen is one of the following values:

Value Description

r Open for reading only.

w Create for writing.

a Append; open for writing at end-of-file or create for writing if the file does not exist.

r+ Open an existing file for update (reading and writing).

w+ Create a new file for update (reading and writing).

a+ Open for append; open (or create if the file does not exist) for update at the end of the file.

To specify that a given file is being opened or created in text mode append a t to the
mode string (rt w+t and so on); similarly to specify binary mode append a b to the mode
string (wb a+b and so on).

If a t or b is not given in the mode string the mode is governed by the global variable
_fmode. If _fmode is set to O_BINARY files are opened in binary mode. If _fmode is
set to O_TEXT they are opened in text mode. These O_... constants are defined in
fcntl.h.

When a file is opened for update, both input and output can be done on the resulting
stream; however,

� output cannot be directly followed by input without an intervening fseek or rewind
� input cannot be directly followed by output without an intervening fseek, rewind, or

an input that encounters end-offile

Return Value

On successful completion freopen returns the argument stream.

On error it returns NULL.

See also

fclose, open, setmode

Chapter 4, Run-time functions 107

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

frexp, frexpl math.h

Syntax

double frexp(double x, int *exponent);

long double frexpl(long double x, int *exponent);

Description

Splits a number into mantissa and exponent.

frexp calculates the mantissa m (a double greater than or equal to 0.5 and less than 1)
and the integer value n such that x (the original double value) equals m * 2n. frexp
stores n in the integer that exponent points to.

frexpl is the long double version; it takes a long double argument for x and returns a
long double result.

Return Value

frexp and frexpl return the mantissa m. Error handling for these routines can be
modified through the functions _matherr and _matherrl.

See also

exp, ldexp, _matherr

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

frexp + + + + +

frexpl + + +

_fstr* string.h

Syntax
_ _far string functions

Description

Provides string operations in a large-code model.

Choose See also to see a list of string functions that have a far version. The far version
of a string function is prefixed with _fstr. The behavior of a far string function is

Paradigm C++ Language Reference108

identical to the behavior of the standard function to which it corresponds. The only
difference is that arguments and return value (if any) to a far string function are
modified by the far keyword. The entry for each of the functions provides a description
for the far version.

Return Value

The return value for a _fstr-type function is a far type.

When a far string function returns an int or size_t, the return value is never modified by
the far keyword.

See also

strcat, strchr, strcmp, strcpy, strcspn, strdup, stricmp, strlen, strlwr, strncat, strncmp,
strncpy, strnicmp, strnset, strpbrk, strrchr, strrev, strset, strspn, strstr, strtok, strupr

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

gcvt stdlib.h

Syntax
char *gcvt(double value, int ndec, char *buf);

Description

Converts floating-point number to a string.

gcvt converts value to a null-terminated ASCII string and stores the string in buf. It
produces ndec significant digits in FORTRAN F format, if possible; otherwise, it
returns the value in the printf E format (ready for printing). It might suppress trailing
zeros.

Return Value

gcvt returns the address of the string pointed to by buf.

See also

ecvt, fcvt, sprintf

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

☞☞☞☞

Chapter 4, Run-time functions 109

geninterrupt dos.h

Syntax
void geninterrupt(int intr_num);

Description

Generates a software interrupt.

The geninterrupt macro triggers a software trap for the interrupt given by intr_num. The
state of all registers after the call depends on the interrupt called.

Interrupts can leave registers in unpredictable states.

Return Value

None.

See also

disable, enable, getvect, int86, int86x, intr

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

getc stdio.h

Syntax
int getc(FILE *stream);

Description

Gets character from stream.

getc returns the next character on the given input stream and increments the stream's file
pointer to point to the next character.

For Win32s applications, stdin must be redirected.

Return Value

On success, getc returns the character read, after converting it to an int without sign
extension.

On end-of-file or error, it returns EOF.

See also

fgetc, getchar, gets, putc, putchar, ungetc

☞☞☞☞

Paradigm C++ Language Reference110

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

getchar stdio.h

Syntax
int getchar(void);

Description

Gets character from stdin.

getchar is a macro that returns the next character on the named input stream stdin. It is
defined to be getc(stdin).

Do not use this function for Win32s applications.

Return Value

On success, getchar returns the character read, after converting it to an int without sign
extension.

On end-of-file or error, it returns EOF.

See also

fgetc, freopen, getc, gets, putc, putchar, scanf, ungetc

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

gets stdio.h

Syntax
char *gets(char *s);

Description

Gets a string from stdin.

gets collects a string of characters terminated by a new line from the standard input
stream stdin and puts it into s. The new line is replaced by a null character (\0) in s.

gets allows input strings to contain certain whitespace characters (spaces, tabs). gets
returns when it encounters a new line; everything up to the new line is copied into s.

☞☞☞☞

Chapter 4, Run-time functions 111

The gets function is not length-terminated. If the input string is sufficiently large, data
can be overwritten and corrupted. The fgets function provides better control of input
strings.

For Win32s applications, stdin must be redirected.

Return Value

On success, gets returns the string argument s.

On end-of-file or error, it returns NULL

See also

ferror, fgets, freopen, getc, puts, scanf

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

getvect, setvect dos.h, embedded.h

Syntax

void _ _interrupt(_ _far * getvect(int _ _interruptno)) (...);

void setvect(int _ _interruptno, void _ _interrupt (_ _far *_ _isr) (...));

Description

Gets and sets interrupt vector.

Every processor of the 8086 family includes a set of interrupt vectors numbered 0 to
255. The 4-byte value in each vector is actually an address which is the location of an
interrupt function.

getvect reads the value of the interrupt vector given by interruptno and returns that
value as a (far) pointer to an interrupt function. The value of interruptno can be from 0
to 255.

setvect sets the value of the interrupt vector named by interruptno to a new value, isr,
which is a far pointer containing the address of a new interrupt function. The address of
a C routine can be passed to isr only if that routine is declared to be an interrupt routine.

In C++, only static member functions or non-member functions can be declared to be an
interrupt routine. If you use the prototypes declared in dos.h simply pass the address of
an interrupt function to setvect in any memory model

Return Value

getvect returns the current 4-byte value stored in the interrupt vector named by
interruptno.

setvect does not return a value.

☞☞☞☞

☞☞☞☞

Paradigm C++ Language Reference112

See also

disable, enable

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

getw stdio.h

Syntax
int getw(FILE *stream);

Description

Gets integer from stream.

getw returns the next integer in the named input stream. It assumes no special alignment
in the file.

getw should not be used when the stream is opened in text mode.

Return Value

getw returns the next integer on the input stream.

On end-of-file or error, getw returns EOF.

Because EOF is a legitimate value for getw to return, feof or ferror should be used to
detect end-of-file or error.

See also

putw

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

gmtime time.h

Syntax
struct tm *gmtime(const time_t *timer);

☞☞☞☞

Chapter 4, Run-time functions 113

Description

Converts date and time to Greenwich mean time (GMT).

gmtime accepts the address of a value returned by time and returns a pointer to the
structure of type tm containing the time elements. gmtime converts directly to GMT.

The global long variable _timezone should be set to the difference in seconds between
GMT and local standard time (in PST _timezone is 8 x 60 x 60).

This is the tm structure declaration from the time.h header file:

struct tm {
int tm_sec; /*Seconds*/
int tm_min; /*Minutes*/
int tm_hour; /*Hour (0 - 23)*/
int tm_mday; /*Day of month (1 - 31)*/
int tm_mon; /*Month (0 - 11)*/
int tm_year; /*Year (calendar year minus 1900)*/
int tm_wday; /*Weekday (0 - 6; Sunday is 0)*/
int tm_yday; /*Day of year (0 -365)*/
int tm_isdst; /*Nonzero if daylight saving time is in effect.*/

};

These quantities give the time on a 24-hour clock, day of month (1 to 31), month (0 to
11), weekday (Sunday equals 0), year - 1900, day of year (0 to 365), and a flag that is
nonzero if daylight saving time is in effect.

Return Value

gmtime returns a pointer to the structure containing the time elements. This structure is
a static that is overwritten with each call.

See also

asctime, ctime, localtime, stime, time

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

Paradigm C++ Language Reference114

Chapter 4, Run-time functions 115

heapcheck alloc.h

Syntax
int heapcheck(void);

Description

Checks and verifies the heap.

heapcheck walks through the heap and examines each block, checking its pointers, size,
and other critical attributes. For real and extended mode applications, heapcheck maps
to farheapcheck in the large and huge memory models.

Return Value

The return value is less than 0 for an error and greater than 0 for success. The return
values and their meaning are as follows:

_HEAPCORRUPT Heap has been corrupted

_HEAPEMPTY No heap

_HEAPOK Heap is verified

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

heapcheckfree alloc.h

Syntax
int heapcheckfree(unsigned int fillvalue);

Description

Checks the free blocks on the heap for a constant value.

Return Value

The return value is less then 0 for an error and greater than 0 for success. The return
values and their meaning are as follows:

_BADVALUE A value other than the fill value was found

_HEAPCORRUPT Heap has been corrupted

_HEAPEMPTY No heap

_HEAPOK Heap is accurate

Reentrant

No

Paradigm C++ Language Reference116

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

heapchecknode alloc.h

Syntax
int heapchecknode(void *node);

Description

Checks and verifies a single node on the heap.

If a node has been freed and heapchecknode is called with a pointer to the freed block,
heapchecknode can return _BADNODE rather than the expected _FREEENTRY. This
is because adjacent free blocks on the heap are merged, and the block in question no
longer exists.

Return Value

One of the following values:

_BADNODE Node could not be found

_FREEENTRY Node is a free block

_HEAPCORRUPT Heap has been corrupted

_HEAPEMPTY No heap

_USEDENTRY Node is a used block

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

_heapchk malloc.h

Syntax
int _heapchk(void);

Description

Checks and verifies the heap.

_heapchk walks through the heap and examines each block, checking its pointers, size,
and other critical attributes.

Return Value

One of the following values:

Chapter 4, Run-time functions 117

_HEAPBADNODE A corrupted heap block has been found

_HEAPEMPTY No heap exists

_HEAPOK The heap appears to be uncorrupted

See also

_heapset

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+

heapfillfree alloc.h

Syntax
int heapfillfree(unsigned int fillvalue);

Description

Fills the free blocks on the heap with a constant value.

Return Value

One of the following values:

_HEAPCORRUPT Heap has been corrupted

_HEAPEMPTY No heap

_HEAPOK Heap is accurate

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

_heapmin malloc.h

Syntax
int _heapmin(void);

Description

Release unused heap areas.

Paradigm C++ Language Reference118

The _heapmin function returns unused areas of the heap to the operating system. This
allows blocks that have been allocated and then freed to be used by other processes.
Due to fragmentation of the heap, _heapmin might not always be able to return unused
memory to the operating system; this is not an error.

Return Value

_heapmin returns 0 if it is successful, or -1 if an error occurs.

See also

free, malloc

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

_heapset malloc.h

Syntax
int _heapset(unsigned int fillvalue);

Description

Fills the free blocks on the heap with a constant value.

_heapset checks the heap for consistency using the same methods as _heapchk. It then
fills each free block in the heap with the value contained in the least significant byte of
fillvalue. This function can be used to find heap-related problems. It does not guarantee
that subsequently allocated blocks will be filled with the specified value.

Return Value

One of the following values:

_HEAPOK The heap appears to be uncorrupted

_HEAPEMPTY No heap exists

_HEAPBADNODE A corrupted heap block has been found

See also

_heapchk

Reentrant

No

Chapter 4, Run-time functions 119

Portability

Real Extended Win32 ANSI C ANSI C++

+

heapwalk alloc.h

Syntax
int heapwalk(struct heapinfo *hi);

Description

heapwalk is used to "walk" through the heap, node by node.

heapwalk assumes the heap is correct. Use heapcheck to verify the heap before using
heapwalk. _HEAPOK is returned with the last block on the heap. _HEAPEND will be
returned on the next call to heapwalk.

heapwalk receives a pointer to a structure of type heapinfo (declared in alloc.h). For the
first call to heapwalk, set the hi.ptr field to null. heapwalk returns with hi.ptr containing
the address of the first block. hi.size holds the size of the block in bytes. hi.in_use is a
flag that's set if the block is currently in use.

Return Value

One of the following values:

_HEAPEMPTY No heap exists

_HEAPEND The end of the heap has been reached

_HEAPOK The heapinfo block contains valid information about the next heap
block

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

hypot, hypotl math.h

Syntax
double hypot(double x, double y);

long double hypotl(long double x, long double y);

Description

Calculates hypotenuse of a right triangle.

hypot calculates the value z where

z2 = x2 + y2 and z >= 0

Paradigm C++ Language Reference120

This is equivalent to the length of the hypotenuse of a right triangle, if the lengths of the
two sides are x and y.

hypotl is the long double version; it takes long double arguments and returns a long
double result.

Return Value

On success, these functions return z, a double (hypot) or a long double) (hypotl). On
error (such as an overflow), they set the global variable errno to

ERANGE Result out of range

and return the value HUGE_VAL (hypot) or _LHUGE_VAL) (hypotl). Error handling
for these routines can be modified through the functions _matherr and _matherrl.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

hypot+ + + +

hypotl + + +

inp embedded.h

Syntax
int inp(unsigned int _ _portid);

Description

Reads a byte from a hardware port.

inp is a macro that reads a byte from the input port specified by portid. If inp is called
when embedded.h has been included, it will be treated as a macro that expands to inline
code. If you don't include embedded.h, or if you do include embedded.h and undefine
the macro inp, you get the inp function.

Return Value

inp returns the value read.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

Chapter 4, Run-time functions 121

inport dos.h, embedded.h

Syntax
unsigned inport(unsigned int _ _portid);

Description

Reads a word from a hardware port.

inport works just like the 80x86 instruction IN. It reads the low byte of a word from the
input port specified by portid; it reads the high byte from portid + 1.

Return Value

inport returns the value read.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

inportb dos.h, embedded.h

Syntax
unsigned char inportb(unsigned int _ _portid);

Description

Reads a byte from a hardware port.

inportb is a macro that reads a byte from the input port specified by portid.

If inportb is called when embedded.h has been included, it will be treated as a macro
that expands to inline code. If you don't include embedded.h, or if you do include
embedded.h and #undef the macro inportb, you get the inportb function.

Return Value

inportb returns the value read.

See also

inport, outport, outportb

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

Paradigm C++ Language Reference122

inpw embedded.h

Syntax
unsigned inpw(unsigned int _ _portid);

Description

Reads a word from a hardware port.

inpw is a macro that reads a 16-byte word from the input port specified by portid. It
reads the low byte of the word from portid, and the high byte from portid + 1

If inpw is called when embedded.h has been included, it will be treated as a macro that
expands to inline code. If you don't include embedded.h, or if you do include
embedded.h and #undef the macro inpw, you get the inpw function.

Return Value

inpw returns the value read.

See also

inp, outp, outpw

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

int86 dos.h, embedded.h

Syntax
int int86(int _ _intno, union REGS _FAR *_ _inregs, union REGS _FAR *_ _outregs);

Description

General 8086 software interrupt.

int86 executes an 8086 software interrupt specified by the argument intno. Before
executing the software interrupt, it copies register values from inregs into the registers.

After the software interrupt returns, int86 copies the current register values to outregs,
copies the status of the carry flag to the x.cflag field in outregs, and copies the value of
the 8086 flags register to the x.flags field in outregs. If the carry flag is set, it usually
indicates that an error has occurred.

inregs can point to the same structure that outregs points to.

Return Value

int86 returns the value of AX after completion of the software interrupt. If the carry flag
is set (outregs -> x.cflag != 0), indicating an error, this function sets the global variable
_doserrno to the error code. Note that when the carry flag is not set (outregs -> x.cflag
= 0), you may or may not have an error. To be certain, always check _doserrno.

☞☞☞☞

Chapter 4, Run-time functions 123

See also

int86x, intr

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

int86x dos.h, embedded.h

Syntax
int int86x(int _ _intno, union REGS _FAR *_ _inregs, union REGS _FAR*_ _outregs,

struct SREGS _FAR *_ _segregs);

Description

General 8086 software interrupt interface.

int86x executes an 8086 software interrupt specified by the argument intno. Before
executing the software interrupt, it copies register values from inregs into the registers.

In addition, int86x copies the segregs ->ds and segregs ->es values into the
corresponding registers before executing the software interrupt. This feature allows
programs that use far pointers or a large data memory model to specify which segment
is to be used for the software interrupt.

After the software interrupt returns, int86x copies the current register values to outregs,
the status of the carry flag to the x.cflag field in outregs, and the value of the 8086 flags
register to the x.flags field in outregs. In addition, int86x restores DS and sets the
segregs ->es and segregs ->ds fields to the values of the corresponding segment
registers. If the carry flag is set, it usually indicates that an error has occurred.

int86x lets you invoke an 8086 software interrupt that takes a value of DS different from
the default data segment, and/or takes an argument in ES.

inregs can point to the same structure that outregs points to.

Return Value

int86x returns the value of AX after completion of the software interrupt. If the carry
flag is set (outregs -> x.cflag != 0), indicating an error, this function sets the global
variable _doserrno_doserrno to the error code. Note that when the carry flag is not set
(outregs -> x.cflag = 0), you may or may not have an error. To be certain, always check
_doserrno.

See also

int86, intr, segread

Reentrant

No

☞☞☞☞

Paradigm C++ Language Reference124

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

intr dos.h, embedded.h

Syntax
void intr(int _ _intno, struct REGPACK _FAR *_ _preg);

Description

Alternate 8086 software interrupt interface.

The intr function is an alternate interface for executing software interrupts. It generates
an 8086 software interrupt specified by the argument intno.

intr copies register values from the REGPACK structure *preg into the registers before
executing the software interrupt. After the software interrupt completes, intr copies the
current register values into *preg, including the flags.

The arguments passed to intr are as follows:

intno Interrupt number to be executed

preg Address of a structure containing
(a) the input registers before the interrupt call
(b) the value of the registers after the interrupt call

The REGPACK structure (defined in dos.h) has the following format:

struct REGPACK {
unsigned r_ax, r_bx, r_cx, r_dx;
unsigned r_bp, r_si, r_di, r_ds, r_es, r_flags;

};

Return Value

No value is returned. The REGPACK structure *preg contains the value of the registers
after the interrupt call.

See also

int86, int86x

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

Chapter 4, Run-time functions 125

isalnum ctype.h

Syntax
int isalnum(int c);

Description

Tests for an alphanumeric character.

isalnum is a macro that classifies ASCII-coded integer values by table lookup. The
macro is affected by the current locale's LC_CTYPE category. For the default C locale,
c is a letter (A to Z or a to z) or a digit (0 to 9).

You can make this macro available as a function by undefining (#undef) it.

Return Value

It is a predicate returning nonzero for true and 0 for false. isalnum returns nonzero if c is
a letter or a digit.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

isalpha ctype.h

Syntax
int isalpha(int c);

Description

Classifies an alphabetical character.

isalpha is a macro that classifies ASCII-coded integer values by table lookup. The
macro is affected by the current locale's LC_CTYPE category. For the default C locale,
c is a letter (A to Z or a to z).

You can make this macro available as a function by undefining (#undef) it.

Return Value

isalpha returns nonzero if c is a letter.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

Paradigm C++ Language Reference126

isascii ctype.h

Syntax
int isascii(int c);

Description

Character classification macro.

isascii is a macro that classifies ASCII-coded integer values by table lookup. It is a
predicate returning nonzero for true and 0 for false.

isascii is defined on all integer values.

Return Value

isascii returns nonzero if c is in the range 0 to 127 (0x00-0x7F).

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

iscntrl ctype.h

Syntax
int iscntrl(int c);

Description

Tests for a control character.

iscntrl is a macro that classifies ASCII-coded integer values by table lookup. The macro
is affected by the current locale's LC_CTYPE category. For the default C locale, c is a
delete character or control character (0x7F or 0x00 to 0x1F).

You can make this macro available as a function by undefining (#undef) it.

Return Value

iscntrl returns nonzero if c is a delete character or ordinary control character.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

Chapter 4, Run-time functions 127

isdigit ctype.h

Syntax
int isdigit(int c);

Description

Tests for decimal-digit character.

isdigit is a macro that classifies ASCII-coded integer values by table lookup. The macro
is affected by the current locale's LC_CTYPE category. For the default C locale, c is a
digit (0 to 9).

You can make this macro available as a function by undefining (#undef) it.

Return Value

isdigit returns nonzero if c is a digit.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

isgraph ctype.h

Syntax
int isgraph(int c);

Description

Tests for printing character.

isgraph is a macro that classifies ASCII-coded integer values by table lookup. The
macro is affected by the current locale's LC_CTYPE category. For the default C locale,
c is a printing character except blank space (' ').

You can make this macro available as a function by undefining (#undef) it.

Return Value

isgraph returns nonzero if c is a printing character.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

Paradigm C++ Language Reference128

islower ctype.h

Syntax
int islower(int c);

Description

Tests for lowercase character.

islower is a macro that classifies ASCII-coded integer values by table lookup. The
macro is affected by the current locale's LC_CTYPE category. For the default C locale,
c is a lowercase letter (a to z).

You can make this macro available as a function by undefining (#undef) it.

Return Value

islower returns nonzero if c is a lowercase letter.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

isprint ctype.h

Syntax
int isprint(int c);

Description

Tests for printing character.

isprint is a macro that classifies ASCII-coded integer values by table lookup. The macro
is affected by the current locale's LC_CTYPE category. For the default C locale, c is a
printing character including the blank space (' ').

You can make this macro available as a function by undefining (#undef) it.

Return Value

isprint returns nonzero if c is a printing character.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

Chapter 4, Run-time functions 129

ispunct ctype.h

Syntax
int ispunct(int c);

Description

Tests for punctuation character.

ispunct is a macro that classifies ASCII-coded integer values by table lookup. The
macro is affected by the current locale's LC_CTYPE category. For the default C locale,
c is any printing character that is neither an alphanumeric nor a blank space (' ').

You can make this macro available as a function by undefining (#undef) it.

Return Value

ispunct returns nonzero if c is a punctuation character.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

isspace ctype.h

Syntax
int isspace(int c);

Description

Tests for space character.

isspace is a macro that classifies ASCII-coded integer values by table lookup. The
macro is affected by the current locale's LC_CTYPE category.

You can make this macro available as a function by undefining (#undef) it.

Return Value

isspace returns nonzero if c is a space, tab, carriage return, new line, vertical tab,
formfeed (0x09 to 0x0D, 0x20), or any other locale-defined space character.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

Paradigm C++ Language Reference130

isupper ctype.h

Syntax
int isupper(int c);

Description

Tests for uppercase character.

isupper is a macro that classifies ASCII-coded integer values by table lookup. The
macro is affected by the current locale's LC_CTYPE category. For the default C locale,
c is an uppercase letter (A to Z).

You can make this macro available as a function by undefining (#undef) it.

Return Value

isupper returns nonzero if c is an uppercase letter.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

isxdigit ctype.h

Syntax
int isxdigit(int c);

Description

Tests for hexadecimal character.

isxdigit is a macro that classifies ASCII-coded integer values by table lookup. The
macro is affected by the current locale's LC_CTYPE category.

You can make this macro available as a function by undefining (#undef) it.

Return Value

isxdigit returns nonzero if c is a hexadecimal digit (0 to 9, A to F, a to f) or any other
hexadecimal digit defined by the locale.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

Chapter 4, Run-time functions 131

itoa stdlib.h

Syntax
char *itoa(int value, char *string, int radix);

Description

Converts an integer to a string.

itoa converts value to a null-terminated string and stores the result in string. With itoa,
value is an integer.

radix specifies the base to be used in converting value; it must be between 2 and 36,
inclusive. If value is negative and radix is 10, the first character of string is the minus
sign (-).

The space allocated for string must be large enough to hold the returned string,
including the terminating null character (\0). itoa can return up to 17 bytes.

Return Value

itoa returns a pointer to string.

See also

ltoa, ultoa

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

labs math.h

Syntax
long labs(long int x);

Description

Gives long absolute value.

labs computes the absolute value of the parameter x.

Return Value

labs returns the absolute value of x.

See also

abs, cabs, fabs

Reentrant

Yes

☞☞☞☞

Paradigm C++ Language Reference132

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

ldexp, ldexpl math.h

Syntax

double ldexp(double x, int exp);

long double ldexpl(long double x, int exp);

Description

Calculates x x 2exp.

lexpl is the long double version; it takes a long double argument for x and returns a
long double result.

Return Value

On success, ldexp (or ldexpl) returns the value it calculated, x x 2exp. Error handling for
these routines can be modified through the functions _matherr and _matherrl.

See also

exp, frexp, modf

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

ldexp+ + + + + +

ldexpl + + +

ldiv stdlib.h

Syntax
ldiv_t ldiv(long int numer, long int denom);

Description

Divides two longs, returning quotient and remainder.

ldiv divides two longs and returns both the quotient and the remainder as an ldiv_t type.
numer and denom are the numerator and denominator, respectively.

The ldiv_t type is a structure of longs defined in stdlib.h as follows:

typedef struct {
long int quot; /* quotient */
long int rem; /* remainder */
} ldiv_t;

Chapter 4, Run-time functions 133

Return Value

ldiv returns a structure whose elements are quot (the quotient) and rem (the remainder).

See also

div

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

lfind stdlib.h

Syntax
void *lfind(const void *key, const void *base, size_t *num, size_t width, int (_USERENTRY

*fcmp)(const void *, const void *));

Description

Performs a linear search.

lfind makes a linear search for the value of key in an array of sequential records. It uses
a user-defined comparison routine fcmp. The fcmp function must be used with the
_USERENTRY calling convention.

The array is described as having *num records that are width bytes wide, and begins at
the memory location pointed to by base.

Return Value

lfind returns the address of the first entry in the table that matches the search key. If no
match is found, lfind returns NULL. The comparison routine must return 0 if *elem1 ==
*elem2, and nonzero otherwise (elem1 and elem2 are its two parameters).

See also

bsearch, lsearch, qsort

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

Paradigm C++ Language Reference134

localtime time.h

Syntax
struct tm *localtime(const time_t *timer);

Description

Converts date and time to a structure.

localtime accepts the address of a value returned by time and returns a pointer to the
structure of type tm containing the time elements. It corrects for the time zone and
possible daylight saving time.

The global long variable _timezone contains the difference in seconds between GMT
and local standard time (in PST, _timezone is 8 x 60 x 60). The global variable daylight
contains nonzero only if the standard U.S. daylight saving time conversion should be
applied. These values are set by tzset, not by the user program directly.

This is the tm structure declaration from the time.h header file:

struct tm {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};

These quantities give the time on a 24-hour clock, day of month (1 to 31), month (0 to
11), weekday (Sunday equals 0), year - 1900, day of year (0 to 365), and a flag that is
nonzero if _daylight saving time is in effect.

Return Value

localtime returns a pointer to the structure containing the time elements. This structure
is a static that is overwritten with each call.

See also

asctime, ctime, gmtime, stime, time

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

log, logl math.h

Syntax

double log(double x);

Chapter 4, Run-time functions 135

long double logl(long double x);

Description

Calculates the natural logarithm of x.

log calculates the natural logarithm of x.

logl is the long double version; it takes a long double argument and returns a long
double result.

This function can be used with bcd and complex types.

Return Value

On success, log and logl return the value calculated, ln(x).

If the argument x passed to these functions is real and less than 0, the global variable
errno is set to

EDOM Domain error

If x is 0, the functions return the value negative HUGE_VAL (log) or negative
_LHUGE_VAL (logl), and set errno to ERANGE. Error handling for these routines can
be modified through the functions _matherr and _matherrl.

See also

bcd, complex, exp, log10, sqrt

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

log + + + + +

logl + + +

log10, log10l math.h

Syntax
double log10(double x);

long double log10l(long double x);

Description

log10 calculates the base 10 logarithm of x.

log10l is the long double version; it takes a long double argument and returns a long
double result.

This function can be used with bcd and complex types.

Return Value

On success, log10 (or log10l) returns the value calculated, log10(x).

Paradigm C++ Language Reference136

If the argument x passed to these functions is real and less than 0, the global variable
errno is set to

EDOM Domain error

If x is 0, these functions return the value negative HUGE_VAL (log10) or
_LHUGE_VAL (log10l). Error handling for these routines can be modified through the
functions _matherr and _matherrl.

See also

bcd, complex, exp, log

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

log10 + + + + +

log10l + + +

longjmp setjmp.h

Syntax
void longjmp(jmp_buf jmpb, int retval);

Description

Performs nonlocal goto.

A call to longjmp restores the task state captured by the last call to setjmp with the
argument jmpb. It then returns in such a way that setjmp appears to have returned with
the value retval.

A task state includes:

Real, Extended Win32

All segment registers CS, DS, ES, SS No segment registers are saved

Register variables Register variables

DI and SI EBX, EDI, ESI

Stack pointer SP Stack pointer ESP

Frame pointer BP Frame pointer EBP

Flags Flags are not saved

A task state is complete enough that setjmp and longjmp can be used to implement co-
routines.

setjmp must be called before longjmp. The routine that called setjmp and set up jmpb
must still be active and cannot have returned before the longjmp is called. If this
happens, the results are unpredictable.

longjmp cannot pass the value 0; if 0 is passed in retval, longjmp will substitute 1.

Chapter 4, Run-time functions 137

Return Value

None

See also

setjmp, signal

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

_lrotl, _lrotr stdlib.h

Syntax
unsigned long _lrotl(unsigned long val, int count);

unsigned long _lrotr(unsigned long val, int count);

Description

Rotates an unsigned long integer value to the left or right.

_lrotl rotates the given val to the left count bits. _lrotr rotates the given val to the right
count bits.

Return Value

The functions return the rotated integer:

� _lrotl returns the value of val left-rotated count bits.
� _lrotr returns the value of val right-rotated count bits.

See also

_crotr, _crotl, _rotl, _rotr

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

lsearch stdlib.h

Syntax
void *lsearch(const void *key, void *base, size_t *num, size_t width, int (_USERENTRY *fcmp)(const

void *, const void *));

Paradigm C++ Language Reference138

Description

Performs a linear search.

lsearch searches a table for information. Because this is a linear search, the table entries
do not need to be sorted before a call to lsearch. If the item that key points to is not in
the table, lsearch appends that item to the table.

� base points to the base (0th element) of the search table.
� num points to an integer containing the number of entries in the table.
� width contains the number of bytes in each entry.
� key points to the item to be searched for (the search key).

The function fcmp must be used with the _USERENTRY calling convention.

The argument fcmp points to a user-written comparison routine, that compares two
items and returns a value based on the comparison.

To search the table, lsearch makes repeated calls to the routine whose address is passed
in fcmp.

On each call to the comparison routine, lsearch passes two arguments:

� key--a pointer to the item being searched for
� elem--pointer to the element of base being compared.

fcmp is free to interpret the search key and the table entries in any way.

Return Value

lsearch returns the address of the first entry in the table that matches the search key.

If the search key is not identical to *elem, fcmp returns a nonzero integer. If the search
key is identical to *elem, fcmp returns 0.

See also

bsearch, lfind, qsort

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

ltoa stdlib.h

Syntax
char *ltoa(long value, char *string, int radix);

Description

Converts a long to a string.

Chapter 4, Run-time functions 139

ltoa converts value to a null-terminated string and stores the result in string. value is a
long integer.

radix specifies the base to be used in converting value; it must be between 2 and 36,
inclusive. If value is negative and radix is 10, the first character of string is the minus
sign (-).

The space allocated for string must be large enough to hold the returned string,
including the terminating null character (\0). ltoa can return up to 33 bytes.

Return Value

ltoa returns a pointer to string.

See also

itoa, ultoa

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

malloc stdlib.h, alloc.h

Syntax
void *malloc(size_t size);

Description

malloc allocates a block of size bytes from the memory heap. It allows a program to
allocate memory explicitly as it's needed, and in the exact amounts needed.

Allocates main memory. The heap is used for dynamic allocation of variable-sized
blocks of memory. Many data structures, for example, trees and lists, naturally employ
heap memory allocation.

For 16-bit programs, all the space between the end of the data segment and the top of
the program stack is available for use in the small data models, except for a small
margin immediately before the top of the stack. This margin is intended to allow the
application some room to make the stack larger.

In the large data models, all the space beyond the program stack to the end of available
memory is available for the heap.

Return Value

On success, malloc returns a pointer to the newly allocated block of memory. If not
enough space exists for the new block, it returns NULL. The contents of the block are
left unchanged. If the argument size == 0, malloc returns NULL.

☞☞☞☞

Paradigm C++ Language Reference140

See also

calloc, farcalloc, farmalloc, free realloc

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

_matherr, _matherrl math.h

Syntax
int _matherr(struct _exception *e);

int _matherrl(struct _exceptionl *e);

Description

User-modifiable math error handler.

_matherr is called when an error is generated by the math library.

_matherrl is the long double version; it is called when an error is generated by the long
double math functions.

_matherr and _matherrl each serve as a user hook (a function that can be customized by
the user) that you can replace by writing your own math error-handling routine.

_matherr and _matherrl are useful for information on trapping domain and range errors
caused by the math functions. They do not trap floating-point exceptions, such as
division by zero. See signal for information on trapping such errors.

You can define your own _matherr or _matherrl routine to be a custom error handler
(such as one that catches and resolves certain types of errors); this customized function
overrides the default version in the C library. The customized _matherr or _matherrl
should return 0 if it fails to resolve the error, or nonzero if the error is resolved. When
_matherr or _matherrl return nonzero, no error message is printed and the global
variable errno is not changed.

Here are the _exception and _exceptionl structures (defined in math.h):

struct _exception {
int type;
char *name;
double arg1, arg2, retval;

};

struct _exceptionl {
int type;
char *name;
long double arg1, arg2, retval;

};

The members of the _exception and _exceptionl structures are shown in the following
table:

Chapter 4, Run-time functions 141

Member What It Is (Or Represents)

type The type of mathematical error that occurred; an enum type defined in the typedef
_mexcep (see definition after this list).

name A pointer to a null-terminated string holding the name of the math library function that
resulted in an error.

arg1, arg2 The arguments (passed to the function that name points to) caused the error; if only one
argument was passed to the function, it is stored in arg1.

retval The default return value for _matherr (or _matherrl); you can modify this value.

The typedef _mexcep, also defined in math.h, enumerates the following symbolic
constants representing possible mathematical errors:

Symbolic Constant Mathematical Error

DOMAIN Argument was not in domain of function, such as log(-1).

SING Argument would result in a singularity, such as pow(0, -2).

OVERFLOW Argument would produce a function result greater than DBL_MAX (or LDBL_MAX),
such as exp(1000).

UNDERFLOW Argument would produce a function result less than DBL_MIN (or LDBL_MIN), such as
exp(-1000).

TLOSS Argument would produce function result with total loss of significant digits, such as
sin(10e70).

The macros DBL_MAX, DBL_MIN, LDBL_MAX, and LDBL_MIN are defined in
float.h.

The source code to the default _matherr and _matherrl is on the Paradigm C++
distribution disks.

The UNIX-style _matherr and _matherrl default behavior (printing a message and
terminating) is not ANSI compatible. If you want a UNIX-style version of these
routines, use MATHERR.C and MATHERRL.C provided on the Paradigm C++
distribution disks.

Return Value

The default return value for _matherr and _matherrl is 1 if the error is UNDERFLOW
or TLOSS, 0 otherwise. _matherr and _matherrl can also modify e -> retval, which
propagates back to the original caller.

When _matherr and _matherrl return 0 (indicating that they were not able to resolve the
error), the global variable errno is set to 0 and an error message is printed.

When _matherr and _matherrl return nonzero (indicating that they were able to resolve
the error), the global variable errno is not set and no messages are printed.

Reentrant

No

Paradigm C++ Language Reference142

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

max stdlib.h

Syntax

(type) max(a, b);

template <class T> T max(T t1, T t2); // C++ only

Description

Returns the larger of two values.

The C macro and the C++ template function compare two values and return the larger
of the two. Both arguments and the routine declaration must be of the same type.

Return Value

max returns the larger of two values.

See also

min

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

mblen stdlib.h

Syntax
int mblen(const char *s, size_t n);

Description

Determines the length of a multibyte character.

If s is not null, mblen determines the number of bytes in the multibyte character pointed
to by s. The maximum number of bytes examined is specified by n.

The behavior of mblen is affected by the setting of LC_CTYPE category of the current
locale.

Return Value

If s is null, mblen returns a nonzero value if multibyte characters have state-dependent
encodings. Otherwise, mblen returns 0.

Chapter 4, Run-time functions 143

If s is not null, mblen returns 0 if s points to the null character, and -1 if the next n bytes
do not comprise a valid multibyte character; the number of bytes that comprise a valid
multibyte character.

See also

mbstowcs, mbtowc

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

mbstowcs stdlib.h

Syntax
size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

Description

Converts a multibyte string to a wchar_t array.

The function converts the multibyte string s into the array pointed to by pwcs. No more
than n values are stored in the array. If an invalid multibyte sequence is encountered,
mbstowcs returns (size_t) -1.

The pwcs array will not be terminated with a zero value if mbstowcs returns n.

Return Value

If an invalid multibyte sequence is encountered, mbstowcs returns (size_t) -1.
Otherwise, the function returns the number of array elements modified, not including
the terminating code, if any.

See also

mblen, mbtowc

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

Paradigm C++ Language Reference144

mbtowc stdlib.h

Syntax
int mbtowc(wchar_t *pwc, const char *s, size_t n);

Description

Converts a multibyte character to wchar_t code.

If s is not null, mbtowc determines the number of bytes that comprise the multibyte
character pointed to by s. Next, mbtowc determines the value of the type wchar_t that
corresponds to that multibyte character. If there is a successful match between wchar_t
and the multibyte character, and pwc is not null, the wchar_t value is stored in the array
pointed to by pwc. At most n characters are examined.

Return Value

When s points to an invalid multibyte character, -1 is returned. When s points to the null
character, 0 is returned. Otherwise, mbtowc returns the number of bytes that comprise
the converted multibyte character.

The return value never exceeds MB_CUR_MAX or the value of n.

See also

mblen, mbstowcs

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

memccpy, _fmemccpy mem.h

Syntax
void *memccpy(void *dest, const void *src, int c, size_t n);

void far * far _fmemccpy(void far *dest, const void far *src, int c, size_t n)

Description

Copies a block of n bytes.

memccpy is available on UNIX System V systems.

memccpy copies a block of n bytes from src to dest. The copying stops as soon as either
of the following occurs:

� The character c is first copied into dest.
� n bytes have been copied into dest.

Chapter 4, Run-time functions 145

Return Value

memccpy returns a pointer to the byte in dest immediately following c, if c was copied;
otherwise, memccpy returns NULL.

See also

memcpy, memmove, memset

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

memccpy + + +

_fmemccpy + +

memchr, _fmemchr mem.h

Syntax

void *memchr(const void *s, int c, size_t n); /* C only */

void far * far _fmemchr(const void far *s, int c, size_t n); /* C only */

const void *memchr(const void *s, int c, size_t n); // C++ only

void *memchr(void *s, int c, size_t n); // C++ only

const void far * far _fmemchr(const void far *s, int c, size_t n); // C++ only

void far * far _fmemchr(void far *s, int c, size_t n); // C++ only

void *memchr(const void *s, int c, size_t n);

void far * far _fmemchr(const void far *s, int c, size_t n);

Description

Searches n bytes for character c.

memchr is available on UNIX System V systems.

memchr searches the first n bytes of the block pointed to by s for character c.

Return Value

On success, memchr returns a pointer to the first occurrence of c in s; otherwise, it
returns NULL.

If you are using the intrinsic version of these functions, the case of n = 0 will return
NULL.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

memchr + + + + +

☞☞☞☞

Paradigm C++ Language Reference146

_fmemchr + +

memcmp, _fmemcmp mem.h

Syntax
int memcmp(const void *s1, const void *s2, size_t n);

int far _fmemcmp(const void far *s1, const void far *s2, size_t n)

Description

Compares two blocks for a length of exactly n bytes.

memcmp is available on UNIX System V systems.

memcmp compares the first n bytes of the blocks s1 and s2 as unsigned chars.

Return Value

Because it compares bytes as unsigned chars, memcmp returns a value that is

� < 0 if s1 is less than s2
� = 0 if s1 is the same as s2
� > 0 if s1 is greater than s2

For example,

memcmp("\xFF", "\x7F", 1)

returns a value greater than 0.

If you are using the intrinsic version of these functions, the case of n = 0 will return
NULL.

See also

memicmp

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

memcmp + + + + +

_fmemcmp + +

memcpy, _fmemcpy, _hmemcpy mem.h

Syntax
void *memcpy(void *dest, const void *src, size_t n);

void far *far _fmemcpy(void far *dest, const void far *src, size_t n);

void __far * _hmemcpy(void __far *dest, const void __far *src, unsigned long n);

Description

Copies a block of n bytes.

☞☞☞☞

Chapter 4, Run-time functions 147

memcpy is available on UNIX System V systems.

memcpy copies a block of n bytes from src to dest. If src and dest overlap, the behavior
of memcpy is undefined.

Return Value

memcpy returns dest.

See also

memccpy, memmove, memset, movedata, movmem

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

memcpy + + + + +

_fmemcpy + +

_hmemcpy + +

memicmp, _fmemicmp mem.h

Syntax
int memicmp(const void *s1, const void *s2, size_t n);

int far _fmemicmp(const void far *s1, const void far *s2, size_t n)

Description

Compares n bytes of two character arrays, ignoring case.

memicmp is available on UNIX System V systems.

memicmp compares the first n bytes of the blocks s1 and s2, ignoring character case
(upper or lower).

Return Value

memicmp returns a value that is

� < 0 if s1 is less than s2
� = 0 if s1 is the same as s2
� > 0 if s1 is greater than s2

See also

memcmp

Reentrant

Yes

Paradigm C++ Language Reference148

Portability

Real Extended Win32 ANSI C ANSI C++

memicmp + + +

_fmemicmp + +

memmove, _fmemmove, _hmemmove mem.h

Syntax
void *memmove(void *dest, const void *src, size_t n);

void far * far _fmemmove (void far *dest, const void far *src, size_t n)

void __far * _hmemmove(void __far *dest, const void __far *src, unsigned long n);

Description

Copies a block of n bytes.

memmove copies a block of n bytes from src to dest. Even when the source and
destination blocks overlap, bytes in the overlapping locations are copied correctly.

_fmemmove is the far version.

Return Value

memmove and _fmemmove return dest.

See also

memmove, memcpy, movmem

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

memove + + + + +

_fmemmove + +

_hmemmove + +

memset, _fmemset, _hmemset mem.h

Syntax
void *memset(void *s, int c, size_t n);

void far * far _fmemset (void far *s, int c, size_t n)

void __far * _hmemset(void __far *s, int c, unsigned long n);

Description

Sets n bytes of a block of memory to byte c.

memset sets the first n bytes of the array s to the character c.

Chapter 4, Run-time functions 149

Return Value

memset returns s.

See also

memccpy, memcpy, setmem

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

memset + + + + +

_fmemset + +

_hmemset + +

min stdlib.h

Syntax
(type) min(a, b);

template <class T> T min(T t1, T t2); // C++ only

Description

Returns the smaller of two values.

The C macro and the C++ template function compare two values and return the smaller
of the two. Both arguments and the routine declaration must be of the same type.

Return Value

min returns the smaller of two values.

See also

max

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

MK_FP dos.h, embedded.h

Syntax
void far * MK_FP(unsigned seg, unsigned ofs);

Paradigm C++ Language Reference150

Description

Makes a far pointer.

MK_FP is a macro that makes a far pointer from its component segment (seg) and
offset (ofs) parts.

Return Value

MK_FP returns a far pointer.

See also

FP_OFF, FP_SEG, movedata, segread

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

mktime time.h

Syntax
time_t mktime(struct tm *t);

Description

Converts time to calendar format.

Converts the time in the structure pointed to by t into a calendar time with the same
format used by the time function. The original values of the fields tm_sec, tm_min,
tm_hour, tm_mday, and tm_mon are not restricted to the ranges described in the tm
structure. If the fields are not in their proper ranges, they are adjusted. Values for fields
tm_wday and tm_yday are computed after the other fields have been adjusted.

The allowable range of calendar times is Jan 1 1970 00:00:00 to Jan 19 2038 03:14:07.

Return Value

On success, mktime returns calendar time as described above.

On error (if the calendar time cannot be represented), mktime returns -1.

See also

localtime, strftime, time

Reentrant

No

Chapter 4, Run-time functions 151

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

modf, modfl math.h

Syntax

double modf(double x, double *ipart);

long double modfl(long double x, long double *ipart);

Description

Splits a double or long double into integer and fractional parts.

modf breaks the double x into two parts: the integer and the fraction. modf stores the
integer in ipart and returns the fraction.

modfl is the long double version; it takes long double arguments and returns a long
double result.

Return Value

modf and modfl return the fractional part of x.

See also

fmod, ldexp

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

modf + + + + +

modfl + + +

movedata mem.h

Syntax
void movedata(unsigned srcseg, unsigned srcoff, unsigned dstseg, unsigned dstoff, size_t n);

Description

Copies n bytes.

movedata copies n bytes from the source address (srcseg:srcoff) to the destination
address (dstseg:dstoff). movedata provides a memory-model independent means for
moving blocks of data.

Return Value

None

Paradigm C++ Language Reference152

See also

FP_OFF, memcpy, MK_FP, movmem, segread

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

movmem, _fmovmem, _hmovmem mem.h

Syntax
void movmem(const void *src, void *dest, unsigned length);

void _fmovmem(const void far *src, void far *dest, unsigned length);

void _hmovmem(const void __far *src, void __far *dest, unsigned long length);

Description

Moves a block of length bytes.

movmem moves a block of length bytes from src to dest. Even if the source and
destination blocks overlap, the move direction is chosen so that the data is always
moved correctly.

_fmovmem is the far version.

Return Value

None

See also

memcpy, memmove, movedata

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

_normalize_fptr embedded.h

Syntax
void __far * _RTLENTRY _normalize_fptr(void __far * fptr);

Chapter 4, Run-time functions 153

Description

_normalize_fptr normalizes a far or huge pointer according to the address space rules.
For real mode applications, the offset part of the returned pointer will be between 00H
and 0FH and for extended address mode applications, the offset will be between 00H
and FFH.

Return Value

A far pointer (segment:offset) containing a normalized representation of the input
pointer.

See also

_addr_mode, _fptr_to_linear, _linear_to_fptr

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

offsetof stddef.h

Syntax
size_t offsetof(struct_type, struct_member);

Description

Gets the byte offset to a structure member.

offsetof is available only as a macro. The argument struct_type is a struct type.
struct_member is any element of the struct that can be accessed through the member
selection operators or pointers.

If struct_member is a bit field, the result is undefined.

For a discussion of the sizeof operator, memory allocation, and alignment of structures
See “sizeof,” page 2-45, and “new,” page 2-35, in Chapter 2, Keywords of this
Language Reference.

Return Value

offsetof returns the number of bytes from the start of the structure to the start of the
named structure member.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

Paradigm C++ Language Reference154

outp embedded.h

Syntax
int outp(unsigned int _ _portid, unsigned int _ _value);

Description

Outputs a byte to a hardware port.

outp is a macro that writes the low byte of value to the output port specified by portid.

If outp is called when embedded.h has been included, it will be treated as a macro that
expands to inline code. If you don't include embedded.h, or if you do include
embedded.h and #undef the macro outp, you will get the outp function.

Return Value

outp returns value.

See also

inp, inpw, outpw

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

outpcb embedded.h

Syntax
void outpcb(unsigned int _ _portid, unsigned int _ _value);

Description

The AX register is loaded with the parameter value. The DX register is loaded with the
I/O address contained in the parameter portid. An OUT DX, AL instruction is emitted
to perform the word write to the internal 186 PCB register.

outpcb outputs a word to a 186 peripheral control block register using a byte write
operation (which allows for a single bus cycle to be used on both 188 and 186
processors). The AX register is loaded with the parameter value and an OUT DX, AL
instruction is emitted to perform the word write to the internal 186 PCB register.

If you include embedded.h, outpcb will be treated as a macro that expands to inline
code. If you do not include embedded.h, or if you include embedded.h and #undef the
macro outpcb, you will get the outpcb function.

Return Value

None

Chapter 4, Run-time functions 155

See also

outport ,inport, inportb

Reentrant

Yes

outport, outportb dos.h, embedded.h

Syntax
void outport(unsigned int _ _portid, unsigned int _ _value);

void outportb(unsigned int _ _portid, unsigned char _ _value);

Description

Outputs a word or byte to a hardware port.

outport works just like the 80x86 instruction OUT. It writes the low byte of the word
given by value to the output port specified by portid and writes the high byte of the
word to portid +1.

outportb is a macro that writes the byte given by value to the output port specified by
portid.

If you include embedded.h, outportb will be treated as a macro that expands to inline
code. If you do not include embedded.h, or if you include embedded.h and #undef the
macro outportb, you will get the outportb function.

Return Value

None

See also

inport, inportb

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

outpw embedded.h

Syntax
unsigned outpw(unsigned int _ _portid, unsigned int _ _value);

Description

Outputs a word to a hardware port.

outpw is a macro that writes the 16-bit word given by value to the output port specified
by portid. It writes the low byte of value to portid, and the high byte of the word to
portid +1, usinng a single 16-bit OUT instruction.

Paradigm C++ Language Reference156

If outpw is called when embedded.h has been included, it will be treated as a macro that
expands to inline code. If you don't include embedded.h, or if you do include
embedded.h and #undef the macro outpw, you will get the outpw function.

Return Value

outpw returns value.

See also

inp, inpw, outp

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

peek dos.h, embedded.h

Syntax
int inline peek(unsigned _ _segment, unsigned _ _offset);

Description

Returns the word at memory location specified by segment:offset.

peek returns the word at the memory location segment:offset.

If peek is called when dos.h has been included, it is treated as a macro that expands to
inline code. If you don't include dos.h, or if you do include it and #undef peek, you'll get
the function rather than the macro.

Return Value

peek returns the word of data stored at the memory location segment:offset.

See also

peekb, poke

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

Chapter 4, Run-time functions 157

peekb dos.h, embedded.h

Syntax
char inline peekb(unsigned _ _segment, unsigned _ _offset);

Description

Returns the byte of memory specified by segment:offset.

peekb returns the byte at the memory location addressed by segment:offset.

If peekb is called when dos.h has been included, it is treated as a macro that expands to
inline code. If you don't include dos.h, or if you do include it and #undef peekb, you'll
get the function rather than the macro.

Return Value

peekb returns the byte of information stored at the memory location segment:offset.

See also

peek, pokeb

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

perror stdio.h

Syntax
void perror(const char *s);

Description

Prints a system error message.

perror prints to the stderr stream (normally the console) the system error message for
the last library routine that set the global variable errno.

It prints the argument s followed by a colon (:) and the message corresponding to the
current value of the global variable errno and finally a new line. The convention is to
pass the file name of the program as the argument string.

The array of error message strings is accessed through the global variable _sys_errlist.
The global variable errno can be used as an index into the array to find the string
corresponding to the error number. None of the strings include a newline character.

The global variable _sys_nerr contains the number of entries in the array.

The following messages are generated by perror:

Paradigm C++ Language Reference158

Real, Extended Win32 messages

Arg list too big Math argument

Attempted to remove current directory Memory arena trashed

Bad address Name too long

Bad file number No child processes

Block device required No more files

Broken pipe No space left on device

Cross-device link No such device

Error 0 No such device or address

Exec format error No such file or directory

Executable file in use No such process

File already exists Not a directory

File too large Not enough memory

Illegal seek Not same device

Inappropriate I/O control operation Operation not permitted

Input/output error Path not found

Interrupted function call Permission denied

Invalid access code Possible deadlock

Invalid argument Resource busy Read-only file system

Invalid data Resource busy

Invalid environment Resource temporarily unavailable

Invalid format Result too large

Invalid function number Too many links

Invalid memory block address Too many open files

Is a directory

Win32 only messages

Bad address No child processes

Block device required No space left on device

Broken pipe No such device or address

Executable file in use No such process

File too large Not a directory

Illegal seek Operation not permitted

Inappropriate I/O control Possible deadlock

Input/output error Read-only file system

Interrupted function call Resource busy

Is a directory Resource temporarily unavailable

Name too long Too many links

See also

clearerr, eof, freopen, _strerror, strerror

Reentrant

No

Chapter 4, Run-time functions 159

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + +

poke dos.h, embedded.h

Syntax
void inline poke(unsigned _ _segment, unsigned _ _offset, int _ _value);

Description

Stores an integer value at memory location segment:offset.

poke stores the integer value at the memory location segment:offset.

If this routine is called when dos.h has been included, it will be treated as a macro that
expands to inline code. If you don't include dos.h, or if you do include it and #undef
poke, you'll get the function rather than the macro.

Return Value

None

See also

peek, pokeb

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

pokeb dos.h, embedded.h

Syntax
void inline pokeb(unsigned _ _segment, unsigned _ _offset, char _ _value);

Description

Stores a byte value at memory location segment:offset.

pokeb stores the byte value at the memory location segment:offset.

If this routine is called when dos.h has been included, it will be treated as a macro that
expands to inline code. If you don't include dos.h, or if you do include it and #undef
pokeb, you'll get the function rather than the macro.

Return Value

None

Paradigm C++ Language Reference160

See also

peekb, poke

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

poly, polyl math.h

Syntax
double poly(double x, int degree, double coeffs[]);

long double polyl(long double x, int degree, long double coeffs[]);

Description

Generates a polynomial from arguments.

poly generates a polynomial in x, of degree degree, with coefficients coeffs[0],
coeffs[1], ..., coeffs[degree]. For example, if n = 4, the generated polynomial is:

coeffs[4]x4 + coeffs[3]x3 + coeffs[2]x2 + coeffs[1]x + coeffs[0]

polyl is the long double version; it takes long double arguments and returns a long
double result.

Return Value

poly and polyl return the value of the polynomial as evaluated for the given x.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

poly + + +

polyl + + +

pow, powl math.h

Syntax
double pow(double x, double y);

long double powl(long double x, long double y);

Description

Calculates x to the power of y.

Chapter 4, Run-time functions 161

powl is the long double version; it takes long double arguments and returns a long
double result.

This function can be used with bcd and complex types.

Return Value

On success, pow and powl return the value calculated of x to the power of y.

Sometimes the arguments passed to these functions produce results that overflow or are
incalculable. When the correct value would overflow, the functions return the value
HUGE_VAL (pow) or _LHUGE_VAL (powl). Results of excessively large magnitude
can cause the global variable errno to be set to

ERANGE Result out of range

If the argument x passed to pow or powl is real and less than 0, and y is not a whole
number, or you call pow(0,0), the global variable errno is set to

EDOM Domain error

Error handling for these functions can be modified through the functions _matherr and
_matherrl.

See also

bcd, complex, exp, pow10, sqrt

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

pow + + + + +

powl + + +

pow10, pow10l math.h

Syntax
double pow10(int p);

long double pow10l(int p);

Description

Calculates 10 to the power of p.

pow10l is the long double version; it returns a long double result.

Return Value

On success, pow10 returns the value calculated, 10 to the power of p and pow10l returns
a long double result.

The result is actually calculated to long double accuracy. All arguments are valid,
although some can cause an underflow or overflow.

Paradigm C++ Language Reference162

See also

exp, pow

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

pow10 + + +

pow10l + + +

printf stdio.h

Syntax
int printf(const char *format[, argument, ...]);

Description

Writes formatted output to stdout.

The printf function:

� Accepts a series of arguments
� Applies to each argument a format specifier contained in the format string *format
� Outputs the formatted data (to the screen, a stream, stdout, or a string)

There must be enough arguments for the format. If there are not, the results will be
unpredictable and likely disastrous. Excess arguments (more than required by the
format) are merely ignored.

For Win32s applications, stdout must be redirected.

Return Value

On success, printf returns the number of bytes output.

On error, printf returns EOF.

See also

ecvt, freopen, putc, puts, putw, scanf, sprintf, vprintf, vsprintf

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

☞☞☞☞

Chapter 4, Run-time functions 163

Printf Format String

The format string, present in each of the printf function calls, controls how each
function will convert, format, and print its arguments.

There must be enough arguments for the format; if not, the results will be unpredictable
and possibly disastrous. Excess arguments (more than required by the format) are
ignored.

The format string is a character string that contains two types of objects:

� Plain characters are copied verbatim to the output stream.
� Conversion specifications fetch arguments from the argument list and apply

formatting to them.

Plain characters are simply copied verbatim to the output stream.

Conversion specifications fetch arguments from the argument list and apply formatting
to them.

Printf Format Specifiers

Print format specifiers have the following form

% [flags] [width] [.prec] [F|N|h|l|L] type_char

Each format specifier begins with the percent character (%).

After the % come the following optional specifiers, in this order:

Optional Format String Components

These are the general aspects of output formatting controlled by the optional characters,
specifiers, and modifiers in the format string:

Component Optional/Required What it Controls or Specifies

[flags] (Optional) Flag character(s) Output justification, numeric signs,
decimal points, trailing zeros, octal and hex prefixes

[width] (Optional) Width specifier. Minimum number of characters to
print, padding with blanks or zeros

[prec] (Optional) Precision specifier. Maximum number of characters
to print; for integers, minimum number of digits to
print.

[F|N|h|l|L] (Optional) Input size modifier. Override default size of next
input argument:

N = near pointer

F = far pointer

h = short int

l = long

L = long double

type_char (Required) Conversion-type character

Printf Flag characters

They can appear in any order and combination.

☞☞☞☞

Paradigm C++ Language Reference164

Flag What it means

- Left-justifies the result, pads on the right with blanks. If not given, it right-justifies the result,
pads on the left with zeros or blanks.

+ Signed conversion results always begin with a plus (+) or minus (-) sign.

blank If value is nonnegative, the output begins with a blank instead of a plus; negative values still
begin with a minus.

Specifies that arg is to be converted using an alternate form.

Plus (+) takes precedence over blank () if both are given.

Alternate Forms for printf Conversion

If you use the # flag conversion character, it has the following effect on the argument
(arg) being converted:

Conversion character How # affects the argument

c s d iu No effect.

0 0 is prepended to a nonzero arg.

x X 0x (or 0X) is prepended to arg.

e E f The result always contains a decimal point even if no digits follow the
point. Normally, a decimal point appears in these results only if a digit
follows it.

g G Same as e and E, except that trailing zeros are not removed.

Width Specifiers

The width specifier sets the minimum field width for an output value.

Width is specified in one of two ways:

� directly, through a decimal digit string
� indirectly, through an asterisk (*)

If you use an asterisk for the width specifier, the next argument in the call (which must
be an int) specifies the minimum output field width.

Nonexistent or small field widths do not cause truncation of a field. If the result of a
conversion is wider than the field width, the field is expanded to contain the conversion
result.

Width specifier How output width is affected

n At least n characters are printed. If the output value has less than n characters, the
output is padded with blanks (right-padded if - flag given, left-padded otherwise).

0n At least n characters are printed. If the output value has less than n characters, it is
filled on the left with zeros.

* The argument list supplies the width specifier, which must precede the actual
argument being formatted.

Precision Specifiers

The printf precision specifiers set the maximum number of characters (or minimum
number of integer digits) to print.

☞☞☞☞

Chapter 4, Run-time functions 165

A printf precision specification always begins with a period (.) to separate it from any
preceding width specifier.

Then, like [width], precision is specified in one of two ways:

� directly, through a decimal digit string
� indirectly, through an asterisk (*)

If you use an * for the precision specifier, the next argument in the call (treated as an
int) specifies the precision.

If you use asterisks for the width or the precision, or for both, the width argument must
immediately follow the specifiers, followed by the precision argument, then the
argument for the data to be converted.

[.prec] How Output Precision Is Affected

(none) Precision set to default:

= 1 for d,i,o,u,x,X types

= 6 for e,E,f types

= All significant digits for g,G types

= Print to first null character for s types

= No effect on c types

.0 For d,i,o,u,x types, precision set to default for e,E,f types, no decimal point is printed.

.n n characters or n decimal places are printed.

If the output value has more than n characters, the output might be truncated or rounded.
(Whether this happens depends on the type character.)

. The argument list supplies the precision specifier, which must precede the actual
argument being formatted.

No numeric characters will be output for a field (i.e., the field will be blank) if the
following conditions are all met:

� you specify an explicit precision of 0
� the format specifier for the field is one of the integer formats (d, i, o, u, or x)
� the value to be printed is 0

How [.prec] Affects Conversion

Char Type Effect of [.prec] (.n) on Conversion

d, i, o, u, x, X Specifies that at least n digits are printed. If input argument has less than n digits,
output value is left-padded x with zeros. If input argument has more than n digits, the
output value is not truncated.

e, E, f Specifies that n characters are printed after the decimal point, and the last digit
printed is rounded.

g, G Specifies that at most n significant digits are printed.

c Has no effect on the output.

s Specifies that no more than n characters are printed.

Certain convention accompany some of these format specifiers.☞☞☞☞

Paradigm C++ Language Reference166

Type Char Expected Input Format of output

Numerics
d Integer signed decimal integer

i Integer signed decimal integer

o Integer unsigned octal integer

u Integer unsigned decimal integer

x Integer unsigned hexadecimal int (with a, b, c, d, e, f)

X Integer unsigned hexadecimal int (with A, B, C, D, E, F)

f Floating point signed value of the form [-]dddd.dddd.

e Floating point signed value of the form [-]d.dddd or e[+/-]ddd

g Floating point signed value in either e or f form, based on given value and
precision. Trailing zeros and the decimal point are printed if
necessary.

E Floating point Same as e; with E for exponent.

G Floating point Same as g; with E for exponent if e format used

Characters
c Character Single character

s String pointer Prints characters until a null-terminator is pressed or precision is
reached

% None Prints the % character

Pointers

n Pointer to int Stores (in the location pointed to by the input argument) a count of
the chars written so far.

p Pointer Prints the input argument as a pointer; format depends on which
memory model was used. It will be either XXXX:YYYY or YYYY
(offset only).

Infinite floating-point numbers are printed as +INF and -INF.

An IEEE Not-A-Number is printed as +NAN or -NAN.

Input-size Modifiers

These modifiers determine how printf functions interpret the next input argument,
arg[f].

Modifier Type of arg arg is interpreted as ...

F Pointer (p, s, A far pointer

N and n) A near pointer (Note: N can't be used with any conversion in huge model.)

h d i o u x X A short int

l d i o u x X A long int
e E f g G A double

L e E f g G A long double

These modifiers affect how all the printf functions interpret the data type of the
corresponding input argument arg.

Chapter 4, Run-time functions 167

Both F and N reinterpret the input variable arg. Normally, the arg for a %p, %s, or %n
conversion is a pointer of the default size for the memory model.

h, l, and L override the default size of the numeric data input arguments. Neither h nor l
affects character (c,s) or pointer (p,n) types.

printf format specifier conventions

Certain conventions accompany some of the printf format specifiers for the following
conversions:

- %e or %E

- %f

- %g or %G

- %x or %X

Infinite floating point numbers are printed as +INF and -INF. An IEEE Not-a-Number
is printed as +NAN or -NAN.

%e or %E Conversions

The argument is converted to match the style
[-] d.ddd...e[+/-]ddd

where:

� one digit precedes the decimal point
� the number of digits after the decimal point is equal to the precision.
� the exponent always contains at least two digits

%f Conversions

The argument is converted to decimal notation in the style

[-] ddd.ddd...

where the number of digits after the decimal point is equal to the precision (if a non-
zero precision was given).

%g or %G Conversions

The argument is printed in style e, E or f, with the precision specifying the number of
significant digits.

Trailing zeros are removed from the result, and a decimal point appears only if
necessary.

The argument is printed in style e or f (with some restraints) if g is the conversion
character. Style e is used only if the exponent that results from the conversion is either
greater than the precision or less than -4.

The argument is printed in style E if G is the conversion character.

%x or %X Conversions

For x conversions, the letters a, b, c, d, e, and f appear in the output.

☞☞☞☞

Paradigm C++ Language Reference168

For X conversions, the letters A, B, C, D, E, and F appear in the output. The other
…printf functions include

fprintf send formatted output to a stream

sprintf sends formatted output to a string

vfprinf sends formatted output to a stream, using an argument list

vprintf sends formatted output to stdout, using an argument list

vsprintf sends formatted output to a string, using an argument list

putc stdio.h

Syntax
int putc(int c, FILE *stream);

Description

Outputs a character to a stream.

putc is a macro that outputs the character c to the stream given by stream.

Return Value

On success, putc returns the character printed, c.

On error, putc returns EOF.

See also

getc, getchar, printf, putchar, putw, vprintf

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

putchar stdio.h

Syntax
int putchar(int c);

Description

putchar(c) is a macro defined to be putc(c, stdout).

For Win32s applications, stdout must be redirected.

Return Value

On success, putchar returns the character c. On error, putchar returns EOF.

☞☞☞☞

Chapter 4, Run-time functions 169

See also

getc, getchar, printf, putc, puts, putw, freopen, vprintf

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

puts stdio.h

Syntax
int puts(const char *s);

Description

Outputs a string to stdout.

puts copies the null-terminated string s to the standard output stream stdout and appends
a newline character.

For Win32s applications, stdout must be redirected.

Return Value

On successful completion, puts returns a nonnegative value. Otherwise, it returns a
value of EOF.

See also

gets, printf, putchar, freopen

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + +

putw stdio.h

Syntax
int putw(int w, FILE *stream);

Description

Puts an integer on a stream.

putw outputs the integer w to the given stream. putw neither expects nor causes special
alignment in the file.

☞☞☞☞

Paradigm C++ Language Reference170

Return Value

On success, putw returns the integer w. On error, putw returns EOF. Because EOF is a
legitimate integer, use ferror to detect errors with putw.

See also

getw, printf

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

qsort stdlib.h

Syntax
void qsort(void *base, size_t nelem, size_t width, int (_USERENTRY *fcmp)(const void *, const void *));

Description

Sorts using the quicksort algorithm.

qsort is an implementation of the "median of three" variant of the quicksort algorithm.
qsort sorts the entries in a table by repeatedly calling the user-defined comparison
function pointed to by fcmp.

� base points to the base (0th element) of the table to be sorted.
� nelem is the number of entries in the table.
� width is the size of each entry in the table, in bytes.

fcmp, the comparison function, must be used with the _USERENTRY calling
convention.

fcmp accepts two arguments, elem1 and elem2, each a pointer to an entry in the table.
The comparison function compares each of the pointed-to items (*elem1 and *elem2),
and returns an integer based on the result of the comparison.

� *elem1 < *elem2 fcmp returns an integer < 0
� *elem1 == *elem2 fcmp returns 0
� *elem1 > *elem2 fcmp returns an integer > 0

In the comparison, the less-than symbol (<) means the left element should appear before
the right element in the final, sorted sequence. Similarly, the greater-than (>) symbol
means the left element should appear after the right element in the final, sorted
sequence.

Return Value

None

See also

bsearch, lsearch

Chapter 4, Run-time functions 171

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

raise signal.h

Syntax
int raise(int sig);

Description

Sends a software signal to the executing program.

raise sends a signal of type sig to the program. If the program has installed a signal
handler for the signal type specified by sig, that handler will be executed. If no handler
has been installed, the default action for that signal type will be taken.

The signal types currently defined in signal.h are noted here:

Signal Description

SIGABRT Abnormal termination

SIGFPE Bad floating-point operation

SIGILL Illegal instruction

SIGSEGV Invalid access to storage

SIGTERM Request for program termination

SIGUSR1 User-defined signal

SIGUSR2 User-defined signal

SIGUSR3 User-defined signal

SIGBREAK Ctrl-Break interrupt

SIGABRT isn't generated by Paradigm C++ during normal operation. It can, however,
be generated by abort, raise, or unhandled exceptions.

Return Value

On succes, raise returns 0.

On error it returns nonzero.

See also

abort, signal

Reentrant

No

☞☞☞☞

Paradigm C++ Language Reference172

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

rand stdlib.h

Syntax
int rand(void);

Description

Random number generator.

rand uses a multiplicative congruential random number generator with period 2 to the
32nd power to return successive pseudorandom numbers in the range from 0 to
RAND_MAX. The symbolic constant RAND_MAX is defined in stdlib.h.

Return Value

rand returns the generated pseudorandom number.

See also

random, randomize, srand

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

random stdlib.h

Syntax
int random(int num);

Description

Random number generator.

random returns a random number between 0 and (num-1). random(num) is a macro
defined in stdlib.h. Both num and the random number returned are integers.

Return Value

random returns a number between 0 and (num-1).

See also

rand, randomize, srand

Chapter 4, Run-time functions 173

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

randomize stdlib.h, time.h

Syntax
void randomize(void);

Description

Initializes random number generator.

randomize initializes the random number generator with a random value.

Return Value

None

See also

rand, random, srand

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

realloc stdlib.h

Syntax
void *realloc(void *block, size_t size);

Description

Reallocates main memory.

realloc attempts to shrink or expand the previously allocated block to size bytes. If size
is zero, the memory block is freed and NULL is returned. The block argument points to
a memory block previously obtained by calling malloc, calloc, or realloc. If block is a
NULL pointer, realloc works just like malloc.

realloc adjusts the size of the allocated block to size, copying the contents to a new
location if necessary.

Paradigm C++ Language Reference174

Return Value

realloc returns the address of the reallocated block, which can be different than the
address of the original block.

If the block cannot be reallocated, realloc returns NULL.

If the value of size is 0, the memory block is freed and realloc returns NULL.

See also

calloc, farrealloc, free, malloc

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

_rotl, _rotr stdlib.h

Syntax

unsigned short _rotl(unsigned short value, int count);

unsigned short _rotr(unsigned short value, int count);

Description

Bit-rotates an unsigned short integer value to the left or right.

_rotl rotates the given value to the left count bits.

_rotr rotates the given value to the right count bits.

Return Value

_rotl, and _rotr return the rotated integer:

� _rotl returns the value of value left-rotated count bits.
� _rotr returns the value of value right-rotated count bits.

See also

_crotl, crotr, _lrotl, _lrotr

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

Chapter 4, Run-time functions 175

scanf stdio.h

Syntax
int scanf(const char *format[, address, ...]);

Description

Scans and formats input from the stdin stream.

The scanf function:

� scans a series of input fields one character at a time
� formats each field according to a corresponding format specifier passed in the

format string *format.
� vsscanf scans and formats input from a string, using an argument list

There must be one format specifier and address for each input field.

scanf might stop scanning a particular field before it reaches the normal end-of-field
(whitespace) character, or it might terminate entirely. For details about why this might
happen, see “When ...scanf functions stops scanning,” page 4-180.

scanf often leads to unexpected results if you diverge from an expected pattern. You
must provide information that tells scanf how to synchronize at the end of a line.

The combination of gets or fgets followed by sscanf is safe and easy, and therefore
recommended over scanf.

Return Value

On success, scanf returns the number of input fields successfully scanned, converted,
and stored. The return value does not include scanned fields that were not stored.

On error:

� if no fields were stored, scanf returns 0.
� if scanf attempts to read at end-of-file or at end-of-string, it returns EOF.

See also

atof, freopen, getc, printf, sscanf, vsscanf

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + +

The scanf format string

The format string controls how each ...scanf function scans, converts, and stores its
input fields.

The format string is a character string that contains three types of objects:

� whitespace characters

Warning

Paradigm C++ Language Reference176

� non-whitespace characters
� format specifiers

Whitespace characters
The whitespace characters are blank, tab (\t) or newline (\n).

If a ...scanf function encounters a whitespace character in the format string, it reads, but
does not store, all consecutive whitespace characters up to the next non-whitespace
character in the input.

Trailing whitespace is left unread (including a newline), unless explicitly matched in the
format string.

Non-whitespace characters
The non-whitespace characters are all other ASCII characters except the percent sign
(%).

If a ...scanf function encounters a non-whitespace character in the format string, it will
read, but not store, a matching non-whitespace character.

Format Specifiers

The format specifiers direct the ...scanf functions to read and convert characters from
the input field into specific types of values, then store them in the locations given by the
address arguments.

Each format specifier must have an address argument. If there are more format specs
than addresses, the results are unpredictable and likely disastrous.

Excess address arguments (more than required by the format) are ignored.

In ...scanf format strings, format specifiers have the following form:

% [*] [width] [F|N] [h|l|L] type_char

Each format specifier begins with the percent character (%).

After the % come the following, in this order:

Component Optional/Required What It Is/Does

[*] (Optional) Assignment-suppression character. Suppresses assignment of
the next input field.

[width] (Optional) Width specifier. Specifies maximum number of characters to
read; fewer characters might be read if the ...scanf function
encounters a whitespace or unconvertible character.

[F|N] (Optional) Pointer size modifier. Overrides default size of address
argument:

N = near pointer

F = far pointer

[h|l|L] (Optional) Argument-type modifier. Overrides default type of address
argument:

h = short int

l = long int, if type_char specifies integer conversion

l = double, if type_char specifies floating-point conversion

L = long double, (valid only with floating-point conversion)

type_char (Required) Type character

Warning

Chapter 4, Run-time functions 177

Reentrant

No

Type characters

The information in this table is based on the assumption that no optional characters,
specifiers, or modifiers (*, width, or size) were included in the format specifier.

Certain conventions accompany some of these format specifiers.

Type Expected input Type of argument

Numerics
d Decimal integer Pointer to int (int *arg)

D Decimal integer Pointer to long (long *arg)

e,E Floating point Pointer to float (float *arg)

f Floating point Pointer to float (float *arg)

g,G Floating point Pointer to float (float *arg)

o Octal integer Pointer to int (int *arg)

O Octal integer Pointer to long (long *arg)

i Decimal, octal, or Pointer to int (int *arg)

hexadecimal integer

I Decimal, octal, or Pointer to long (long *arg)

hexadecimal integer

u Unsigned decimal integer Pointer to unsigned int (unsigned int *arg)

U Unsigned decimal integer Pointer to unsigned long (unsigned long *arg)

x Hexadecimal integer Pointer to int (int *arg)

X Hexadecimal integer Pointer to int (int *arg)

Characters
s Character string Pointer to array of chars (char arg[])

c Character Pointer to char (char *arg) if a field width is given along with
the c-type character (such as %5c)

Pointer to array of W chars (char arg[W])

% % character No conversion done; the % is stored

Pointers

n Pointer to int (int *arg). The number of characters read
successfully up to %n is stored in this int.

p Hexadecimal form Pointer to an object (far* or near*)

YYYY:ZZZZ or ZZZZ %p conversions default to the pointer size native to the memory
model

Input fields

In a ...scanf function, any one of the following is an input field:

� all characters up to (but not including) the next whitespace character
� all characters up to the first one that can't be converted under the current format

specifier (such as an 8 or 9 under octal format)

☞☞☞☞

Paradigm C++ Language Reference178

� up to n characters, where n is the specified field width

Assignment-suppression character

The assignment-suppression character is an asterisk (*), not to be confused with the C
indirection (pointer) operator.

If the asterisk follows the percent sign (%) in a format specifier, the next input field will
be scanned but it won't be assigned to the next address argument.

The suppressed input data is assumed to be of the type specified by the type character
that follows the asterisk character.

Width specifiers

The width specifier (n), a decimal integer, controls the maximum number of characters
to be read from the current input field.

Up to n characters are read, converted, and stored in the current address argument.

If the input field contains fewer than n characters, the ...scanf function reads all the
characters in the field, then proceeds with the next field and format specifier.

The success of literal matches and suppressed assignments is not directly determinable.

If the ...scanf function encounters a whitespace or non-convertible character before it
reads "width" characters, it:

� reads, converts, and stores the characters read so far, then
� attends to the next format specifier.

A non-convertible character is one that can't be converted according to the given format
(8 or 9 when the format is octal, J or K when the format is hexadecimal or decimal,
etc.).

Pointer-size and argument-type modifiers

These modifiers affect how ...scanf functions interpret the corresponding address
argument arg[f].

Pointer-size modifiers
Pointer-size modifiers override the default or declared size of arg.

Modifier arg Interpreted As...

F Far pointer

N Near pointer (Can't be used with any conversion in huge model)

Argument-type modifiers
Argument-type modifiers indicate which type of the following input data is to be used
(h = short, l = long, L = long double).

The input data is converted to the specified version, and the arg for that input data
should point to an object of corresponding size.

Modifier For This Type Convert Input to...

h d i o u x short int; store in short object

Chapter 4, Run-time functions 179

D I O U X (No effect)

e f c s n p (No effect)

l d i o u x long int; store in long object

e f g double; store in double object

D I O U X (No effect)

c s n p (No effect)

L e f g long double; store in long double object

(all others) (No effect)

Format specifier conventions

Certain conventions accompany some of the ...scanf format specifiers for the following
conversions:

� single character (%c)
� character array (%[W]c)
� string (%s)
� floating-point (%e, %E, %f, %g, and %G)
� unsigned (%d, %i, %o, %x, %D, %I, %O, %X, %c, %n)
� search sets(%[...], %[^...])

Single character conversion (%c)
This specification reads the next character, including a whitespace character.

To skip one whitespace character and read the next non-whitespace character, use %1s.

Character array conversion (%[W]c)
[W] = width specification

The address argument is a pointer to an array of characters (char arg[W]).

The array consists of W elements.

String conversion (%s)
The address argument is a pointer to an array of characters (char arg[]).

The array size must be at least (n+1) bytes, where n = the length of string s (in
characters).

A space or newline character terminates the input field.

A null terminator is automatically appended to the string and stored as the last element
in the array.

Floating-point conversions (%e, %E, %f, %g, and %G)
Floating-point numbers in the input field must conform to the following generic format:

[+/-] ddddddddd [.] dddd [E|e] [+/-] ddd

where [item] indicates that item is optional, and ddd represents digits (decimal, octal, or
hexadecimal).

In addition, +INF, -INF, +NAN, and -NAN are recognized as floating-point numbers.
The sign (+ or -) and capitalization are required.

Paradigm C++ Language Reference180

Unsigned conversions (%d, %i, %o, %x, %D, %I, %O, %X, %c, and %n)
A pointer to unsigned character, unsigned integer, or unsigned long can be used in any
conversion where a pointer to a character, integer, or long is allowed.

Search set conversion (%[search_set])
The set of characters surrounded by brackets can be substituted for the s-type character.

The address argument is a pointer to an array of characters (char arg[]).

These brackets surround a set of characters that define a search set of possible
characters making up the string (the input field).

If the first character in the brackets is a caret (^), the search set is inverted to include all
ASCII characters except those between the brackets.

(Normally, a caret will be included in the inverted search set unless explicitly listed
somewhere after the first caret.)

The input field is a string not delimited by whitespace. ...scanf reads the corresponding
input field up to the first character it reaches that does not appear in the search set (or in
the inverted search set).

Rules covering search set ranges
1. The character prior to the hyphen (-) must be lexically less than the one after it.
2. The hyphen must not be the first or last character in the set. (If it is first or last, it is

considered to just be the hyphen character, not a range definer.)
3. The characters on either side of the hyphen must be the ends of the range and not

part of some other range.

Examples

%[abcd] Searches the input field for any of the characters a, b, c, and d

%[^abcd] Searches the input field for any characters except a, b, c, and d

You can also use a range facility shortcut [<first>-<last>] to define a range of
letters or numerals in the search set.

To catch all decimal digits, you could define the search set with the explicit search set:
%[0123456789] or with the range shortcut: %[0-9]

To catch alphanumeric characters, you could use the following shortcuts:

%[A-Z] Catches all uppercase letters

%[0-9A-Za-z] Catches all decimal digits and all letters

%[A-FT-Z] Catches all uppercase letters from A through F and from T
through Z.

When ...scanf functions stop scanning

A ...scanf function might stop scanning a particular input field before reaching the
normal field-end character (whitespace), or it might terminate entirely.

Stop and skip to next input field
...scanf functions stop scanning and storing the current input field and proceed to the
next one if any of the following occurs:

Chapter 4, Run-time functions 181

� An assignment-suppression character (*) appears after the % in the format specifier.
The current input field is scanned but not stored.

� Width characters have been read.
� The next character read can't be converted under the current format (for example, an

A when the format is decimal).
� The next character in the input field does not appear in the search set (or does

appear in an inverted search set).

When scanf stops scanning the current input field for one of these reasons, it assumes
that the next character is unread and is either

� the first character of the following input field, or
� the first character in a subsequent read operation on the input.

Terminate
...scanf functions will terminate under the following circumstances:

1. The next character in the input field conflicts with a corresponding non-whitespace
character in the format string.

2. The next character in the input field is EOF.
3. The format string has been exhausted.

If a character sequence that is not part of a format specifier occurs in the format string,
it must match the current sequence of characters in the input field.

...scanf functions will scan but not store the matched characters.

When a conflicting character occurs, it remains in the input field as if the ...scanf
function never read it.

...scanf functions
The ..scanf functions include

scanf Scans and formats input from stdin

sscanf Scans and formats input from a string

vscanf Scans and formats input from stdin using an argument list

vsscanf Scans and formats input from a string, using an argument list

segread dos.h, embedded.h

Syntax
void segread(struct SREGS _FAR *_ _segp);

Description

Reads segment registers.

segread places the current values of the segment registers into the structure pointed to
by segp.

This call is intended for use with intdosx and int86x.

Return Value

None

Paradigm C++ Language Reference182

See also

FP_OFF, int86, int86x, MK_FP, movedata

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

setbuf stdio.h

Syntax
void setbuf(FILE *stream, char *buf);

Description

Assigns buffering to a stream.

setbuf causes the buffer buf to be used for I/O buffering instead of an automatically
allocated buffer. It is used after stream has been opened.

If buf is null, I/O will be unbuffered; otherwise, it will be fully buffered. The buffer
must be BUFSIZ bytes long (specified in stdio.h).

stdin and stdout are unbuffered if they are not redirected; otherwise, they are fully
buffered. setbuf can be used to change the buffering style used.

Unbuffered means that characters written to a stream are immediately output to the file
or device, while buffered means that the characters are accumulated and written as a
block.

setbuf produces unpredictable results unless it is called immediately after opening
stream or after a call to fseek. Calling setbuf after stream has been unbuffered is legal
and will not cause problems.

A common cause for error is to allocate the buffer as an automatic (local) variable and
then fail to close the file before returning from the function where the buffer was
declared.

Return Value

None

See also

fflush, setvbuf

Reentrant

No

Chapter 4, Run-time functions 183

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

setjmp setjmp.h

Syntax
int setjmp(jmp_buf jmpb);

Description

Sets up for nonlocal goto.

setjmp captures the complete task state in jmpb and returns 0.

A later call to longjmp with jmpb restores the captured task state and returns in such a
way that setjmp appears to have returned with the value val.

A task state includes

Real/Extended Win32

All segment registers No segment registers are saved

CS, DS, ES, SS

Register variables Register variables

DI and SI EBX, EDI, ESI

Stack pointer SP Stack pointer ESP

Frame pointer BP Frame pointer EBP

Flags Flags are not saved

A task state is complete enough that setjmp can be used to implement co-routines.

setjmp must be called before longjmp. The routine that calls setjmp and sets up jmpb
must still be active and cannot have returned before the longjmp is called. If it has
returned, the results are unpredictable.

setjmp is useful for dealing with errors and exceptions encountered in a low-level
subroutine of a program.

Return Value

setjmp returns 0 when it is initially called. If the return is from a call to longjmp, setjmp
returns a nonzero value (as in the example).

See also

longjmp, signal

Reentrant

No

Paradigm C++ Language Reference184

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

setmem, _hsetmem mem.h

Syntax

void setmem(void *dest, unsigned length, char value);

void _hsetmem(void __far *dest, unsigned long length, char value);

Description

Assigns a value to a range of memory.

setmem sets a block of length bytes, pointed to by dest, to the byte value.

Return Value

None

See also

memset, strset

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

setmem + + +

_hsetmem + +

setmode io.h

Syntax
int setmode(int handle, int amode);

Description

Sets mode of an open file.

setmode sets the mode of the open file associated with handle to either binary or text.
The argument amode must have a value of either O_BINARY or O_TEXT, never both.
(These symbolic constants are defined in fcntl.h.)

Return Value

setmode returns the previous translation mode if successful. On error it returns -1 and
sets the global variable errno to

EINVAL Invalid argument

Chapter 4, Run-time functions 185

See also

open

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

setvbuf stdio.h

Syntax
int setvbuf(FILE *stream, char *buf, int type, size_t size);

Description

Assigns buffering to a stream.

setvbuf causes the buffer buf to be used for I/O buffering instead of an automatically
allocated buffer. It is used after the given stream is opened.

If buf is null, a buffer will be allocated using malloc; the buffer will use size as the
amount allocated. The buffer will be automatically freed on close. The size parameter
specifies the buffer size and must be greater than zero.

The parameter size is limited by the constant UINT_MAX as defined in limits.h.

stdin and stdout are unbuffered if they are not redirected; otherwise, they are fully
buffered. Unbuffered means that characters written to a stream are immediately output
to the file or device, while buffered means that the characters are accumulated and
written as a block.

The type parameter is one of the following:

_IOFBF fully buffered file. When a buffer is empty, the next input operation will
attempt to fill the entire buffer. On output, the buffer will be completely
filled before any data is written to the file.

_IOLBF line buffered file. When a buffer is empty, the next input operation will
still attempt to fill the entire buffer. On output, however, the buffer will
be flushed whenever a newline character is written to the file.

_IONBF unbuffered file. The buf and size parameters are ignored. Each input
operation will read directly from the file, and each output operation will
immediately write the data to the file.

A common cause for error is to allocate the buffer as an automatic (local) variable and
then fail to close the file before returning from the function where the buffer was
declared.

Return Value

On success, setvbuf returns 0.

Paradigm C++ Language Reference186

On error (if an invalid value is given for type or size, or if there is not enough space to
allocate a buffer), it returns nonzero.

See also

fflush, setbuf

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

signal signal.h

Syntax
void (_USERENTRY *signal(int sig, void (_USERENTRY *func)

(int sig[, int subcode])))(int);

Description

Specifies signal-handling actions.

signal determines how receipt of signal number sig will subsequently be treated. You
can install a user-specified handler routine (specified by the argument func) or use one
of the two predefined handlers, SIG_DFL and SIG_IGN, in signal.h. The function func
must be used with the _USERENTRY calling convention.

A routine that catches a signal (such as a floating point) also clears the signal. To
continue to receive signals, a signal handler must be reinstalled by calling signal again.

Function Pointer Description

SIG_DFL Terminates the program

SIG_ERR Indicates an error return from signal

SIG_IGN Ignore this type signal

The following table shows signal types and their defaults:

Signal Type Description

SIGBREAK Keyboard must be in raw mode.

SIGABRT Abnormal termination. Default action is equivalent to calling _exit(3).

SIGFPE Arithmetic error caused by division by 0, invalid operation, and the like. Default
action is equivalent to calling _exit(1).

SIGILL Illegal operation. Default action is equivalent to calling _exit(1).

SIGSEGV Illegal storage access. Default action is equivalent to calling _exit(1).

SIGTERM Request for program termination. Default action is equivalent to calling _exit(1).

SIGUSR1 User-defined signals (available only in Win32) can be generated only by calling
SIGUSR2 raise. Default action is to ignore the signal
SIGUSR3

Chapter 4, Run-time functions 187

signal.h defines a type called sig_atomic_t, the largest integer type the processor can
load or store atomically in the presence of asynchronous interrupts (for the 8086 family,
this is a 16-bit word, for 80386 and higher number processors, it is a 32-bit word -- a
Paradigm C++ integer).

When a signal is generated by the raise function or by an external event, the following
two things happen:

� If a user-specified handler has been installed for the signal, the action for that signal
type is set to SIG_DFL.

� The user-specified function is called with the signal type as the parameter.

User-specified handler functions can terminate by a return or by a call to abort, _exit,
exit, or longjmp. If your handler function is expected to continue to receive and handle
more signals, you must have the handler function call signal again.

Paradigm C++ implements an extension to ANSI C when the signal type is SIGFPE,
SIGSEGV, or SIGILL. The user-specified handler function is called with one or two
extra parameters. If SIGFPE, SIGSEGV, or SIGILL has been raised as the result of an
explicit call to the raise function, the user-specified handler is called with one extra
parameter, an integer specifying that the handler is being explicitly invoked. The
explicit activation values for SIGFPE, SIGSEGV and SIGILL are as follows

Declarations of these types are defined in signal.h.

SIGSEGV signal Meaning

SIGFPE FPE_EXPLICITGEN

SIGSEGV SEGV_EXPLICITGEN

SIGILL ILL_EXPLICITGEN

If SIGFPE is raised because of a floating-point exception, the user handler is called with
one extra parameter that specifies the FPE_xxx type of the signal. If SIGSEGV,
SIGILL, or the integer-related variants of SIGFPE signals (FPE_INTOVFLOW or
FPE_INTDIV0) are raised as the result of a processor exception, the user handler is
called with two extra parameters:

1. The SIGFPE, SIGSEGV, or SIGILL exception type (see float.h for all these types).
This first parameter is the usual ANSI signal type.

2. An integer pointer into the stack of the interrupt handler that called the user-
specified handler. This pointer points to a list of the processor registers saved when
the exception occurred. The registers are in the same order as the parameters to an
interrupt function; that is, BP, DI, SI, DS, ES, DX, CX, BX, AX, IP, CS, FLAGS.
To have a register value changed when the handler returns, change one of the
locations in this list.

For example, to have a new SI value on return, do something like this:

((int)list_pointer + 2) = new_SI_value;

In this way, the handler can examine and make any adjustments to the registers that you
want.

The following SIGFPE-type signals can occur (or be generated). They correspond to the
exceptions that the 8087 family is capable of detecting, as well as the "INTEGER
DIVIDE BY ZERO" and the "INTERRUPT ON OVERFLOW" on the main CPU. (The
declarations for these are in float.h.)

☞☞☞☞

Paradigm C++ Language Reference188

SIGFPE signal Meaning

FPE_INTOVFLOW INTO executed with OF flag set

FPE_INTDIV0 Integer divide by zero

FPE_INVALID Invalid operation

FPE_ZERODIVIDE Division by zero

FPE_OVERFLOW Numeric overflow

FPE_UNDERFLOW Numeric underflow

FPE_INEXACT Precision

FPE_EXPLICITGEN User program executed raise(SIGFPE)

FPE_STACKFAULT Floating-point stack overflow or underflow

FPE_STACKFAULT Stack overflow

The FPE_INTOVFLOW and FPE_INTDIV0 signals are generated by integer
operations, and the others are generated by floating-point operations. Whether the
floating-point exceptions are generated depends on the coprocessor control word, which
can be modified with _control87. Denormal exceptions are handled by Paradigm C++
and not passed to a signal handler.

The following SIGSEGV-type signals can occur:

SEGV_BOUND Bound constraint exception

SEGV_EXPLICITGEN raise(SIGSEGV) was executed

The 8088 and 8086 processors don't have a bound instruction. The 186, 286, 386, and
NEC V series processors do have this instruction. So, on the 8088 and 8086 processors,
the SEGV_BOUND type of SIGSEGV signal won't occur. Paradigm C++ doesn't
generate bound instructions, but they can be used in inline code and separately compiled
assembler routines that are linked in.

The following SIGILL-type signals can occur:

ILL_EXECUTION Illegal operation attempted

ILL_EXPLICITGEN raise(SIGILL) was executed

The 8088, 8086, NEC V20, and NEC V30 processors do not have an illegal operation
exception. The 186, 286, 386, NEC V40, and NEC V50 processors do have this
exception type. On 8088, 8086, NEC V20, and NEC V30 processors, the
ILL_EXECUTION type of SIGILL won't occur.

When the signal type is SIGFPE, SIGSEGV, or SIGILL, a return from a signal handler
is generally not advisable if the state of the 8087 is corrupt, the results of an integer
division are wrong, an operation that shouldn't have overflowed did, a bound instruction
failed, or an illegal operation was attempted. The only time a return is reasonable is
when the handler alters the registers so that a reasonable return context exists or the
signal type indicates that the signal was generated explicitly (for example,
FPE_EXPLICITGEN, SEGV_EXPLICITGEN, or ILL_EXPLICITGEN). Generally in
this case you would print an error message and terminate the program using _exit,_exit
exit,exit or abort.abort If a return is executed under any other conditions, the program's
action will probably be unpredictable.

Take special care when using the signal function in a multithread program. The
SIGTERM and SIGBREAK signals can be used only by the main thread (thread one) in
a non-Win32 application. When one of these signals occurs, the currently executing

☞☞☞☞

Chapter 4, Run-time functions 189

thread is suspended, and control transfers to the signal handler (if any) set up by thread
one. Other signals can be handled by any thread.

A signal handler should not use C++ run-time library functions, because a semaphore
deadlock might occur. Instead, the handler should simply set a flag or post a semaphore,
and return immediately.

Return Value

On success, signal returns a pointer to the previous handler routine for the specified
signal type.

On error, signal returns SIG_ERR, and the external variable errno is set to EINVAL.

See also

abort, _c_exit, _cexit, _control87, exit, longjmp, raise, setjmp

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

sin, sinl math.h

Syntax
double sin(double x);

long double sinl(long double x);

Description

Calculates sine.

sin computes the sine of the input value. Angles are specified in radians.

sinl is the long double version; it takes a long double argument and returns a long
double result. Error handling for these functions can be modified through the functions
_matherr and _matherrl.

This function can be used with bcd and complex types.

Return Value

sin and sinl return the sine of the input value.

See also

acos, asin, atan, atan2, bcd, complex, cos, tan

Reentrant

No

Paradigm C++ Language Reference190

Portability

Real Extended Win32 ANSI C ANSI C++

sin + + + +

sinl + + +

sinh, sinhl math.h

Syntax
double sinh(double x);

long double sinhl(long double x);

Description

Calculates hyperbolic sine.

sinh computes the hyperbolic sine, ex-e-x)/2.

sinl is the long double version; it takes a long double argument and returns a long
double result. Error handling for sinh and sinhl can be modified through the functions
_matherr and _matherrl.

This function can be used with bcd and complex types.

Return Value

sinh and sinhl return the hyperbolic sine of x.

When the correct value overflows, these functions return the value HUGE_VAL (sinh)
or _LHUGE_VAL (sinhl) of appropriate sign. Also, the global variable errno is set to
ERANGE.

See also

acos, asin, atan, atan2, bcd, complex, cos, cosh, sin, tan, tanh

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

sinh + + + +

sinhl + + +

sprintf stdio.h

Syntax
int sprintf(char *buffer, const char *format[, argument, ...]);

Description

Writes formatted output to a string.

Chapter 4, Run-time functions 191

For details on format specifiers, see printf.

sprintf accepts a series of arguments, applies to each a format specifier contained in the
format string pointed to by format, and outputs the formatted data to a string.

sprintf applies the first format specifier to the first argument, the second to the second,
and so on. There must be the same number of format specifiers as arguments.

Return Value

On success, sprintf returns the number of bytes output. The return value does not
include the terminating null byte in the count.

On error, sprintf returns EOF.

See also

printf

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

sqrt, sqrtl math.h

Syntax
double sqrt(double x);

long double sqrtl(long double x);

Description

Calculates the positive square root.

sqrt calculates the positive square root of the argument x.

sqrtl is the long double version; it takes a long double argument and returns a long
double result. Error handling for these functions can be modified through the functions
_matherr and _matherrl.

This function can be used with bcd and complex types.

Return Value

On success, sqrt and sqrtl return the value calculated, the square root of x. If x is real
and positive, the result is positive. If x is real and negative, the global variable errno is
set to

EDOM Domain error

See also

bcd, complex, exp, log, pow

☞☞☞☞

Paradigm C++ Language Reference192

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

sqrt + + + +

sqrtl + + +

srand stdlib.h

Syntax
void srand(unsigned seed);

Description

Initializes random number generator.

The random number generator is reinitialized by calling srand with an argument value
of 1. It can be set to a new starting point by calling srand with a given seed number.

Return Value

None

See also

rand, random, randomize

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

sscanf stdio.h

Syntax
int sscanf(const char *buffer, const char *format[, address, ...]);

Description

Scans and formats input from a string.

For details on format specifiers, see scanf.

sscanf scans a series of input fields, one character at a time, reading from a string. Then
each field is formatted according to a format specifier passed to sscanf in the format
string pointed to by format. Finally, sscanf stores the formatted input at an address
passed to it as an argument following format. There must be the same number of format
specifiers and addresses as there are input fields.

☞☞☞☞

Chapter 4, Run-time functions 193

sscanf might stop scanning a particular field before it reaches the normal end-of-field
(whitespace) character, or it might terminate entirely, for a number of reasons. See scanf
for a discussion of possible causes.

Return Value

On success, sscanf returns the number of input fields successfully scanned, converted,
and stored; the return value does not include scanned fields that were not stored.

If sscanf attempts to read at end-of-string, it returns EOF.

On error (If no fields were stored), it returns 0.

See also

scanf

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

stackavail malloc.h

Syntax
size_t stackavail(void);

Description

Gets the amount of available stack memory.

stackavail returns the number of bytes available on the stack. This is the amount of
dynamic memory that alloca can access.

Return Value

stackavail returns a size_t value indicating the number of bytes available.

See also

alloca

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

Paradigm C++ Language Reference194

_status87 float.h

Syntax
unsigned int _status87(void);

Description

Gets floating-point status.

_status87 gets the floating-point status word, which is a combination of the 80x87 status
word and other conditions detected by the 80x87 exception handler.

Return Value

The bits in the return value give the floating-point status. See float.h for a complete
definition of the bits returned by _status87.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

stime time.h

Syntax
int stime(time_t *tp);

Description

Sets system date and time.

stime sets the system time and date. tp points to the value of the time as measured in
seconds from 00:00:00 GMT, January 1, 1970.

Return Value

stime returns a value of 0.

See also

asctime, gmtime, localtime, time

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

Chapter 4, Run-time functions 195

stpcpy string.h

Syntax
char *stpcpy(char *dest, const char *src);

Description

Copies one string into another.

stpcpy copies the string src to dest, stopping after the terminating null character of src
has been reached.

Return Value

stpcpy returns dest + strlen(src).

See also

strcpy

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

strcat, _fstrcat string.h

Syntax
char *strcat(char *dest, const char *src);

char far * far _fstrcat(char far *dest, const char far *src)

Description

Appends one string to another.

strcat appends a copy of src to the end of dest. The length of the resulting string is
strlen(dest) + strlen(src).

Return Value

strcat returns a pointer to the concatenated strings.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

strcat + + + + +

_fstrcat + +

Paradigm C++ Language Reference196

strchr, _fstrchr string.h

Syntax
char *strchr(const char *s, int c); /* C only */

char far * far _fstrchr(const char far *s, int c) /* C only */

const char *strchr(const char *s, int c); // C++ only

char *strchr(char *s, int c); // C++ only

const char far * far _fstrchr(const char far *s, int c); // C++ only

char far * far _fstrchr(char far *s, int c); // C++ only

Description

Scans a string for the first occurrence of a given character.

strchr scans a string in the forward direction, looking for a specific character. strchr
finds the first occurrence of the character c in the string s. The null-terminator is
considered to be part of the string.

For example:

strchr(strs,0)

returns a pointer to the terminating null character of the string strs.

Return Value

strchr returns a pointer to the first occurrence of the character c in s; if c does not occur
in s, strchr returns null.

See also

strcspn, strrchr

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

strchr + + + + +

_fstrchr + +

strcmp string.h

Syntax
int strcmp(const char *s1, const char *s2);

Description

Compares one string to another.

strcmp performs an unsigned comparison of s1 to s2, starting with the first character in
each string and continuing with subsequent characters until the corresponding
characters differ or until the end of the strings is reached.

Chapter 4, Run-time functions 197

Return Value

If s1 is... strcmp returns a value that is...

less than s2 < 0

the same as s2 = = 0

greater than s2 > 0

See also

strcmpi, strcoll, stricmp, strncmp, strncmpi, strnicmp

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

strcmpi string.h

Syntax
int strcmpi(const char *s1, const char *s2);

Description

Compares one string to another, without case sensitivity.

strcmpi performs an unsigned comparison of s1 to s2, without case sensitivity (same as
stricmp--implemented as a macro).

It returns a value (< 0, 0, or > 0) based on the result of comparing s1 (or part of it) to s2
(or part of it).

The routine strcmpi is the same as stricmp. strcmpi is implemented through a macro in
string.h and translates calls from strcmpi to stricmp. Therefore, in order to use strcmpi,
you must include the header file string.h for the macro to be available. This macro is
provided for compatibility with other C compilers.

Return Value

If s1 is... strcmpi returns a value that is...

less than s2 < 0

the same as s2 = = 0

greater than s2 > 0

See also

strcmp, strcoll, stricmp, strncmp, strncmpi, strnicmp

Reentrant

Yes

Paradigm C++ Language Reference198

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

strcoll string.h

Syntax
int strcoll(char *s1, char *s2);

Description

Compares two strings.

strcoll compares the string pointed to by s1 to the string pointed to by s2, according to
the current locale's LC_COLLATE category.

Return Value

If s1 is... strcoll returns a value that is...

less than s2 < 0

the same as s2 = = 0

greater than s2 > 0

See also

strcmp, strcmpi, stricmp, strncmp, strncmpi, strnicmp, strxfrm

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

strcpy string.h

Syntax
char *strcpy(char *dest, const char *src);

Description

Copies one string into another.

Copies string src to dest, stopping after the terminating null character has been moved.

Return Value

strcpy returns dest.

Chapter 4, Run-time functions 199

See also

strcpy

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

strcspn, _fstrcspn string.h

Syntax
size_t strcspn(const char *s1, const char *s2);

size_t far *far _fstrcspn(const char far *s1, const char far *s2)

Description

Scans a string for the initial segment not containing any subset of a given set of
characters.

The strcspn functions search s1 until any one of the characters contained in s2 is found.
The number of characters which were read in s1 is the return value. The string
termination character is not counted. Neither string is altered during the search.

Return Value

strcspn returns the length of the initial segment of string s1 that consists entirely of
characters not from string s2.

See also

strchr, strrchr

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

strcspn + + + + +

_fstrcpn + +

_strdate time.h

Syntax
char *_strdate(char *buf);

Description

Converts current date to string.

Paradigm C++ Language Reference200

_strdate converts the current date to a string, storing the string in the buffer buf. The
buffer must be at least 9 characters long.

The string has the form MM/DD/YY where MM, DD, and YY are all two-digit
numbers representing the month, day, and year. The string is terminated by a null
character.

Return Value

_strdate returns buf, the address of the date string.

See also

asctime, ctime, localtime, strftime, _strftime, time

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

strdup, _fstrdup string.h

Syntax

char *strdup(const char *s);

char far * far _fstrdup(const char far *s)

Description

Copies a string into a newly created location.

strdup makes a duplicate of string s, obtaining space with a call to malloc. The allocated
space is (strlen(s) + 1) bytes long. The user is responsible for freeing the space allocated
by strdup when it is no longer needed.

Return Value

strdup returns a pointer to the storage location containing the duplicated string, or
returns null if space could not be allocated.

See also

free

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

strdup + + + + +

Chapter 4, Run-time functions 201

_fstrdup + +

_strerror string.h

Syntax
char *_strerror(const char *s);

Description

Builds a customized error message.

_strerror lets you generate customized error messages; it returns a pointer to a null-
terminated string containing an error message.

� If s is null, the return value points to the most recent error message.
� If s is not null, the return value contains s (your customized error message), a colon,

a space, the most-recently generated system error message, and a new line. s should
be 94 characters or less.

Return Value

_strerror returns a pointer to a constructed error string. The error message string is
constructed in a static buffer that is overwritten with each call to _strerror.

See also

perror, strerror

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

strerror string.h

Syntax
char *strerror(int errnum);

Description

Returns a pointer to an error message string.

strerror takes an int parameter errnum, an error number, and returns a pointer to an
error message string associated with errnum.

Return Value

strerror returns a pointer to a constructed error string. The error message string is
constructed in a static buffer that is overwritten with each call to strerror.

Paradigm C++ Language Reference202

See also

perror, _strerror

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

strftime time.h

Syntax
size_t strftime(char *s, size_t maxsize, const char *fmt, const struct tm *t);

Description

Formats time for output.

strftime formats the time in the argument t into the array pointed to by the argument s
according to the fmt specifications. All ordinary characters are copied unchanged. No
more than maxsize characters are placed in s.

The time is formatted according to the current locale's LC_TIME category.

Return Value

On success, strftime returns the number of characters placed into s.

On error (if the number of characters required is greater than maxsize), strftime returns
0.

strftime format string

Consists of zero or more directives and ordinary characters. A directive consists of the
% character followed by a character that determines the substitution that is to take
place.

ANSI-defined format specifiers

The following table describes the ANSI-defined specifiers for the format string used
with strftime.

Format specifier Substitutes

%% Character %

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Date and time

%d Two-digit day of month (01 - 31)

%H Two-digit hour (00 - 23)

Chapter 4, Run-time functions 203

%I Two-digit hour (01 - 12)

%j Three-digit day of year (001 - 366)

%m Two-digit month as a decimal number (1 - 12)

%M 2-digit minute (00 - 59)

%p AM or PM

%S Two-digit second (00 - 59)

%U Two-digit week number where Sunday is the first day of the week (00 - 53)

%w Weekday where 0 is Sunday (0 - 6)

%W Two-digit week number where Monday is the first day of week the week (00 -
53)

%x Date

%X Time

%y Two-digit year without century (00 to 99)

%Y Year with century

%Z Time zone name, or no characters if no time zone

POSIX-defined format specifiers

The following table describes the POSIX-defined specifiers for the format string used
with strftime.

You must define __USELOCALES__ in order to use these descriptors.

Format specifier Substitution

%C Century as a decimal number (00 - 99). For example, 1992 => 19

%D Date in the format mm/dd/yy

%e Day of the month as a decimal number in a two-digit field with leading space (1 -31)

%h A synonym for %b

%n Newline character

%r 12-hour time (01 - 12) format with am/pm string i.e. "%I:%M:%S %p"

%t Tab character

%T 24-hour time (00 - 23) in the format "HH:MM:SS"

%u Weekday as a decimal number (1 Monday - 7 Sunday)

POSIX-defined format specifier modifiers

The following table describes the POSIX-defined modifiers for the following format
string specifiers used with strftime.

You must define __USELOCALES__ in order to use these descriptors.

Descriptor modifier Substitutes

%Od Day of the month using alternate numeric symbols

%Oe Day of the month using alternate numeric symbols

%OH Hour (24 hour) using alternate numeric symbols

%OI Hour (12 hour) using alternate numeric symbols

%Om Month using alternate numeric symbols

%OM Minutes using alternate numeric symbols

☞☞☞☞

☞☞☞☞

Paradigm C++ Language Reference204

%OS Seconds using alternate numeric symbols

%Ou Weekday as a number using alternate numeric symbols

%OU Week number of the year using alternate numeric symbols

%Ow Weekday as number using alternate numeric symbols

%OW Week number of the year using alternate numeric symbols

%Oy Year (offset from %C) using alternate numeric symbols

%O modifier

%O modifier
When the %O modifier is used before any of the above supported numeric format
descriptors (for example, %Od), the numeric value is converted to the corresponding
ordinal string, if it exists. If an ordinal string does not exist, the basic format descriptor
is used unmodified.

For example, on 4/20/94:

� %d produces 20
� %Od produces 20th

See also

localtime, mktime, time

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

stricmp, _fstricmp string.h

Syntax
int stricmp(const char *s1, const char *s2);

int far _fstricmp(const char far *s1, const char far *s2)

Description

Compares one string to another, without case sensitivity.

stricmp performs an unsigned comparison of s1 to s2, starting with the first character in
each string and continuing with subsequent characters until the corresponding
characters differ or until the end of the strings is reached. The comparison is not case
sensitive.

It returns a value (< 0, 0, or > 0) based on the result of comparing s1 (or part of it) to s2
(or part of it).

The routines stricmp and strcmpi are the same; strcmpi is implemented through a macro
in string.h that translates calls from strcmpi to stricmp. Therefore, in order to use
stricmp, you must include the header file string.h for the macro to be available.

Chapter 4, Run-time functions 205

Return Value

If s1 is... stricmp returns a value that is...

less than s2 < 0

the same as s2 = = 0

greater than s2 > 0

See also

strcmp, strcmpi, strcoll, strncmp, strncmpi, strnicmp

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

stricmp + + + + +

_fstricmp + +

strlen, _fstrlen string.h

Syntax

size_t strlen(const char *s);

size_t far _fstrlen(const char far *s)

Description

Calculates the length of a string.

strlen calculates the length of s.

Return Value

strlen returns the number of characters in s, not counting the null-terminating character.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

strlen + + + + +

_fstrlen + +

strlwr, _fstrlwr string.h

Syntax
char *strlwr(char *s);

char far * far _fstrlwr(char char far *s)

Paradigm C++ Language Reference206

Description

Converts uppercase letters in a string to lowercase.

strlwr converts uppercase letters in string s to lowercase according to the current
locale's LC_CTYPE category. For the C locale, the conversion is from uppercase letters
(A to Z) to lowercase letters (a to z). No other characters are changed.

Return Value

strlwr returns a pointer to the string s.

See also

strupr

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

strlwr + + + + +

_fstrlwr + +

strncat, _fstrncat string.h

Syntax
char *strncat(char *dest, const char *src, size_t maxlen);

char far * far _fstrncat(char far *dest, const char far *src, size_t maxlen)

Description

Appends a portion of one string to another.

strncat copies at most maxlen characters of src to the end of dest and then appends a
null character. The maximum length of the resulting string is strlen(dest) + maxlen.

Return Value

strncat returns dest.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

strncat + + + + +

_fstrncat + +

Chapter 4, Run-time functions 207

strncmp, _fstrncmp string.h

Syntax
int strncmp(const char *s1, const char *s2, size_t maxlen);

int far _fstrncmp(const char far *s1, const char far *s2, size_t maxlen)

Description

Compares a portion of one string to a portion of another.

strncmp makes the same unsigned comparison as strcmp, but looks at no more than
maxlen characters. It starts with the first character in each string and continues with
subsequent characters until the corresponding characters differ or until it has examined
maxlen characters.

Return Value

strncmp returns an int value based on the result of comparing s1 (or part of it) to s2 (or
part of it):

� < 0 if s1 is less than s2
� == 0 if s1 is the same as s2
� > 0 if s1 is greater than s2

See also

strcmp, strcoll, stricmp, strncmp, strnicmp

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

strncmp + + + + +

_fstrncmp + +

strncmpi string.h

Syntax
int strncmpi(const char *s1, const char *s2, size_t n);

Description

Compares a portion of one string to a portion of another, without case sensitivity.

strncmpi performs a signed comparison of s1 to s2, for a maximum length of n bytes,
starting with the first character in each string and continuing with subsequent characters
until the corresponding characters differ or until n characters have been examined. The
comparison is not case sensitive. (strncmpi is the same as strnicmp--implemented as a
macro). It returns a value (< 0, 0, or > 0) based on the result of comparing s1 (or part of
it) to s2 (or part of it).

The routines strnicmp and strncmpi are the same; strncmpi is implemented through a
macro in string.h that translates calls from strncmpi to strnicmp. Therefore, in order to

Paradigm C++ Language Reference208

use strncmpi, you must include the header file string.h for the macro to be available.
This macro is provided for compatibility with other C compilers.

Return Value

If s1 is... strncmpi returns a value that is...

less than s2 < 0

the same as s2 = = 0

greater than s2 > 0

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ +

strncpy, _fstrncpy stdio.h

Syntax
char *strncpy(char *dest, const char *src, size_t maxlen);

char far * far _fstrncpy(char far *dest, const char far *src, size_t maxlen)

Description

Copies a given number of bytes from one string into another, truncating or padding as
necessary.

strncpy copies up to maxlen characters from src into dest, truncating or null-padding
dest. The target string, dest, might not be null-terminated if the length of src is maxlen
or more.

Return Value

strncpy returns dest.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

strncpy + + + + +

_fstrncy + +

strnicmp, _fstrnicmp string.h

Syntax
int strnicmp(const char *s1, const char *s2, size_t maxlen);

Chapter 4, Run-time functions 209

int far _fstrnicmp(const char far *s1, const char far *s2, size_t maxlen)

Description

Compares a portion of one string to a portion of another, without case sensitivity.

strnicmp performs a signed comparison of s1 to s2, for a maximum length of maxlen
bytes, starting with the first character in each string and continuing with subsequent
characters until the corresponding characters differ or until the end of the strings is
reached. The comparison is not case sensitive.

It returns a value (< 0, 0, or > 0) based on the result of comparing s1 (or part of it) to s2
(or part of it).

Return Value

If s1 is... strnicmp returns a value that is...

less than s2 < 0

the same as s2 = = 0

greater than s2 > 0

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

strnicmp + + +

_fstrnicmp + +

strnset, _fstrnset string.h

Syntax

char *strnset(char *s, int ch, size_t n);

char far * far _fstrnset(char far *s, int ch, size_t n)

Description

Sets a specified number of characters in a string to a given character.

strnset copies the character ch into the first n bytes of the string s. If n > strlen(s), then
strlen(s) replaces n. It stops when n characters have been set, or when a null character is
found.

Return Value

strnset returns s.

Reentrant

Yes

Paradigm C++ Language Reference210

Portability

Real Extended Win32 ANSI C ANSI C++

strnset + + +

_fstrnset + +

strpbrk, _fstrpbrk string.h

Syntax
char *strpbrk(const char *s1, const char *s2); /* C only */

char far *far _fstrpbrk(const char far *s1,

const char far*s2) /* C only */

const char *strpbrk(const char *s1, const char *s2); // C++ only

char *strpbrk(char *s1, const char *s2); // C++ only

const char far *far _fstrpbrk(const char far *s1,

const char far *s2); // C++ only

char far * far _fstrpbrk(char far *s1,

const char far *s2); // C++ only

Description

Scans a string for the first occurrence of any character from a given set.

strpbrk scans a string, s1, for the first occurrence of any character appearing in s2.

Return Value

strpbrk returns a pointer to the first occurrence of any of the characters in s2. If none of
the s2 characters occur in s1, strpbrk returns null.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

strpbrk + + + + +

_fstpbrk + +

strrchr, _fstrrchr string.h

Syntax

char *strrchr(const char *s, int c); /* C only */

char far * far _fstrrchr(const char far *s, int c) /* C only */

const char *strrchr(const char *s, int c); // C++ only

char *strrchr(char *s, int c); // C++ only

const char *_fstrrchr(const char far *s, int c); // C++ only

char *_fstrrchr(char far *s, int c); // C++ only

Chapter 4, Run-time functions 211

Description

Scans a string for the last occurrence of a given character.

strrchr scans a string in the reverse direction, looking for a specific character. strrchr
finds the last occurrence of the character c in the string s. The null-terminator is
considered to be part of the string.

Return Value

strrchr returns a pointer to the last occurrence of the character c. If c does not occur in s,
strrchr returns null.

See also

strcspn, strchr

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

strrchr + + + + +

_fstrrchr + +

strrev, _fstrrev string.h

Syntax
char *strrev(char *s);

char far * far _fstrrev(char far *s)

Description

Reverses a string.

strrev changes all characters in a string to reverse order, except the terminating null
character. (For example, it would change string\0 to gnirts\0.)

Return Value

strrev returns a pointer to the reversed string.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

strrev + + +

_fstrrev + +

Paradigm C++ Language Reference212

strset, _fstrset string.h

Syntax
char *strset(char *s, int ch);

char far * far _fstrset(char far *s, int ch)

Description

Sets all characters in a string to a given character.

strset sets all characters in the string s to the character ch. It quits when the terminating
null character is found.

Return Value

strset returns s.

See also

setmem

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

strset + + +

_fstrset + +

strspn, _fstrspn string.h

Syntax

size_t strspn(const char *s1, const char *s2);

size_t far _fstrspn(const char far *s1, const char far *s2)

Description

Scans a string for the first segment that is a subset of a given set of characters.

strspn finds the initial segment of string s1 that consists entirely of characters from
string s2.

Return Value

strspn returns the length of the initial segment of s1 that consists entirely of characters
from s2.

Reentrant

Yes

Chapter 4, Run-time functions 213

Portability

Real Extended Win32 ANSI C ANSI C++

strspn + + + + +

_fstrspn + +

strstr, _fstrstr string.h

Syntax
char *strstr(const char *s1, const char *s2); /* C only */

char far * far _fstrstr(const char far *s1,

const char far*s2); /* C only */

const char *strstr(const char *s1, const char *s2); // C++ only

char *strstr(char *s1, const char *s2); // C++ only

const char far *far _fstrstr(const char far *s1,

const char far *s2); // C++ only

char far * far _fstrstr(char far *s1, const char far *s2); // C++ only

Description

Scans a string for the occurrence of a given substring.

strstr scans s1 for the first occurrence of the substring s2.

Return Value

strstr returns a pointer to the element in s1, where s2 begins (points to s2 in s1). If s2
does not occur in s1, strstr returns null.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

strstr + + + + +

_fstrstr + +

_strtime time.h

Syntax
char *_strtime(char *buf);

Description

Converts current time to string.

_strtime converts the current time to a string, storing the string in the buffer buf. The
buffer must be at least 9 characters long.

The string has the following form:

HH:MM:SS

Paradigm C++ Language Reference214

where HH, MM, and SS are all two-digit numbers representing the hour, minute, and
second, respectively. The string is terminated by a null character.

Return Value

_strtime returns buf, the address of the time string.

See also

asctime, ctime, localtime, strftime, _strdate, time

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

strtod, _strtold stdlib.h

Syntax
double strtod(const char *s, char **endptr);

long double _strtold(const char *s, char **endptr);

Description

Convert a string to a double or long double value.

strtod converts a character string, s, to a double value. s is a sequence of characters that
can be interpreted as a double value; the characters must match this generic format:

[ws] [sn] [ddd] [.] [ddd] [fmt[sn]ddd]

where:

[ws] = optional whitespace

[sn] = optional sign (+ or -)

[ddd] = optional digits

[fmt] = optional e or E

[.] = optional decimal point

strtod also recognizes +INF and -INF for plus and minus infinity, and +NAN and -NAN
for Not-a-Number.

For example, here are some character strings that strtod can convert to double:

+ 1231.1981 e-1
502.85E2
+ 2010.952

strtod stops reading the string at the first character that cannot be interpreted as an
appropriate part of a double value.

If endptr is not null, strtod sets *endptr to point to the character that stopped the scan
(*endptr = &stopper). endptr is useful for error detection.

Chapter 4, Run-time functions 215

_strtold is the long double version; it converts a string to a long double value.

Return Value

These functions return the value of s as a double (strtod) or a long double (_strtold). In
case of overflow, they return plus or minus HUGE_VAL (strtod) or _LHUGE_VAL
(_strtold).

See also

atof

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

strtod + + + + +

_strtold + + +

strtok, _fstrtok string.h

Syntax

char *strtok(char *s1, const char *s2);

char far * far _fstrtok(char far *s1, const char far *s2)

Description

Searches one string for tokens, which are separated by delimiters defined in a second
string.

strtok considers the string s1 to consist of a sequence of zero or more text tokens,
separated by spans of one or more characters from the separator string s2.

The first call to strtok returns a pointer to the first character of the first token in s1 and
writes a null character into s1 immediately following the returned token. Subsequent
calls with null for the first argument will work through the string s1 in this way, until no
tokens remain.

The separator string, s2, can be different from call to call.

Calls to strtok cannot be nested with a function call that also uses strtok. Doing so will
causes an endless loop.

Return Value

strtok returns a pointer to the token found in s1. A NULL pointer is returned when there
are no more tokens.

Reentrant

No

☞☞☞☞

Paradigm C++ Language Reference216

Portability

Real Extended Win32 ANSI C ANSI C++

strtok + + + + +

_fstrtok + +

strtol stdlib.h

Syntax
long strtol(const char *s, char **endptr, int radix);

Description

Converts a string to a long value.

strtol converts a character string, s, to a long integer value. s is a sequence of characters
that can be interpreted as a long value; the characters must match this generic format:

[ws] [sn] [0] [x] [ddd]

where:

[ws] = optional whitespace

[sn] = optional sign (+ or -)

[0] = optional zero (0)

[x] = optional x or X

[ddd] = optional digits

strtol stops reading the string at the first character it doesn't recognize.

If radix is between 2 and 36, the long integer is expressed in base radix. If radix is 0,
the first few characters of s determine the base of the value being converted.

First character Second character String interpreted as...

0 1 - 7 Octal

0 x or X Hexadecimal

1 - 9 Decimal

If radix is 1, it is considered to be an invalid value. If radix is less than 0 or greater than
36, it is considered to be an invalid value.

Any invalid value for radix causes the result to be 0 and sets the next character pointer
*endptr to the starting string pointer.

If the value in s is meant to be interpreted as octal, any character other than 0 to 7 will
be unrecognized.

If the value in s is meant to be interpreted as decimal, any character other than 0 to 9
will be unrecognized.

If the value in s is meant to be interpreted as a number in any other base, then only the
numerals and letters used to represent numbers in that base will be recognized. (For
example, if radix equals 5, only 0 to 4 will be recognized; if radix equals 20, only 0 to 9
and A to J will be recognized.)

Chapter 4, Run-time functions 217

If endptr is not null, strtol sets *endptr to point to the character that stopped the scan
(*endptr = &stopper).

Return Value

strtol returns the value of the converted string, or 0 on error.

See also

atoi, atol, strtoul

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

strtoul stdlib.h

Syntax
unsigned long strtoul(const char *s, char **endptr, int radix);

Description

Converts a string to an unsigned long in the given radix.

strtoul operates the same as strtol, except that it converts a string str to an unsigned
long value (where strtol converts to a long). Refer to the entry for strtol for more
information.

Return Value

strtoul returns the converted value, an unsigned long, or 0 on error.

See also

atol, strtol

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

strupr, _fstrupr string.h

Syntax
char *strupr(char *s);

Paradigm C++ Language Reference218

char far * far _fstrupr(char far *s)

Description

Converts lowercase letters in a string to uppercase.

strupr converts lowercase letters in string s to uppercase according to the current
locale's LC_CTYPE category. For the default C locale, the conversion is from
lowercase letters (a to z) to uppercase letters (A to Z). No other characters are changed.

Return Value

strupr returns s.

See also

strlwr

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

strupr + + +

_fstrupr + +

strxfrm string.h

Syntax
size_t strxfrm(char *target, const char *source, size_t n);

Description

Transforms a portion of a string to a specified collation.

strxfrm transforms the string pointed to by source into the string target for no more than
n characters. The transformation is such that if the strcmp function is applied to the
resulting strings, its return corresponds with the return values of the strcoll function.

No more than n characters, including the terminating null character, are copied to
target.

strxfrm transforms a character string into a special string according to the current
locale's LC_COLLATE category. The special string that is built can be compared with
another of the same type, byte for byte, to achieve a locale-correct collation result.
These special strings, which can be thought of as keys or tokenized strings, are not
compatible across the different locales.

The tokens in the tokenized strings are built from the collation weights used by strcoll
from the active locale's collation tables.

Processing stops only after all levels have been processed for the character string or the
length of the tokenized string is equal to the maxlen parameter.

All redundant tokens are removed from each level's set of tokens.

Chapter 4, Run-time functions 219

The tokenized string buffer must be large enough to contain the resulting tokenized
string. The length of this buffer depends on the size of the character string, the number
of collation levels, the rules for each level and whether there are any special characters
in the character string. Certain special characters can cause extra character processing of
the string resulting in more space requirements. For example, the French character "oe"
will take double the space for itself because in some locales, it expands to collation
weights for each level. Substrings that have substitutions will also cause extra space
requirements.

There is no safe formula to determine the required string buffer size, but at least (levels
* string length) are required.

Return Value

Number of characters copied not including the terminating null character. If the value
returned is greater than or equal to n, the content of target is indeterminate.

See also

strcmp, strcoll, strncpy

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

swab stdlib.h

Syntax
void swab(char *from, char *to, int nbytes);

Description

Swaps bytes.

swab copies nbytes bytes from the from string to the to string. Adjacent even- and odd-
byte positions are swapped. This is useful for moving data from one machine to another
machine with a different byte order. nbytes should be even.

Return Value

None

Reentrant

Yes

Paradigm C++ Language Reference220

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

Chapter 4, Run-time functions 221

tan, tanl math.h

Syntax
double tan(double x);

long double tanl(long double x);

Description

Calculates the tangent.

tan calculates the tangent. Angles are specified in radians.

tanl is the long double version; it takes a long double argument and returns a long
double result. Error handling for these routines can be modified through the functions
_matherr and _matherrl.

This function can be used with bcd and complex types.

Return Value

tan and tanl return the tangent of x, sinh(x)/cosh(x).

See also

acos, asin, atan, atan2, bcd, complex, cos, sin

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

tan + + + + +

tanl + + +

tanh, tanhl math.h

Syntax
double tanh(double x);

long double tanhl(long double x);

Description

Calculates the hyperbolic tangent.

tanh computes the hyperbolic tangent, sinh(x)/cosh(x).

tanhl is the long double version; it takes a long double argument and returns a long
double result. Error handling for these functions can be modified through the functions
_matherr and _matherrl.

This function can be used with bcd and complex types.

Return Value

tanh and tanhl return the hyperbolic tangent of x.

Paradigm C++ Language Reference222

See also

bcd, complex, cos, cosh, sin, sinh, tan

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

tan + + + + +

tanhl + + +

time time.h

Syntax
time_t time(time_t *timer);

Description

Gets time of day.

time gives the current time, in seconds, elapsed since 00:00:00 GMT, January 1, 1970,
and stores that value in the location pointed to by timer, provided that timer is not a
NULL pointer.

Return Value

time returns the elapsed time in seconds.

See also

asctime, ctime, difftime, gmtime, localtime, stime

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

toascii ctype.h

Syntax
int toascii(int c);

Description

Translates characters to ASCII format.

toascii is a macro that converts the integer c to ASCII by clearing all but the lower 7
bits; this gives a value in the range 0 to 127.

Chapter 4, Run-time functions 223

Return Value

toascii returns the converted value of c.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

_tolower ctype.h

Syntax
int _tolower(int ch);

Description

_tolower is a macro that does the same conversion as tolower, except that it should be
used only when ch is known to be uppercase (A to Z).

To use _tolower, you must include ctype.h.

Return Value

_tolower returns the converted value of ch if it is uppercase; otherwise, the result is
undefined.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

tolower ctype.h

Syntax
int tolower(int ch);

Description

Translates characters to lowercase.

tolower is a function that converts an integer ch (in the range EOF to 255) to its
lowercase value (a to z; if it was uppercase, A to Z). All others are left unchanged.

Return Value

tolower returns the converted value of ch if it is uppercase; it returns all others
unchanged.

Paradigm C++ Language Reference224

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

_toupper ctype.h

Syntax
int _toupper(int ch);

Description

Translates characters to uppercase.

_toupper is a macro that does the same conversion as toupper, except that it should be
used only when ch is known to be lowercase (a to z).

To use _toupper, you must include ctype.h.

Return Value

_toupper returns the converted value of ch if it is lowercase; otherwise, the result is
undefined.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

toupper ctype.h

Syntax
int toupper(int ch);

Description

Translates characters to uppercase.

toupper is a function that converts an integer ch (in the range EOF to 255) to its
uppercase value (A to Z; if it was lowercase, a to z). All others are left unchanged.

Return Value

toupper returns the converted value of ch if it is lowercase; it returns all others
unchanged.

Chapter 4, Run-time functions 225

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

ultoa stdlib.h

Syntax
char *ultoa(unsigned long value, char *string, int radix);

Description

Converts an unsigned long to a string.

ultoa converts value to a null-terminated string and stores the result in string. value is an
unsigned long.

radix specifies the base to be used in converting value; it must be between 2 and 36,
inclusive. ultoa performs no overflow checking, and if value is negative and radix
equals 10, it does not set the minus sign.

The space allocated for string must be large enough to hold the returned string,
including the terminating null character (\0). ultoa can return up to 33 bytes.

Return Value

ultoa returns string.

See also

itoa, ltoa

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

ungetc stdio.h

Syntax
int ungetc(int c, FILE *stream);

Description

Pushes a character back into input stream.

Do not use this function for Win32s applications.

☞☞☞☞

☞☞☞☞

Paradigm C++ Language Reference226

ungetc pushes the character c back onto the named input stream, which must be open
for reading. This character will be returned on the next call to getc or fread for that
stream. One character can be pushed back in all situations. A second call to ungetc
without a call to getc will force the previous character to be forgotten. A call to fflush,
fseek, fsetpos, or rewind erases all memory of any pushed-back characters.

Return Value

On success, ungetc returns the character pushed back.

On error, it returns EOF.

See also

fgetc, getc, getchar

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

va_arg, va_end, va_start stdarg.h

Syntax

void va_start(va_list ap, lastfix);

type va_arg(va_list ap, type);

void va_end(va_list ap);

Description

Implement a variable argument list.

Some C functions, such as vfprintf and vprintf, take variable argument lists in addition
to taking a number of fixed (known) parameters. The va_arg, va_end, and va_start
macros provide a portable way to access these argument lists. They are used for
stepping through a list of arguments when the called function does not know the number
and types of the arguments being passed.

The header file stdarg.h declares one type (va_list) and three macros (va_start, va_arg,
and va_end).

� va_list: This array holds information needed by va_arg and va_end. When a called
function takes a variable argument list, it declares a variable ap of type va_list.

� va_start: This routine (implemented as a macro) sets ap to point to the first of the
variable arguments being passed to the function. va_start must be used before the
first call to va_arg or va_end.

� va_start takes two parameters: ap and lastfix. (ap is explained under va_list in the
preceding paragraph; lastfix is the name of the last fixed parameter being passed to
the called function.)

� va_arg: This routine (also implemented as a macro) expands to an expression that
has the same type and value as the next argument being passed (one of the variable

Chapter 4, Run-time functions 227

arguments). The variable ap to va_arg should be the same ap that va_start
initialized.

Because of default promotions, you cannot use char, unsigned char, or float types with
va_arg.

The first time va_arg is used, it returns the first argument in the list. Each successive
time va_arg is used, it returns the next argument in the list. It does this by first
dereferencing ap, and then incrementing ap to point to the following item. va_arg uses
the type to both perform the dereference and to locate the following item. Each
successive time va_arg is invoked, it modifies ap to point to the next argument in the
list.

� va_end: This macro helps the called function perform a normal return. va_end might
modify ap in such a way that it cannot be used unless va_start is recalled. va_end
should be called after va_arg has read all the arguments; failure to do so might
cause strange, undefined behavior in your program.

Return Value

va_start and va_end return no values; va_arg returns the current argument in the list
(the one that ap is pointing to).

See also

vprintf, vscanf

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

vprintf stdio.h

Syntax
int vprintf(const char *format, va_list arglist);

Description

Writes formatted output to stdout.

Do not use this function for Win32s applications.

The v...printf functions are known as alternate entry points for the ...printf functions.
They behave exactly like their ...printf counterparts, but they accept a pointer to a list of
arguments instead of an argument list.

For details on format specifiers, see “Printf format specifiers,” page 162 of Chapter 4.

vprintf accepts a pointer to a series of arguments, applies to each a format specifier
contained in the format string pointed to by format, and outputs the formatted data to
stdout. There must be the same number of format specifiers as arguments.

☞☞☞☞

☞☞☞☞

Paradigm C++ Language Reference228

When you use the SS!=DS flag in 16-bit applications, vprintf assumes that the address
being passed is in the SS segment.

Return Value

vprint returns the number of bytes output. In the event of error, vprint returns EOF.

See also

freopen, printf, va_arg, va_end, va_start

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

vscanf stdio.h

Syntax
int vscanf(const char *format, va_list arglist);

Description

Scans and formats input from stdin.

Do not use this function for Win32s applications.

The v...scanf functions are known as alternate entry points for the ...scanf functions.
They behave exactly like their ...scanf counterparts, but they accept a pointer to a list of
arguments instead of an argument list.

For details on format specifiers, see “Scanf format specifiers,” page 176 of Chapter 4.

vscanf scans a series of input fields, one character at a time, reading from stdin. Then
each field is formatted according to a format specifier passed to vscanf in the format
string pointed to by format. Finally, vscanf stores the formatted input at an address
passed to it as an argument following format. There must be the same number of format
specifiers and addresses as there are input fields.

vscanf might stop scanning a particular field before it reaches the normal end-of-field
(whitespace) character, or it might terminate entirely, for a number of reasons. See scanf
for a discussion of possible causes.

Return Value

vscanf returns the number of input fields successfully scanned, converted, and stored;
the return value does not include scanned fields that were not stored. If no fields were
stored, the return value is 0.

If vscanf attempts to read at end-of-file, the return value is EOF.

☞☞☞☞

☞☞☞☞

Chapter 4, Run-time functions 229

See also

freopen, scanf, va_arg, va_end, va_start

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

vsprintf stdio.h

Syntax
int vsprintf(char *buffer, const char *format, va_list arglist);

Description

Writes formatted output to a string.

The v...printf functions are known as alternate entry points for the ...printf functions.
They behave exactly like their ...printf counterparts, but they accept a pointer to a list of
arguments instead of an argument list.

For details on format specifiers, see “Printf format specifiers,” page 162 of Chapter 4.

vsprintf accepts a pointer to a series of arguments, applies to each a format specifier
contained in the format string pointed to by format, and outputs the formatted data to a
string. There must be the same number of format specifiers as arguments.

Return Value

vsprintf returns the number of bytes output. In the event of error, vsprintf returns EOF.

See also

printf, va_arg, va_end, va_start

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

vsscanf stdio.h

Syntax
int vsscanf(const char *buffer, const char *format, va_list arglist);

Paradigm C++ Language Reference230

Description

Scans and formats input from a stream.

The v...scanf functions are known as alternate entry points for the ...scanf functions.
They behave exactly like their ...scanf counterparts, but they accept a pointer to a list of
arguments instead of an argument list.

For details on format specifiers, see “Scanf format specifiers,” page 176 of Chapter 4.

vsscanf scans a series of input fields, one character at a time, reading from a stream.
Then each field is formatted according to a format specifier passed to vsscanf in the
format string pointed to by format. Finally, vsscanf stores the formatted input at an
address passed to it as an argument following format. There must be the same number
of format specifiers and addresses as there are input fields.

vsscanf might stop scanning a particular field before it reaches the normal end-of-field
(whitespace) character, or it might terminate entirely, for a number of reasons. See
“scanf,” page 175 of Chapter 4, for a discussion of possible causes.

Return Value

vsscanf returns the number of input fields successfully scanned, converted, and stored;
the return value does not include scanned fields that were not stored. If no fields were
stored, the return value is 0.

If vsscanf attempts to read at end-of-string, the return value is EOF.

See also

scanf, sscanf, va_arg, va_end, va_start

Reentrant

No

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

wcstombs stdlib.h

Syntax
size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);

Description

Converts a wchar_t array into a multibyte string.

wcstombs converts the type wchar_t elements contained in pwcs into a multibyte
character string s. The process terminates if either a null character or an invalid
multibyte character is encountered.

No more than n bytes are modified. If n number of bytes are processed before a null
character is reached, the array s is not null terminated.

The behavior of wcstombs is affected by the setting of LC_CTYPE category of the
current locale.

Chapter 4, Run-time functions 231

Return Value

If an invalid multibyte character is encountered, wcstombs returns (size_t) -1.
Otherwise, the function returns the number of bytes modified, not including the
terminating code, if any.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

wctomb stdlib.h

Syntax
int wctomb(char *s, wchar_t wc);

Description

Converts wchar_t code to a multibyte character.

If s is not null, wctomb determines the number of bytes needed to represent the
multibyte character corresponding to wc (including any change in shift state). The
multibyte character is stored in s. At most MB_CUR_MAX characters are stored. If the
value of wc is zero, wctomb is left in the initial state.

The behavior of wctomb is affected by the setting of LC_CTYPE category of the current
locale.

Return Value

If s is a NULL pointer, wctomb returns a nonzero value if multibyte character encodings
do have state-dependent encodings, and a zero value if they do not.

If s is not a NULL pointer, wctomb returns -1 if the wc value does not represent a valid
multibyte character. Otherwise, wctomb returns the number of bytes that are contained
in the multibyte character corresponding to wc. In no case will the return value be
greater than the value of MB_CUR_MAX macro.

Reentrant

Yes

Portability

Real Extended Win32 ANSI C ANSI C++

+ + + + +

Paradigm C++ Language Reference232

Chapter 5, Global variables 233

C h a p t e r

5

Global variables

Paradigm C++ provides you with predefined global variables for many common, such
as dates, times, command-line arguments, and so on. These variables are presented in
this chapter in alphabetical (ASCII) order.

_8087 dos.h, embedded.h
extern int _8087;

The _8087 variable is set to a nonzero value if the startup code autodetection logic
detects a floating-point coprocessor.

_8087 value Math coprocessor

1 8087

2 80287

3 80387

0 (none detected)

The autodetection logic can be overridden by setting the 87 environment variable to
YES or NO. (The commands are SET 87=YES and SET 87=NO; it is essential that
there be no spaces before or after the equal sign.) In this case, the _8087 variable will
reflect the override.

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

_ctype ctype.h
extern char _ctype[];

_ctype is an array of character attribute information indexed by ASCII value + 1. Each
entry is a set of bits describing the character. This array is used by isdigit, isprint, and so
on.

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

errno errno.h
extern int errno;

Paradigm C++ Language Reference234

errno is used by perror to print error messages when certain library routines fail to
accomplish their appointed tasks.

When an error in a math or system call occurs, errno is set to indicate the type of error.
Sometimes errno and _doserrno are equivalent. At other times, errno does not contain
the actual operating system error code, which is contained in _doserrno. Still other
errors might occur that set only errno, not _doserrno.

Example
/* DISPLAY THE SYSTEM ERRORS. */
#include <errno.h>
#include <stdio.h>

extern char *_sys_errlist[];

main()
{

int i = 0;

while(_sys_errlist[i++]) printf("%s\n", _sys_errlist[i]);
return 0;

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

_doserrno errno.h
extern int _doserrno;

_doserrno is a variable that maps many operating system error codes to errno; however,
perror does not use _doserrno directly.

When an operating system call results in an error, _doserrno is set to the actual
operating system error code. errno is a parallel error variable inherited from UNIX.

The following list gives mnemonics for the actual DOS error codes to which _doserrno
can be set. (This value of _doserrno may or may not be mapped (through errno) to an
equivalent error message string in _sys_errlist).

Mnemonic DOS error code

E2BIG Bad environ

EACCES Access denied

EACCES Bad access

EACCES Is current dir

EBADF Bad handle

EFAULT Reserved

EINVAL Bad data

EINVAL Bad function

EMFILE Too many open

ENOENT No such file or directory

ENOEXEC Bad format

Chapter 5, Global variables 235

ENOMEM Mcb destroyed

ENOMEM Out of memory

ENOMEM Bad block

EXDEV Bad drive

EXDEV Not same device

Refer to your DOS reference manual for more information about DOS error return
codes.

Example
/* DISPLAY THE SYSTEM ERRORS. */
#include <errno.h>
#include <stdio.h>

extern char *_sys_errlist[];

main()
{

int i = 0;

while(_sys_errlist[i++]) printf("%s\n", _sys_errlist[i]);
return 0;

}

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

_sys_errlist errno.h
extern char * _sys_errlist[];

_sys_errlist is used by perror to print error messages when certain library routines fail to
accomplish their appointed tasks.

To provide more control over message formatting, the array of message strings is
provided in _sys_errlist. You can use errno as an index into the array to find the string
corresponding to the error number. The string does not include any newline character.

The following table gives mnemonics and their meanings for the values stored in
_sys_errlist. The list is alphabetically ordered for your reading convenience. For the
numerical ordering, see the header file errno.h.

Mnemonic 16-bit Description 32-bit Description

E2BIG Arg list too long Arg list too long

EACCES Permission denied Permission denied

EBADF Bad file number Bad file number

ECHILD No child process

ECONTR Memory blocks destroyed Memory blocks destroyed

ECURDIR Attempt to remove CurDir Attempt to remove CurDir

EDOM Domain error Math argument

EEXIST File already exists File already exists

Table 5-1
Mnemonic
meanings

Paradigm C++ Language Reference236

EFAULT Unknown error Unknown error

EINTR Interrupted function call

EINVACC Invalid access code Invalid access code

EINVAL Invalid argument Invalid argument

EINVDAT Invalid data Invalid data

EINVDRV Invalid drive specified Invalid drive specified

EINVENV Invalid environment Invalid environment

EINVFMT Invalid format Invalid format

EINVFNC Invalid function number Invalid function number

EINVMEM Invalid memory block address Invalid memory block address

EIO Input/output error

EMFILE Too many open files Too many open files

ENAMETOOLONG File name too long

ENFILE Too many open files

ENMFILE No more files No more files

ENODEV No such device No such device

ENOENT No such file or directory No such file or directory

ENOEXEC Exec format error Exec format error

ENOFILE No such file or directory File not found

ENOMEM Not enough memory Not enough core

ENOPATH Path not found Path not found

ENOSPC No space left on device

ENOTSAM Not same device Not same device

ENXIO No such device or address

EPERM Operation not permitted

EPIPE Broken pipe

ERANGE Result out of range Result too large

EROFS Read-only file system

ESPIPE Illegal seek

EXDEV Cross-device link Cross-device link

EZERO Error 0 Error 0

Refer to your DOS reference manual for more information about DOS error return
codes.

Example
/* DISPLAY THE SYSTEM ERRORS. */
#include <errno.h>
#include <stdio.h>

extern char *_sys_errlist[];

main()
{

int i = 0;

while(_sys_errlist[i++]) printf("%s\n", _sys_errlist[i]);
return 0;

}

Chapter 5, Global variables 237

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

_sys_nerr errno.h
extern int _sys_nerr;

_sys_nerr is used by perror to print error messages when certain library routines fail to
accomplish their appointed tasks.

This variable is defined as the number of error message strings in _sys_errlist.

Example
/* DISPLAY THE SYSTEM ERRORS. */
#include <errno.h>
#include <stdio.h>

extern char *_sys_errlist[];

main()
{

int i = 0;

while(_sys_errlist[i++]) printf("%s\n", _sys_errlist[i]);
return 0;

}

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

_floatconvert stdio.h
extern int _floatconvert;

Floating-point output requires linking of conversion routines used by printf, scanf, and
any variants of these functions. In order to reduce executable size, the floating-point
formats are not automatically linked. However, this linkage is done automatically
whenever your program uses a mathematical routine or the address is taken of some
floating-point number. If neither of these actions occur, the missing floating-point
formats can result in a run-time error.

/* PREPARE TO OUTPUT FLOATING-POINT NUMBERS. */
#include <stdio.h>
#pragma extref _floatconvert

void main() {
printf("d = %lf\n", 1);

}

Real Extended Win32 ANSI C ANSI C++

+ + +

Paradigm C++ Language Reference238

_fmode fcntl.h
extern int _fmode;

_fmode determines in which mode (text or binary) files will be opened and translated.
The value of _fmode is O_TEXT by default, which specifies that files will be read in
text mode. If _fmode is set to O_BINARY, the files are opened and read in binary
mode. (O_TEXT and O_BINARY are defined in fcntl.h.)

In text mode, carriage-return/linefeed (CR/LF) combinations are translated to a single
linefeed character (LF) on input. On output, the reverse is true: LF characters are
translated to CR/LF combinations.

In binary mode, no such translation occurs.

You can override the default mode as set by _fmode by specifying a t (for text mode) or
b (for binary mode) in the argument type in the library functions fopen, fdopen, and
freopen. Also, in the function open, the argument access can include either O_BINARY
or O_TEXT, which will explicitly define the file being opened (given by the open
pathname argument) to be in either binary or text mode.

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

_new_handler new.h
typedef void (*pvf)();

pvf _new_handler;

_new_handler contains a pointer to a function that takes no arguments and returns void.
If operator new() is unable to allocate the space required, it will call the function
pointed to by _new_handler; if that function returns it will try the allocation again. By
default, the function pointed to by _new_handler simply terminates the application. The
application can replace this handler, however, with a function that can try to free up
some space. This is done by assigning directly to _new_handler or by calling the
function set_new_handler, which returns a pointer to the former handler.

As an alternative, you can set using the function set_new_handler, like this:

pvf set_new_handler(pvf p);

In most cases this functionality can be better provided by overloading operator new().

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

_psp dos.h, embedded.h. process.h, stdlib.h
extern unsigned int _psp;

_psp specifies the address of the program segment prefix (PSP) of a program. The PSP
is a DOS process descriptor; it contains initial DOS information about the program.

Chapter 5, Global variables 239

_psp cannot be used in DLLs.

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

_ _throwExceptionName except.h
extern char * _ _throwExceptionName;

Use this global variable to get the name of a thrown exception. The output for this
variable is a printable character string.

See also

_ _throwFileName, _ _throwLineNumber

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

_ _throwFileName except.h
extern char * _ _throwFileName;

Use this global variable to get the name of a thrown exception. The output for this
variable is a printable character string.

To get the file name for a thrown exception with __throwFileName, you must compile
the module with the -xp compiler option.

See also

_ _throwExceptionName, _ _throwLineNumber

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

_ _throwLineNumber except.h
extern char * _ _throwLineNumber;

Use this global variable to get the name of a thrown exception. The output for this
variable is a printable character string.

To get the line number for a thrown exception with __throwLineNumber, you must
compile the module with the -xp compiler option.

See also

_ _throwExceptionName, _ _throwFileName

☞☞☞☞

Paradigm C++ Language Reference240

Portability

Real Extended Win32 ANSI C ANSI C++

+ + +

Chapter 6, Preprocessor directives 241

C h a p t e r

6

Preprocessor directives

Preprocessor directives are usually placed at the beginning of your source code, but they
can legally appear at any point in a program. The Paradigm C++ preprocessor detects
preprocessor directives (also known as control lines) and parses the tokens embedded in
them. Paradigm C++ supports these preprocessor directives:

(null directive) ifdef

define ifndef

elif include

else line

endif pragma

error undef

if

Any line with a leading # is taken as a preprocessing directive, unless the # is within a
string literal, in a character constant, or embedded in a comment. The initial # can be
preceded or followed by whitespace (excluding new lines).

(Null directive)
#

The null directive consists of a line containing the single character #. This line is always
ignored.

#define
#define macro_identifier <token_sequence>

The #define directive defines a macro. Macros provide a mechanism for token
replacement with or without a set of formal, function-like parameters.

Each occurrence of macro_identifier in your source code following this control line will
be replaced in the original position with the possibly empty token_sequence (there are
some exceptions, which are noted later). Such replacements are known as macro
expansions. The token sequence is sometimes called the body of the macro.

An empty token sequence results in the removal of each affected macro identifier from
the source code.

After each individual macro expansion, a further scan is made of the newly expanded
text. This allows for the possibility of nested macros: The expanded text can contain
macro identifiers that are subject to replacement. However, if the macro expands into
what looks like a preprocessing directive, such a directive will not be recognized by the
preprocessor. The following restrictions apply to macro expansion:

� Any occurrences of the macro identifier found within literal strings, character
constants, or comments in the source code are not expanded.

Paradigm C++ Language Reference242

� A macro won't be expanded during its own expansion (so #define A A won't expand
indefinitely).

Example
#define HI "Have a nice day!"
#define empty
#define NIL ""
#define GETSTD #include <stdio.h>

See also

“Keywords and protected words as macros,” page 6-243,“Macros with parameters,”
page 6-243, “#undef,” page 6-242, “Using the -D and-U command-line options,” page
6-243

#undef
#undef macro_identifier

You can undefine a macro using the #undef directive. #undef detaches any previous
token sequence from the macro identifier; the macro definition has been forgotten, and
the macro identifier is undefined. No macro expansion occurs within #undef lines.

The state of being defined or undefined turns out to be an important property of an
identifier, regardless of the actual definition. The #ifdef and #ifndef conditional
directives, used to test whether any identifier is currently defined or not, offer a flexible
mechanism for controlling many aspects of a compilation.

After a macro identifier has been undefined, it can be redefined with #define, using the
same or a different token sequence.

Attempting to redefine an already defined macro identifier will result in a warning
unless the new definition is exactly the same token-by-token definition as the existing
one. The preferred strategy where definitions might exist in other header files is as
follows:

#ifndef BLOCK_SIZE
#define BLOCK_SIZE 512

#endif

The middle line is bypassed if BLOCK_SIZE is currently defined; if BLOCK_SIZE is
not currently defined, the middle line is invoked to define it.

No semicolon (;) is needed to terminate a preprocessor directive. Any character found in
the token sequence, including semicolons, will appear in the macro expansion. The
token sequence terminates at the first non-backslashed new line encountered. Any
sequence of whitespace, including comments in the token sequence, is replaced with a
single-space character.

Example
#define BLOCK_SIZE 512
…
#undef BLOCK_SIZE
/* use of BLOCK_SIZE now would be illegal "unknown" identifier */
…
#define BLOCK_SIZE 128 /* redefinition */

Chapter 6, Preprocessor directives 243

Using the -D and -U command-line options

Identifiers can be defined and undefined using the command-line compiler options -D
and -U.

The command line

PCC -Ddebug=1; paradox=0; X -Umysym myprog.c

is equivalent to placing

#define debug 1
#define paradox 0
#define X
#undef mysym

in the program

See also

#define, #undef

Keywords and protected words as macros

It is legal but ill-advised to use Paradigm C++ keywords as macro identifiers:

#define int long /* legal but probably catastrophic */
#define INT long /* legal and possibly useful */

The following predefined global identifiers cannot appear immediately following a
#define or #undef directive:

_ _DATE_ _ _ _FILE_ _ _ _LINE_ _

_ _STDC_ _ _ _TIME_ _

Macros with Parameters

The following syntax is used to define a macro with parameters:
#define macro_identifier(<arg_list>) token_sequence

Any comma within parentheses in an argument list is treated as part of the argument,
not as an argument delimiter.

There can be no whitespace between the macro identifier and the (. The optional
arg_list is a sequence of identifiers separated by commas, not unlike the argument list
of a C function. Each comma-delimited identifier plays the role of a formal argument or
placeholder.

Such macros are called by writing

macro_identifier<whitespace>(<actual_arg_list>)

in the subsequent source code. The syntax is identical to that of a function call; indeed,
many standard library C "functions" are implemented as macros. However, there are
some important semantic differences, side effects, and potential pitfalls.

The optional actual_arg_list must contain the same number of comma-delimited token
sequences, known as actual arguments, as found in the formal arg_list of the #define
line: There must be an actual argument for each formal argument. An error will be
reported if the number of arguments in the two lists is different.

A macro call results in two sets of replacements. First, the macro identifier and the
parenthesis-enclosed arguments are replaced by the token sequence. Next, any formal

☞☞☞☞

Paradigm C++ Language Reference244

arguments occurring in the token sequence are replaced by the corresponding real
arguments appearing in the actual_arg_list.

As with simple macro definitions, rescanning occurs to detect any embedded macro
identifiers eligible for expansion.

Nesting parentheses and commas
The actual_arg_list can contain nested parentheses provided that they are balanced;
also, commas appearing within quotes or parentheses are not treated like argument
delimiters.

Token pasting with ##
You can paste (or merge) two tokens together by separating them with ## (plus optional
whitespace on either side). The preprocessor removes the whitespace and the ##,
combining the separate tokens into one new token. You can use this to construct
identifiers.

Converting to strings with #
The # symbol can be placed in front of a formal macro argument in order to convert the
actual argument to a string after replacement.

Using the backslash (\) for line continuation
A long token sequence can straddle a line by using a backslash (\). The backslash and
the following newline are both stripped to provide the actual token sequence used in
expansions.

Side effects and other dangers
The similarities between function and macro calls often obscure their differences. A
macro call has no built-in type checking, so a mismatch between formal and actual
argument data types can produce bizarre, hard-to-debug results with no immediate
warning. Macro calls can also give rise to unwanted side effects, especially when an
actual argument is evaluated more than once.

#error
#error errmsg

The #error directive generates the message:

Error: filename line# : Error directive: errmsg

This directive is usually embedded in a preprocessor conditional statement that catches
some undesired compile-time condition. In the normal case, that condition will be false.
If the condition is true, you want the compiler to print an error message and stop the
compile. You do this by putting an #error directive within a conditional statement that
is true for the undesired case.

Example
#if (MYVAL != 0 && MYVAL != 1)
#error MYVAL must be defined to either 0 or 1
#endif

Chapter 6, Preprocessor directives 245

#if, #elif, #else, and #endif
#if constant-expression-1

<section-1>

<#elif constant-expression-2 newline section-2>

…
<#elif constant-expression-n newline section-n>

<#else <newline> final-section>

#endif

Paradigm C++ supports conditional compilation by replacing the appropriate source-
code lines with a blank line. The lines thus ignored are those lines that are not to be
compiled as a result of the directives. All conditional compilation directives must be
completed in the source or include file in which they are begun.

The conditional directives #if, #elif, #else, and #endif work like the normal C
conditional operators. If the constant-expression-1 (subject to macro expansion)
evaluates to nonzero (true), the lines of code (possibly empty) represented by section-1,
whether preprocessor command lines or normal source lines, are preprocessed and, as
appropriate, passed to the Paradigm C++ compiler. Otherwise, if constant-expression-1
evaluates to zero (false), section-1 is ignored (no macro expansion and no compilation).

In the true case, after section-1 has been preprocessed, control passes to the matching
#endif (which ends this conditional sequence) and continues with next-section. In the
false case, control passes to the next #elif line (if any) where constant-expression-2 is
evaluated. If true, section-2 is processed, after which control moves on to the matching
#endif. Otherwise, if constant-expression-2 is false, control passes to the next #elif, and
so on, until either #else or #endif is reached. The optional #else is used as an alternative
condition for which all previous tests have proved false. The #endif ends the
conditional sequence.

The processed section can contain further conditional clauses, nested to any depth; each
#if must be matched with a closing #endif.

The net result of the preceding scenario is that only one section (possibly empty) is
passed on for further processing. The bypassed sections are relevant only for keeping
track of any nested conditionals, so that each #if can be matched with its correct #endif.

The constant expressions to be tested must evaluate to a constant integral value.

See also

“defined keyword,” page 6-241, “#ifdef and #ifndef,” page 6-245

#ifdef and #ifndef
#ifdef identifier

#ifndef identifier

The #ifdef and #ifndef conditional directives let you test whether an identifier is
currently defined or not; that is, whether a previous #define command has been
processed for that identifier and is still in force. The line

#ifdef identifier

has exactly the same effect as

#if 1

Paradigm C++ Language Reference246

if identifier is currently defined, and the same effect as

#if 0

if identifier is currently undefined.

#ifndef tests true for the "not-defined" condition, so the line

#ifndef identifier

has exactly the same effect as

#if 0

if identifier is currently defined, and the same effect as

#if 1

if identifier is currently undefined.

The syntax thereafter follows that of the #if, #elif, #else, and #endif.

An identifier defined as NULL is considered to be defined.

See also

defined keyword

#include
#include <header_name>

#include "header_name"

#include macro_identifier

The #include directive pulls in other named files, known as include files, header files,
or headers, into the source code. The syntax has three versions:

� The first and second versions imply that no macro expansion will be attempted; in
other words, header_name is never scanned for macro identifiers. header_name
must be a valid file name with an extension (traditionally .h for header) and optional
path name and path delimiters.

� The third version assumes that neither < nor " appears as the first non-whitespace
character following #include; further, it assumes a macro definition exists that will
expand the macro identifier into a valid delimited header name with either of the
<header_name> or "header_name" formats.

The preprocessor removes the #include line and conceptually replaces it with the entire
text of the header file at that point in the source code. The source code itself is not
changed, but the compiler "sees" the enlarged text. The placement of the #include can
therefore influence the scope and duration of any identifiers in the included file.

If you place an explicit path in the header_name, only that directory will be searched.

The difference between the <header_name> and "header_name" formats lies in the
searching algorithm employed in trying to locate the include file.

Header file search with <header_name>

The <header_name> version specifies a standard include file; the search is made
successively in each of the include directories in the order they are defined. If the file is
not located in any of the default directories, an error message is issued.

Chapter 6, Preprocessor directives 247

Header file search with "header_name"

The "header_name" version specifies a user-supplied include file; the file is sought first
in the current directory (usually the directory holding the source file being compiled). If
the file is not found there, the search continues in the include directories as in the
<header_name> situation.

Example

This #include statement causes it to look for stdio.h in the standard include directory.

#include <stdio.h>

This #include statement causes it to look for MYINCLUD.H in the current directory,
then in the default directories.

#include "myinclud.h"

After expansion, this #include statement causes the preprocessor to look in
C:\PARADIGM\INCLUDE\MYSTUFF.H and nowhere else.

#define myinclud "C:\PARADIGM\INCLUDE\MYSTUFF.H"
/* Note: Single backslashes OK here; within a C statement you would

need "C:\PARADIGM\INCLUDE\\MYSTUFF.H" */
#include myinclud
/* macro expansion */

#line
#line integer_constant <"filename">

You can use the #line directive to supply line numbers to a program for cross-reference
and error reporting. If your program consists of sections derived from some other
program file, it is often useful to mark such sections with the line numbers of the
original source rather than the normal sequential line numbers derived from the
composite program.

The #line directive indicates that the following source line originally came from line
number integer_constant of filename. Once the filename has been registered,
subsequent #line commands relating to that file can omit the explicit filename
argument.

Macros are expanded in #line arguments as they are in the #include directive.

The #line directive is primarily used by utilities that produce C code as output, and not
in human-written code.

Pragma summary
#pragma directive-name

With #pragma, Paradigm C++ can define the directives it wants without interfering
with other compilers that support #pragma. If the compiler doesn't recognize directive-
name, it ignores the #pragma directive without any error or warning message.

Paradigm C++ supports the following #pragma directives:

� #pragma anon_struct
� #pragma argsused
� #pragma check_stack

Paradigm C++ Language Reference248

� #pragma codeseg
� #pragma comment
� #pragma exit
� #pragma hdrfile
� #pragma hdrstop
� #pragma inline
� #pragma intrinsic
� #pragma message
� #pragma option
� #pragma pack
� #pragma saveregs
� #pragma startup
� #pragma warn

#pragma anon_struct

#pragma anon_struct on

#pragma anon_struct off

The anon_struct directive allows you to compile anonymous structures embedded in
classes.

#pragma anon_struct on
struct S {

int i;
struct { // Embedded anonymous struct

int j ;
float x ;

};
class { // Embedded anonymous class
public:

long double ld;
};

S() { i = 1; j = 2; x = 3.3; ld = 12345.5;}
};
#pragma anon_struct off

void main() {
S mystruct;
mystruct.x = 1.2; // Assign to embedded data.
}

#pragma argsused

#pragma argsused

The argsused pragma is allowed only between function definitions, and it affects only
the next function. It disables the warning message:

"Parameter name is never used in function func-name"

#pragma check_stack

#pragma check_stack([{on | off}])

Chapter 6, Preprocessor directives 249

The check_stack pragma instructs the compiler to turn off stack checking if off is
specified, or to turn on stack checking if on is specified. If no argument is given, stack
checking will use the default value set for the file. This pragma takes effect at the first
function defined after the pragma is seen. Stack checking is not a part of macros nor of
functions that are generated inline.

If you don’t give an argument for the check_stack pragma, stack checking reverts to
the behavior specified on the command line.

#pragma codeseg

#pragma codeseg <seg_name> <"seg_class"> <group>

The codeseg directive lets you name the segment, class, or group where functions are
allocated. If the pragma is used without any of its options' arguments, the default code
segment is used for function allocation.

#pragma comment

#pragma comment (comment type, "string")

The comment directive lets you write a comment record into an output file. The
comment type can be one of the following values:

Value Explanation

exestr The linker writes string into an .OBJ file. Your specified string is placed in the executable
file. Such a string is never loaded into memory but can be found in the executable file by use
of a suitable file search utility.

lib Writes a comment record into an .OBJ file. The comment record is used by the linker as a
library-search directory. A library module that is not specified in the linker's response-file can
be specified by the comment LIB directive. The linker includes the library module name
specified in string as the last library. Multiple modules can be named and linked in the order
in which they are named.

user The compiler writes string into the .OBJ file. The specified string is ignored by the linker.

#pragma exit and #pragma startup

#pragma startup function-name <priority>

#pragma exit function-name <priority>

These two pragmas allow the program to specify function(s) that should be called either
upon program startup (before the main function is called), or program exit (just before
the program terminates through _exit).

The specified function-name must be a previously declared function taking no
arguments and returning void; in other words, it should be declared as:

void func(void);

The optional priority parameter should be an integer in the range 64 to 255. The highest
priority is 0. Functions with higher priorities are called first at startup and last at exit. If
you don't specify a priority, it defaults to 100.

Priorities from 0 to 63 are used by the C libraries, and should not be used by the user.

#pragma hdrfile

#pragma hdrfile "filename.CSM"

Table 6-1
#pragma

comment types

☞☞☞☞

Paradigm C++ Language Reference250

This directive sets the name of the file in which to store precompiled headers.

If you aren't using precompiled headers, this directive has no effect. You can use the
command-line compiler option -H=filename or Use Precompiled Headers to change the
name of the file used to store precompiled headers.

#pragma hdrstop

#pragma hdrstop

This directive terminates the list of header files eligible for precompilation. You can use
it to reduce the amount of disk space used by precompiled headers.

#pragma inline

#pragma inline

This directive is equivalent to the -B command-line compiler option.

This is best placed at the top of the file, because the compiler restarts itself with the -B
option when it encounters #pragma inline.

#pragma intrinsic

#pragma intrinsic [-]function-name

Use #pragma intrinsic to override command-line switches to control the inlining of
functions.

When inlining an intrinsic function, always include a prototype for that function before
using it.

Example

This example causes the compiler to generate code for strcpy in your function:

#pragma intrinsic strcpy

while this version prevents the compiler from inlining strcpy:
#pragma intrinsic -strcpy

#pragma message

#pragma message ("text" ["text"["text" ...]])

#pragma message text

Use #pragma message to specify a user-defined message within your program code.

The first form requires that the text consist of one or more string constants, and the
message must be enclosed in parentheses. (This form is compatible with MSC.) The
second form uses the text following the #pragma for the text of the warning message.
With both forms of the #pragma, any macro references are expanded before the
message is displayed.

Display of user-defined messages is on by default and can be turned on or off with the
User-Defined Warnings (Options|Project|Messages|General). This option corresponds to
the 16 bit/32-bit compiler's -wmsg switch.

See also

#pragma warn

Chapter 6, Preprocessor directives 251

Example

The following example displays either "You are compiling using version xxx of PC++"
(where xxx is the version number) or "Sorry, you are not using the Paradigm C++
compiler".

#ifdef __PARADIGMC__
#pragma message You are compiling using version __PARADIGMC__ of

PC++.
#else
#pragma message ("Sorry, you are not using the Paradigm C++

compiler")
#endif

#pragma option

#pragma option [options...]

Use #pragma option to include command-line options within your program code.

options can be any command-line option (except those listed in the following
paragraph). Any number of options can appear in one directive. Any of the toggle
options (such as -a or -K) can be turned on and off as on the command line. For these
toggle options, you can also put a period following the option to return the option to its
command-line, configuration file, or option-menu setting. This allows you to
temporarily change an option, then return it to its default, without having to remember
(or even needing to know) what the exact default setting was.

Options that cannot appear in a pragma option include:

-B -c -dname

-Dname=string -efilename -E

-Fx -h -lfilename

-lexset -M -o

-P -Q -S

-T -Uname -V

-X -Y

You can use #pragmas, #includes, #define, and some #ifs in the following cases:

� Before the use of any macro name that begins with two underscores (and is
therefore a possible built-in macro) in an #if, #ifdef, #ifndef or #elif directive.

� Before the occurrence of the first real token (the first C or C++ declaration).

Certain command-line options can appear only in a #pragma option command before
these events. These options are:

-Efilename -f -i

-m* -npath -ofilename

-u -W -z

*

Other options can be changed anywhere. The following options will only affect the
compiler if they get changed between functions or object declarations:

-1 -h -r

Paradigm C++ Language Reference252

-2 -k -rd

-a -N -v

-ff -O -y

-G -p -Z

The following options can be changed at any time and take effect immediately:

-A -gn -zE

-b -jn -zF

-C -K -zH

-d -wxxx

The options can appear followed by a dot (.) to reset the option to its command-line
state.

#pragma pack

#pragma pack([n])

The pack pragma specifies packing alignment for structure and union members.
Whereas the packing alignment of structures and unions is set for an entire translation
unit by the -a option, the packing alignment is set at the data-declaration level by the
pack pragma. The pragma takes effect at the first structure or union declaration after the
pragma is seen; the pragma has no effect on definitions.

When you use #pragma pack(n), where n is 1, 2, 4, 8, or 16, each structure member
after the first is stored on the smaller member type or n-byte boundaries. If you use
#pragma pack without an argument, structure members are packed to the value
specified by the command line.

The compiler also supports the following enhanced syntax:

#pragma pack([{ push | pop},] [n])

This syntax allows you to combine program components into a single translation unit if
the different components use pack pragmas to specify different packing alignments.

Each occurrence of a pack pragma with a push argument stores the current packing
alignment on an internal compiler stack. The pragma’s argument list is read from left to
right. If you use push, the current packing value is stored. If you provide a value for n,
that value becomes the new packing value.

Each occurrence of a pack pragma with a pop argument retrieves the value at the top of
an internal compiler stack and makes that value the new packing alignment. If you use
pop and the internal compiler stack is empty, the alignment value is that set from the
command-line and a warning is issued. If you use pop and specify a value for n, that
value becomes the new packing value.

#pragma saveregs

#pragma saveregs

The saveregs pragma guarantees that a huge function will not change the value of any
of the registers when it is entered. This directive is sometimes needed for interfacing
with assembly language code. The directive should be placed immediately before the
function definition. It applies to that function alone.

Chapter 6, Preprocessor directives 253

#pragma warn

#pragma warn [+|-|.]www

The warn pragma lets you override specific -wxxx command-line options or check
Display Warnings in the Messages options.

Example

If your source code contains the directives:

#pragma warn +xxx
#pragma warn -yyy
#pragma warn .zzz

the xxx warning will be turned on, the yyy warning will be turned off, and the zzz
warning will be restored to the value it had when compilation of the file began. See the
command-line options summary for a complete list of the three-letter abbreviations and
the warnings to which they apply.

Predefined macros

Paradigm C++ predefines certain global identifiers known as manifest constants. Most
global indentifers begin and end with two underscores (_ _).

For readability, underscores are often separated by a single blank space. In your source
code, you should never insert whitespace between underscores.

See also the description of memory-model macros.

Macro Value What macro is/does

_ _BCPLUSPLUS_ _ 0x530 Defined if you've selected C++ compilation; will increase in later
releases

_ _BORLANDC_ _ 0x530 Version number

_ _CDECL_ _ 1 Defined if Calling Convention is set to C; otherwise undefined

_CHAR_UNSIGNED 1 Defined by default indicating that the default char is unsigned
char. Use the -K option to undefine this macro.

_ _COMPRESSED_ _ 1 When defined, the Paradigm C++ locator is compressing far data
for expansion into RAM by the startup code

_CPPUNWIND 1 Enable stack unwinding. This is true by default; use -xd- to
disable.

_ _cplusplus 1 Defined if in C++ mode; otherwise, undefined

_ _DATE_ _ String literal Date when processing began on the current file

_ _DLL_ _ 1 Defined if Prolog/Epilog Code Generation is set to Windows DLL;
otherwise undefined

_ _EXTADDR_ _ 1 Enables extended address mode

_ _FARBSS_ _ 1 Defined and set to one if the far uninitialized data class is enabled,
set to 0 if disabled

_ _FILE_ _ String literal Name of the current file being processed

_ _FLAT_ _ Defined for 32-bit protected mode applications

_ _JTAG_ _ When defined, a JTAG target is being used and applications should
refrain from using shared resources

_ _LINE_ _ Decimal constant Number of the current source file line being processed

_M_IX86 1 Always defined. The default value is 300. You can change the
value to 400 or 500 by using the /4 or /5 options.

_ _MSDOS_ _ 1 Integer constant

☞☞☞☞

Paradigm C++ Language Reference254

_ _MT_ _ 1 Defined only for the 32-bit compiler when it specifies that the
multithread library is to be linked.

_ _PARADIGM_ _ Hex constant Hex representation of Paradigm version number, (ex, 500 for v5.0)

_ _PASCAL_ _ 1 Defined if Calling Convention is set to Pascal; otherwise undefined

_ _PCOPT_ _ 1 Defined in any compiler that has an optimizer

_ _PCPLUSPLUS_ _ Hex contstant Defined if you've selected C++ compilation; hex representation of
Paradigm version number, (ex, 500 for v5.0)

_ _PDREMOTE_ _ 1 When defined, a PDREMOTE/ROM target is being used and
applications should refrain from using shared resources

_ _REALTIME_ _ Defined when a Paradigm real-time operating system (RTOS) is
used

_ _STDC_ _ 1 Defined if you compile with the Keywords option set to ANSI;
otherwise, undefined

_ _TCPLUSPLUS_ _ 0x530 Version number

_ _TEMPLATES_ _ 1 Specific to the Paradigm C++ compilers. It is defined as 1 for C++
files (meaning that Paradigm C++ supports templates); otherwise,
it is undefined.

_ _TIME_ _ String literal Time when processing began on the current file

_ _TLS_ _ 1 Always false when the 32-bit compiler is used

_ _TURBOC_ _ 0x530 Will increase in later releases

_WCHAR_T 1 Defined only for C++ programs to indicate that wchar_t is an
intrinsically defined data type

_WCHAR_T_DEFINED 1 Defined only for C++ programs to indicate that wchar_t is an
intrinsically defined data type

_WIN32 Defined for 32-bit protected mode applications

_ _WIN32_ _ Defined for 32-bit protected mode applications

_ _DATE_ _, _ _FILE_ _, _ _LINE_ _, _ _STDC_ _, and _ _TIME_ _cannot appear
immediately following a #define or #undef directive.☞☞☞☞

Index 255

Index

#

_8087 233

_

_ _huge 32
_fmemchr function 145

A

_asm 16
_atold function 73
abort function 66
abs function 67
acos function 67
acosl function 67
alloca function 68
asctime function 69
asin function 69
asinl function 69
assert function 70
atan function 71
atan2 function 71
atan2l function 71
atanl function 71
atexit function 72
atof function 73
atoi function 74
atol function 74
auto 17

B

bool 18
break 17
bsearch function 75

C

_c_exit function 78
_cdecl 20
_cexit function 79
_chain_intr function 79
_clear87 function 80
_control87 function 82
_crotl function 85
_crotr function 85
_cs 23
_ctype 233
cabs function 76

cabsl function 76
calloc function 77
case 19
catch 19
ceil function 78
ceill function 78
char 20
class 20
classification routines 59
clearerr function 81
clock function 81
console I/O routines 60
const 21
context-sensitive help 11
continue 22
conversion routines 60
coreleft function 83
cos function 83
cosh function 84
coshl function 84
cosl function 83
ctime function 85

D

_disable function 87
_doserrno 234
_ds 25
data types

16-bit 55
32-bit 56

default 23
delete 23
diagnostic routines 60
difftime function 86
directives, preprocessor 241
disable function 87
div function 87
DLLs (Dynamic link libraries) 59
do 24
double 25

E

_ _emit_ _ function 89
_ _except 26
_enable function 87
_es 26
_exit function 90
_expand function 92

Paradigm C++ Language Reference256

_export 27
errno 234
exit function 90
ecvt function 88
enable function 87
enum 25
exp function 91
expl function 91
explicit 26
extern 29

F

_ _far 29
_ _finally 30
_fastcall 30
_fgetchar function 100
_fgetwchar function 100
_floatconver 237
_fmemccpy function 144
_fmemcmp function 146
_fmemcpy function 146
_fmemicmp function 147
_fmemmove function 148
_fmemset function 148
_fmode 238
_fmovmem function 152
_fpreset function 105
_fstr* function 107
_fstrcat function 195
_fstrchr function 196
_fstrcspn function 199
_fstrdup function 200
_fstricmp function 204
_fstrlen function 205
_fstrlwr function 205
_fstrncat function 206
_fstrncmp function 207
_fstrncpy function 208
_fstrnicmp function 208
_fstrnset function 209
_fstrpbrk function 210
_fstrrchr function 210
_fstrrev function 211
_fstrset function 212
_fstrspn function 212
_fstrstr function 213
_fstrtok function 215
_fstrupr function 217
fabs function 93
fabsl function 93
farcalloc function 93
farfree function 94

farmalloc function 94
farrealloc function 95
fclose function 96
fcloseall function 96
fcvt function 97
feof function 98
ferror function 98
fflush function 99
fgetc function 99
fgetpos function 100
fgets function 101
fgetws function 101
fileno function 102
float 30
floor function 102
floorl function 102
flushall function 103
fmod function 103
fmodl function 103
for 31
FP_OFF function 104
FP_SEG function 104
free function 105
freopen function 106
frexp function 107
frexpl function 107
friend 31
functions 65

G

gcvt function 108
geninterrupt function 109
getc function 109
getchar function 110
gets function 110
getvect function 111
getw function 112
global variable

__throwExceptionName 239
__throwFileName 239
__throwLineNumber 239
_8087 233
_ctype 233
_doserrno 234
_floatconvert 237
_fmode 238
_new_handler 238
_psp 238
_sys_errlist 235
_sys_nerr 237
errno 234

global variables 233

Index 257

gmtime function 112
goto 32

H

_heapchk function 116
_heapmin function 117
_heapset function 118
_hmemcpy function 146
_hmemmove function 148
_hmemset function 148
_hmovmem function 152
_hsetmem function 184
heapcheck function 115
heapcheckfree function 115
heapchecknode function 116
heapfillfree function 117
heapwalk function 119
Help 11

contacting Paradigm 12
context-sensitive help 12
displaying Contents 11
Help files 10
index 11
keyword searches 12
printing topics 11
SpeedMenus 12

hypot function 119
hypotl function 119

I

_ _interrupt functions 33
_import 33
if 32
inline 33
inline routines 60
inp function 120
inport function 121
inportb function 121
input/output routines 61
inpw function 122
int 33
int86 function 122
int86x function 123
interface routines 61
intr function 124
isalnum function 125
isalpha function 125
isascii function 126
iscntrl function 126
isdigit function 127
isgraph function 127
islower function 128

isprint function 128
ispunct function 129
isspace function 129
isupper function 130
isxdigit function 130
itoa function 131

K

keywords 16
_ _asm 16
_ _cdecl 20
_ _cs 23
_ _ds 25
_ _es 26
_ _except 26
_ _export 27
_ _far 29
_ _fastcall 30
_ _huge 32
_ _import 33
_ _interrupt functions 33
_ _loadds 34
_ _near 34
_ _pascal 40
_ _ss 46
_ _stdcall 47
_ _try 50
_asm 16
_cdecl 20
_cs 23
_ds 25
_es 26
_export 27
_fastcall 30
_import 33
_saveregs 44
_seg 44
_ss 46
asm 16
auto 17
bool 18
break 17
case 19
catch 19
cdecl 20
char 20
class 20
const 21
continue 22
default 23
delete 23
do 24

Paradigm C++ Language Reference258

double 25
enum 25
explicit 26
extern 29
finally 30
float 30
for 31
friend 31
goto 32
if 32
inline 33
int 33
long 34
new 35
operator 40
private 40
protected 41
public 41
register 41
return 41
short 44
signed 45
sizeof 45
static 46
struct 47
switch 48
template 49
this 49
throw 50
try 51
typedef 51
typeid 51
typename 52
union 53
unsigned 54
virtual 54
void 54
volatile 55
while 55

keywords, alphabetically 13

L

_loadds 34
_lrotl function 137
_lrotr function 137
labs function 131
ldexp function 132
ldexpl function 132
ldiv function 132
lfind function 133
libraries

DLLs 59

routines 57
C++ prototyped routines 59
classification routines 59
console I/O routines 60
conversion routines 60
diagnostic routines 60
inline routines 60
input/output routines 61
interface routines 61
manipulation routines 62
math routines 62
memory routines 63
miscellaneous routines 64
process control routines 64
time and date routines 64
variable argument list routines 64

run-time libraries
defined 57
selecting 57
static 58

localtime function 134
log function 134
log10 function 135
log10l function 135
logl function 134
long 34
longjmp function 136
lsearch function 137
ltoa function 138

M

_matherr function 140
_matherrl function 140
malloc function 139
manipulation routines 62
math routines 62
max function 142
mblen function 142
mbstowcs function 143
mbtowc function 144
memccpy function 144
memchr function 145
memcmp function 146
memcpy function 146
memicmp function 147
memmove function 148
memory routines 63
memset function 148
min function 149
miscellaneous routines 64
MK_FP function 149
mktime function 150

Index 259

modf function 151
modfl function 151
movedata function 151
movmem function 152

N

_ _near 34
_new_handler 238
_normalize_fptr function 152
new 35

O

offsetof function 153
online help 10, 11
operator 40
outp function 154
outpcb function 154
outport function 155
outportb function 155
outpw function 155

P

_pascal 40
_psp 238
Paradigm Systems, contacting 12
peek function 156
peekb function 157
perror function 157
poke function 159
pokeb function 159
poly function 160
polyl function 160
pow function 160
pow10 function 161
pow10l function 161
powl function 160
preprocessor directives 241
printf function 162
private 40
process control routines 64
protected 41
prototypes (routines) 59
public 41
putc function 168
putchar function 168
puts function 169
putw function 169

Q

qsort function 170

R

_rotl function 174
_rotr function 174
-RT 43
raise function 171
rand function 172
random function 172
randomize function 173
realloc function 173
register 41
return 41
routines 57

C++ prototyped routines 59
classification routines 59
console I/O routines 60
conversion routines 60
diagnostic routines 60
inline routines 60
input/output routines 61
interface routines 61
manipulation routines 62
math routines 62
memory routines 63
miscellaneous routines 64
process control routines 64
time and date routines 64
variable argument list routines 64

RTTI (Run-time type identification) 42
run-time functions 65
run-time libraries

defined 57
routines 57
selecting 57
static 58

S

_saveregs 44
_seg 44
_ss 46
_status87 function 194
_stdcall 47
_strdate function 199
_strerror function 201
_strtime function 213
_strtold function 214
_sys_errlist 235
_sys_nerr 237
scanf function 175
segread function 181
setbuf function 182
setjmp function 183
setmem function 184

Paradigm C++ Language Reference260

setmode function 184
setvbuf function 185
setvect function 111
short 44
signal function 186
signed 45
sin function 189
sinh function 190
sinhl function 190
sinl function 189
sizeof 45
source codes

accessing 57
sprintf function 190
sqrt function 191
sqrtl function 191
srand function 192
sscanf function 192
stackavail function 193
static 46
stime function 194
stpcpy function 195
strcat function 195
strchr function 196
strcmp function 196
strcmpi function 197
strcoll function 198
strcpy function 198
strcspn function 199
strdup function 200
strerror function 201
strftime function 202
stricmp function 204
strlen function 205
strlwr function 205
strncat function 206
strncmp function 207
strncmpi function 207
strncpy function 208
strnicmp function 208
strnset function 209
strpbrk function 210
strrchr function 210
strrev function 211
strset function 212
strspn function 212
strstr function 213
strtod function 214
strtok function 215
strtol function 216
strtoul function 217
struct 47
strupr function 217

strxfrm function 218
support 12
swab function 219
switch 48

T

_ _throwExceptionName 239
_ _throwFileName 239
_ _throwLineNumber 239
_ _try 50
_tolower function 223
_toupper function 224
tan function 221
tanh function 221
tanhl function 221
tanl function 221
technical assistance 12
template 49
this 49
throw 50
time and date routines 64
time function 222
toascii function 222
tolower function 223
toupper function 224
try 51
typedef 51
typeid 51
typename 52

U

ultoa function 225
ungetc function 225
union 53
unsigned 54

V

va_arg function 226
va_end function 226
va_start function 226
variable argument list routines 64
variables, global 233
virtual 54
void 54
volatile keyword 55
vprintf function 227
vscanf function 228
vsprintf function 229
vsscanf function 229

Index 261

W

_wfreopen function 106

wcstombs function 230
wctomb function 231
while 55

	Table of Contents
	Chapter 1, Introduction
	How this manual is organized
	Typefaces and icons used in this manual
	Using help in Paradigm C++
	Online help organization
	Getting help in Paradigm C++

	Technical assistance

	Chapter 2, Keywords
	Keywords (by category)
	Paradigm C++ keyword extensions
	C++ specific keywords
	Modifiers
	Operator keywords
	Statement keywords
	Type specifiers
	Register pseudovariables
	Parameter types and possible registers used
	Keyword alphabetical reference
	Data types - 16-bit
	Data types - 32-bit

	Chapter 3, Library routines
	Reasons to access the run-time library source code
	Guidelines for selecting run-time libraries
	Run-time libraries overview
	Static run-time libraries
	Dynamic-link libraries
	C++ prototyped routines
	Paradigm C++ library routines by category
	Classification routines
	Console I/O routines
	Conversion routines
	Diagnostic routines
	Inline routines
	Input/output routines
	Interface routines (DOS, 8086, BIOS)
	Manipulation routines
	Math routines
	Memory routines
	Miscellaneous routines
	Process control routines
	Time and date routines
	Variable argument list routines

	Chapter 4, Run-time functions
	Sample function entry
	RTL functions A
	RTL functions B
	RTL functions C
	RTL functions D
	RTL functions E
	RTL functions F
	RTL functions G
	RTL functions H
	RTL functions I
	RTL functions L
	RTL functions M
	RTL functions N
	RTL functions O
	RTL functions P
	RTL functions Q
	RTL functions R
	RTL functions S
	The scanf format string
	Format Specifiers
	Type characters
	Input fields
	Assignment-suppression character
	Width specifiers
	Pointer-size and argument-type modifiers
	Format specifier conventions
	When ...scanf functions stop scanning

	RTL functions T
	RTL functions U
	RTL functions V
	RTL functions W

	Chapter 5, Global variables
	Chapter 6, Preprocessor directives
	# (Null directive)
	#define
	#undef
	Using the -D and -U command-line options
	Keywords and protected words as macros
	Macros with Parameters

	#error
	#if, #elif, #else, and #endif
	#ifdef and #ifndef
	#include
	Header file search with <header_name>
	Header file search with "header_name"

	#line
	Pragma summary
	#pragma anon_struct
	#pragma argsused
	#pragma check_stack
	#pragma codeseg
	#pragma comment
	#pragma exit and #pragma startup
	#pragma hdrfile
	#pragma hdrstop
	#pragma inline
	#pragma intrinsic
	#pragma message
	#pragma option
	#pragma pack
	#pragma saveregs
	#pragma warn

	Predefined macros

	Index

