
Paradigm C++ Locate
Reference Manual
For Paradigm C++ Professional Real Mode Application Development

Paradigm Systems

The authors of this software make no expressed or implied warranty of any kind
with regard to this software and in no event will be liable for incidental or
consequential damages arising from the use of this product. The software
described in this document is furnished under a license and may only be used or
copied in accordance with the terms of the licensing agreement.

The information in this document is subject to change without notice.

Copyright © 1998, 2000, 2002 Paradigm Systems. All rights reserved.

Paradigm C++ Professional is a trademark of Paradigm Systems. Other brand
and product names are trademarks or registered trademarks of their respective
holders.

January 19, 2004

No part of this document may be copied or reproduced in any form or by any
means without the prior written consent of Paradigm Systems.

Paradigm Systems
Suite 2214

3301 Country Club Road
Endwell, NY 13760

(607)748-5966
(607)748-5968 (FAX)

Sales information: sales@devtools.com
Technical support: support@devtools.com

Web: http://www.devtools.com
FTP: ftp://ftp.devtools.com

For prompt attention to your technical questions, please contact our tech support
team via the Internet at support@devtools.com. Please note that 90 days of free
technical support is available to registered users of Paradigm C++. For an
additional 12 months, a SurvivalPak maintenance agreement can be purchased.

Contents 3

C O N T E N T S

Introduction
What's in the Paradigm C++ Locator 5
The Paradigm C++ package 7

The Reference Manual............................... 7
Technical assistance 8

E-mail... 8
Internet ... 9
FTP.. 9
FAX ... 9

Problems and suggestions............................... 9

Chapter 1 Using the Locator
Tutorial ...12

Files in the tutorial.....................................12
The LOCATE configuration file16

Chapter 2 Relocation primer
Relocation basics..23
The linker output files...................................24
Segment aliases ..24
Segment ordering and alignment25
Segment checking...26
Absolute segments..27

Fixing absolute segments............................28
Groups ..28
Duplicating classes..29

Chapter 3 Using configuration files
Configuration file format31

Directive format..32
Line continuation33

Directive processing priority33

The preprocessor ...34
The #define directive34
The #undef directive34
The -D option ..35
File inclusion with #include........................35
The #if, #elif, #else, and #endif directives ...35
The #ifdef and #ifndef directives................36
The operator defined.................................36
The #error directive37
The #message directive37
Predefined macros37

Comments...37
Finding errors ..38

Chapter 4 Configuration file directives
Directive descriptions39

ABSFILE...41
CHECKSUM...43
CLASS..45
COMPRESS..46
CPUTYPE ..47
DEBUG...49
DISPLAY..53
DUPLICATE...54
HEXFILE..55
INITCODE..60
LISTFILE..63
MAP ...66
ORDER...67
OUTPUT ..68
SEGMENT..69

Paradigm C++ Locate Reference Manual4

WARNINGS..70

Chapter 5, Command line options
Command line options71

LOCATE.OPT file72
Option priorities ..72

Summary of options72
Defining macros..74
Initialization..74
Diagnostics...75

Startup display75
Processing diagnostics............................75
Error/warning log...................................76
Exit code control76
Warning diagnostic control77

OMF86 debug control77
File management.......................................79

Configuration files79
EPROM files ..80
Listing files ...82
Absolute files ..84

Filename extensions84

Chapter 6 Checksums and CRCs
ROMBIOS checksums87
CRC-16 checksums......................................88
CRC-32 checksums......................................90
Tech tips ...91

Chapter 7 Using compression
Compression requirements94
Compression algorithm94

Appendix A Warning diagnostics
Paradigm C++ Locate warnings97
Preprocessor warnings105

Appendix B Error diagnostics
Paradigm C++ Locate errors107

Message explanations107
Preprocessor errors115

Message explanations.............................. 115

Appendix C Exit codes
Exit codes.. 119

Appendix D INITCODE port definitions
INITCODE port definitions......................... 121

Appendix E AXE utility
AXE utility .. 129

Appendix F Hex file formats
Hex file formats ... 131
Intel extended hex...................................... 131

Extended Address Record........................ 132
Data Record... 132
Start Address Record 132
End of File Record.................................. 133

Intel hex.. 133
Tektronix hex .. 133

Data Record... 133

Index
Index .. 135

Introduction 5

I N T R O D U C T I O N

The Paradigm C++ Locator is a professional utility for preparing 16-bit
Paradigm C++ applications for use in embedded systems. The Locator
is fast, easy-to-use, and creates the exact output files you need to
develop and debug embedded system applications for the Intel, AMD
or NEC x86-compatible microprocessors.

Paradigm C++ is unique in its support of all the Paradigm software
development tools, including all versions of their popular C, C++, and
assembly language packages. With output file formats supporting the
integrated debugger, popular in-circuit emulators and EPROM
programmers, everything is included to help you get the most out of
your embedded system application.

What's in the Paradigm C++ Locator
Paradigm C++, including the Locator, the integrated debugger, a
compiler, assembler, and linker, is a complete embedded system
development package. For this manual, lets look at some of the many
features of the Locator offers:
n Fast: No other product even comes close to the Paradigm C++

Locator in getting your application fully debugged and into
EPROM.

n C, C++, and assembly language: Develop your application in the
language of your choosing, knowing it is fully supported.

n Startup code and run-time library support: The Locator
includes complete ROMable startup code for each supported
compiler. Comprehensive run-time library support is also included
for all memory models so you can use stream I/O, dynamic
memory management, and floating point run-times in any
embedded system without DOS or a BIOS.

Chapter 1 tells you how to
use the Paradigm C++

Locator. This introduction
tells you about the features

of the Locator.

Paradigm C++ Locate Reference Manual6

n Sample applications: Plenty of sample applications, complete
with makefiles and LOCATE configuration files, are available to
demonstrate various embedded system development techniques for
each supported compiler.

n Intel OMF86 support: Absolute OMF86 output files with full
debug information are available for users having an in-circuit
emulator accepting this file format.

n EPROM programmer support: The Locator supports all popular
EPROM programmer file formats, including Intel extended hex,
binary and Tektronix hex. The Locator will also optionally split
EPROM images or fill with any background pattern. Optimally-
sized binary file output is also supported.

n Compressed initialized data: Constant and initialized data can be
compressed in EPROM and decompressed by the startup code to
save valuable EPROM space.

n Configuration files: A configuration file is how you inform the
Locator about your target system address space, output file types,
and other options. A full C preprocessor is standard, with macros,
include files, and conditionals available to meet the most
demanding requirements.

n Chip select, wait state, DRAM refresh initialization: Only the
Locator can automatically generate processor-specific initialization
code so there is no need to write custom startup code.

n Reset vector initialization: The Locator will, at your request,
automatically create a far jump to the program entry point from the
reset vector.

n Stack initialization: Stack initialization is also available, for
applications which require a stack be setup automatically.

n Target system documentation: Create list files with any of the
following information: segments, regions, public symbols, local
symbols, or line numbers. Full application documentation is
standard with the Paradigm C++ Locator.

n Checksums and CRCs: Calculate a PC ROM BIOS extension
checksums or generate CRC16 or CRC32 checksums on any
region of memory.

Introduction 7

The Paradigm C++ package
 Your Paradigm C++ package contains all the programs and files you
need to create embedded applications. The CD-ROM also contains
sample applications demonstrating the use of the run-time libraries and
the integrated debugger.

 This Reference Manual introduces you to the Paradigm C++ Locator
and contains all the information needed to create embedded system
applications with . This manual is arranged so you can either follow a
short tutorial to quickly get up to speed or use it as a reference,
depending on your level of experience.

 Here are the key chapters in this manual:
n Introduction: introduces you to the key features of the Locator

and tells you how to access the Paradigm technical support system.
n Chapter 1: Using the Locator is a short tutorial of a simple

embedded application built with the Locator.
n Chapter 2: Relocation primer is a review of the techniques used

by the Locator to bind physical addresses to your segments.
n Chapter 3: Using configuration files is a detailed introduction

into designing a custom LOCATE configuration file for your target
system.

n Chapter 4: Configuration file directives is the detailed review of
the LOCATE configuration file directives.

n Chapter 5: Command line options is the detailed review of the
command line options available to the Locator users.

 Also included in the Reference Manual are the following appendices.
These contain useful information covering the use of the Paradigm
C++ Locator and utilities.
n Appendix A: Warning diagnostics is a detailed description of the

warnings output by the Locator
n Appendix B: Error diagnostics is a detailed reference of all

Paradigm C++ Locate error messages.
n Appendix C: Exit codes lists the various exit code output by the

Locator as a result of processing an input file.

 The Reference
Manual

Paradigm C++ Locate Reference Manual8

n Appendix D: INITCODE port definitions is a list of supported
peripheral register initializations supported by each processor.

n Appendix E: AXE utility is a short description of the Paradigm
AXE file utility.

n Appendix F: Hex file formats documents the hex file formats
supported by the Locator.

 Wrapping up the manual is a comprehensive index, making all
components of the Paradigm C++LocateReference Manual available
at your fingertips.

 Technical assistance
 If you have technical questions or need assistance in setting up or
using the Paradigm C++ Locator, contact our technical support staff at
(607)748-5966 during normal business hours (EST) or at
support@devtools.com. We will be more than happy to discuss your
problem and provide the fastest possible response. Please have the
following information available before you contact us:

n Product names and version numbers for all Paradigm products
n Product names and version number for third-party products
n A detailed description of the problem, and how to reproduce it
n If sending us files, be sure to include a README file with the

details of the problem, and your name, address, phone/fax numbers
so we can get back to you. Please use a compression utility to
keep the size of any files to a minimum.

 We encourage all customers to contact us with their application,
compiler, debugger, or in-circuit emulator questions. We have experts
on staff to deal with any questions relating to the Paradigm C++
Locator, the use of compilers in embedded systems, or using the
integrated debugger with an in-circuit emulator. Please feel free to
contact us any time you need assistance.

 You may send technical questions or problem reports to our technical
support group via the following e-mail address:

 Ninety days free technical
support is available to

registered users of
Paradigm C++. Purchase

of a maintenance
agreement adds an

additional 12 months.

 The use of an on-line
service is recommended

since it offers timely
turnaround of problem

reports and maintenance
releases of software.

 E-mail

Introduction 9

 support@devtools.com

 You can reach us on the Web at:

 http://www.devtools.com

 Internet users can access technical support, application notes, third
party vendor information and product information on our website.

 To obtain patch files, service packs and application notes quickly,
access our anonymous FTP site at:

 ftp://ftp.devtools.com

 You may also fax your problem reports or questions to our technical
support group at (607)748-5968. This is the least desirable method
since we may lack the ability to reproduce your problem.

 Problems and suggestions
We welcome your suggestions and feedback and hope you find that
the Paradigm C++ Locator meets your requirements for embedded
system software development. The Locator has been extensively
tested prior to its release, but unforeseen problems or incompatibilities
can arise due to the number of possible system configurations. Should
you find a problem with this software or have an idea for an
improvement, don't hesitate to contact us. We appreciate your
feedback and suggestions for improving the Locator.

 Internet

 FTP

 FAX

Chapter 1, Using the Locator 11

 C H A P T E R

 1

 Using the Locator

The Paradigm C++ IDE contains all of the tools needed to build an
embedded application with a single mouse click. The Paradigm C++
Locator is one of those tools. The primary function of the Locator is
to resolve code and data references in your application to a fixed
address, for use in flash, EPROM, or some other device on your
embedded target. To understand the Locator, it is best to first
understand the build process. The following diagram shows how the
Paradigm C++ Locator fits into the 16-bit real mode embedded
application build process:

 Paradigm C++ Software Development ProcessFigure 1-1

Paradigm C++ Locate Reference Manual12

 Tutorial
 The easiest way to describe how the Paradigm C++ Locator is used is
by example. The DEMO example, found in the
EXAMPLES\REAL\DEMO subdirectory of the Paradigm C++
installation directory, is the simplest place to start. Open the project by
selecting Project | Open project in the Paradigm C++ IDE. The
Paradigm C++ project window appears. Select View | Project to
display the project window at any time. The project window contains
all of the source files and libraries used in the application build process.

Paradigm C++ Project window

 The DEMO project uses a number of files:

 DEMO.C This is the only source file in the DEMO
example. A double-click with the mouse will
allow you to view it.

 DEMO.ROM This file represents the link stage of the build
process, where all of the compiled or assembled
source files are linked together.

 DEMO.CFG The LOCATE configuration file contains the
instructions for the real mode location process.

 DEMO.AXE This represents the target node or final output.

 README.TXT This node is not part of the build process, but
exists for documentation purposes.

 This section covers the use
of the Paradigm C++

Locator in the Paradigm
C++ embedded application

development cycle.

Figure 1-2

Chapter 1, Using the Locator 13

 Helper files
SourcePool

 The files in the Sourcepool are not part of the
build process in this case, but they are made
visible to the user, to be added into the build
process if needed. See the Paradigm C++ User's
Guide for details on sourcepools.

 A right-click with the mouse on DEMO.AXE will display a local menu
where you can invoke the TargetExpert to change application options.

Paradigm C++ Locate Reference Manual14

Paradigm C++ TargetExpert dialog box

 The TargetExpert is used to specify the type of application to build.
The platform is set to Real address mode, which is required for a 186
type processor. The target model can be Small, Medium, Compact,
Large, or Huge (see the memory model descriptions in the Paradigm
C++ User's Guide for more details). Math support is required when

Figure 1-3

Chapter 1, Using the Locator 15

your application is performing floating point operations (select
Emulation if your target does not have a coprocessor). If you do not
wish to have exception handling in your application, select the No
exceptions checkbox. There are also checkboxes for far data
compression and alternate startup code (for advanced users who do
not wish to use the default startup code).

 The target connection determines the type of debugging session to be
used. A target connection of No Target/ROM is used for the final
product and results in a .HEX or .BIN file to be placed into flash or
EPROM. Other target connections are available depending on the
version of Paradigm C++ being used. For example, a target connection
of PDREMOTE/ROM will result in a debugging session where the
integrated debugger expects to communicate with a
PDREMOTE/ROM monitor running on the target.

 When using the TargetExpert to configure the application, some
default libraries will be added and removed. These libraries are not
normally visible, because they are run-time nodes that are almost
always required to make your application work properly. To see all of
the files used in the build process, select Options | Environment |
Project View and select the Show run-time nodes checkbox of the
Project display settings group.

DEMO project

Figure 1-4

Paradigm C++ Locate Reference Manual16

 If the TargetExpert settings previously displayed were used, the three
run-time nodes marked in yellow in Figure 1-4, page 1-15 would have
been added. These files will change depending on the TargetExpert
settings and are described as follows:

 C0X.OBJ The startup code for the application, where x is
the first letter of the memory model used. It
contains no target specific initializations and
performs application stack and data
initializations.

 CX.OBJ The run-time library, where x is the first letter of
the memory model used. This contains run-time
library functions, such as printf(). Code from
this library will only add to the size of your
application if calls to run-time library functions
are made.

 NOEHX.LIB The no exceptions library, where x is the first
letter of the memory model used. Use this
library if you are not using exception handling in
your application.

 Selecting Project | Build All for the DEMO example will compile .C
source files into an object file to be linked in with the libraries. The last
stage of the build process is the absolute location process. Paradigm
C++ will automatically perform the location process as the last step of
the build process. It is at this point where a .HEX, .BIN or .AXE file
will be generated. When the locate process has been completed, a file
with a .LOC extension will be generated (in this case it will be
DEMO.LOC). This file shows the locations in memory where the
application code and data has been placed.

 The LOCATE configuration file
The configuration file used in the DEMO example, DEMO.CFG,
contains all of the commands used in the location process. The
following listing describes the configuration file usage line by line:

Chapter 1, Using the Locator 17

 1 //
 2 // LOCATE configuration file for a Paradigm C++
 3 // 16-bit embedded system application. This general
 4 // purpose configuration file can be used with a
 5 // standalone target or with a PDREMOTE/ROM target.
 6 //
 7 // Select the options based on if you have a stand-alone
 8 // target or if you will be connecting to a PDREMOTE/ROM
 9 // target system.
10 //
11
12 cputype Am186ES // Select the target system processor
13
14 #if defined(__PDREMOTE__) || defined (__JTAG__)
15
16 map 0x00000 to 0x00fff as reserved // PDREMOTE/ROM and
 // int vector table
17 map 0x01000 to 0x0ffff as rdwr // System RAM area
 // (60KB RAM)
18 map 0x10000 to 0x1ffff as rdonly // Simulated EPROM
 // area (64KB RAM)
19 map 0x20000 to 0xfffff as reserved // No access allowed
20
21 #define DATA_START 0x0100 // Start of
 // application data
22 #define CODE_START 0x1000 // Start of
 // application code
23 #define BOOT_START 0x1fc0 // Start of
 // initialization code
24
25 #else
26
27 map 0x00000 to 0x1ffff as rdwr // 128KB RAM address
 // space
28 map 0x20000 to 0xeffff as reserved // No access
29 map 0xf0000 to 0xfffff as rdonly // 64KB EPROM address
 // space
30
31 #define DATA_START 0x0040 // Start of
 // application data
32 #define CODE_START 0xf000 // Start of
 // application code
33 #define BOOT_START 0xffc0 // Start of
 // initialization code
34
35 initcode reset \ // Reset vector to
 // program entry point
36 umcs = 0xf03c \ // 64KB, 0 wait
 // states,ignore ready

Figure 1-5

LOCATE configuration file

Paradigm C++ Locate Reference Manual18

37 lmcs = 0x1f3c // 128KB, 0 wait
 // states,ignore ready
38
39 class ??LOCATE = BOOT_START // Chip select
 // initialization
40 output ??LOCATE
41
42 hexfile intel86 // Intel extended hex
 // output
43
44 #endif
45
46
47 //
48 // Start of common configuration file settings.
49 //
50
51 absfile axe86 // Paradigm C++
 // debugging output
52 listfile segments // Absolute segment
 // map
53
54 dup DATA ROMDATA // Make a copy of
 // initialized data
55 dup FAR_DATA ROMFARDATA // Make a copy of far
 // initialized data
56
57 #if defined(__COMPFARDATA__) // Compress and
 // display results
58 compress ROMFARDATA
59 display compression
60 #endif
61
62 class CODE = CODE_START // Application code
63 class DATA = DATA_START // Application data
64
65 order DATA \ // RAM class
 // organization
66 BSS \
67 NVRAM \
68 EDATA \
69 STACK \
70 FAR_DATA ENDFAR_DATA \
71 FAR_BSS ENDFAR_BSS \
72 FAR_HEAP ENDFAR_HEAP
73
74 order CODE \ // EPROM class
 // organization
75 INITDATA EXITDATA \
76 FAR_CONST ENDFAR_CONST \
77 ROMDATA ENDROMDATA \
78 ROMFARDATA ENDROMFARDATA
79

Chapter 1, Using the Locator 19

80 output CODE \ // Classes in the
 // output file(s)
81 INITDATA EXITDATA \
82 FAR_CONST ENDFAR_CONST \
83 ROMDATA ENDROMDATA \
84 ROMFARDATA ENDROMFARDATA

 Let's take a detailed look at each line of the configuration file and see
just what is going on here:

 These are comments, so you can document what your configuration
file is doing and why it needs to be done. Comments may be used
freely throughout the configuration file.

 The CPUTYPE directive identifies the target microprocessor as an
Am186ES. This will permit the Am186ES peripheral registers to be
referenced in the INITCODE directive.

 The #if directive can be used to conditionally locate the application,
depending upon what define is passed. __PDREMOTE__ is one of
the macros automatically defined when PDREMOTE/ROM is used to
debug your application. This section of the LOCATE configuration
file will be active when using PDREMOTE/ROM or JTAG to debug
the application.

 The MAP directive partitions the target system memory address space
into four mutually exclusive regions. The Paradigm C++ Locator uses
this information to warn if any code or data accidentally ends up in
undefined regions of the memory address space, or overlaps multiple
regions. See the MAP directive in Chapter 4, Configuration file
directives for more details.

 These lines define the start address of data and code, which are used
by the CLASS directive. This value is a segment address. Notice that
the address used for code is located at a low address, where RAM is
normally found. This is needed when debugging an application with
PDREMOTE/ROM.

 The #else directive is used with the #if directive to conditionally locate
the applications. In this case, it marks the beginning of the

 Lines 1-10

 Line 12

 Line 14

 Lines 16-19

 Line 21-22

 Lines 25

Paradigm C++ Locate Reference Manual20

configuration file section normally used to generate a final .HEX or
.BIN file after debugging the application. Using no Target/ROM as
your target connection would activate this section.

 The MAP directives are used here to show the actual target memory
configuration, where the previous set of MAP directives were set up
differently for debugging purposes.

 CODE_START reflects an address of an application to be placed into
flash or EPROM. DATA_START reflects the address that follows the
interrupt vector table. Finally, BOOT_START is the address for a
special class generated by the Paradigm C++ Locator with the
INITCODE directive is used.

 The reset parameter instructs the Paradigm C++ Locator to create a
reset vector at address FFFF0H so control will be transferred to the
application entry point when reset is asserted. Lines 36 and 37 are
used to create initialization code for the Am186ES upper and lower
memory chip selects so the target system memory can be completely
accessed. The BOOT_START address is placed at FFC00H, which is
well within the 64KB block of addresses that the Am186ES upper
memory chip select can address following reset.

 The OUTPUT directive identifies which classes should be placed in
the output file. Note that classes containing code or copies of
initialized data must be named in the OUTPUT directive. Other
classes, containing uninitialized data and the state, can be left out since
they are initialized by the application.

 The HEXFILE directive is used to create DEMO.HEX, an Intel
extended hex file containing a Paradigm C++ sample application. This
file can be downloaded to an EPROM programmer for preparing a set
of EPROMs for the Paradigm C++ target system.

 The #endif directive must be paired with the #if directive to
conditionally locate the applications.

 The ABSFILE directive is used to create the file DEMO.AXE, an
absolute load module that includes debugging information. This file is

 Lines 27-29

 Lines 31-33

 Lines 35-39

 The Paradigm C++ Locator
places this code in the

class ??LOCATE. See
“INITCODE,” page 60 for

more information.

 Line 40

 Line 42

 Line 44

 Line 51

Chapter 1, Using the Locator 21

used by the integrated debugger of Paradigm C++ while debugging the
application.

 The LISTFILE directive causes an absolute segment map in the
DEMO.LOC listing file. These are the addresses where the
application will appear in the memory address space of the target
system.

 The DUPLICATE directive makes a copy of the segments in the class
DATA, which contain the initialized data. The compiler startup code
then copies the contents of the EPROM-based ROMDATA class to
the RAM-based DATA class. This is true of for the FAR_DATA
class as well, which is initialized far data in your application.

 This section of the configuration file is active if far data compression is
enabled in the Paradigm C++ TargetExpert.

 The CLASS directive is used to bind physical segments to an
application. The first CLASS directive places the program code at the
base of the EPROM indicated by CODE_START, while the second
CLASS directive puts the application read/write data immediately
following the interrupt vector table at the address indicated by
DATA_START.

 Using DATA as the anchor class, this ORDER directive binds
addresses to the other classes that are part of the RAM address space.

 Using CODE as the anchor class, this ORDER directive binds
addresses to the other classes that are in the EPROM address space.
Notice that the copy of the initialized data in class ROMDATA is
placed in the EPROM address space where it will be copied to RAM
by the startup code.

 The OUTPUT directive identifies which classes should be placed in
the output file. Note that classes containing code or copies of
initialized data must be named in the OUTPUT directive. Other
classes, containing uninitialized data and the state, can be left out since
they are initialized by the application.

 Lines 52

 Other information, like
public symbols, can also
be placed in this file. See

"LISTFILE", page 63.

 Line 54-55

 Lines 57-60

 Lines 62-63

 Line 65-72

 Lines 74-78

 Lines 80-84

Paradigm C++ Locate Reference Manual22

Chapter 2, Relocation primer 23

 C H A P T E R

 2

 Relocation primer

 This section contains optional information provided for those
interested in the segment relocation process, handling of initialized
data, and other topics of interest to embedded system programmers.
The Paradigm C++ Locator can be used quite well without
understanding these underlying algorithms, so this section may be
skipped at the discretion of the user.

 Relocation basics
 When a linker processes a set of object files, it combines all segments
having the same segment name into a single physical segment which
must fit within a 64KB region of the memory address space.

 Compilers typically assign each segment to a class, and assembly
language users can do the same. Assignment to a class permits the
linker to combine together similar segments, such as all segments
containing code or initialized data, so they can be manipulated together
as a single entity. Although a member of the class, each segment
remains independently addressable and can vary in length to a
maximum of 64KB bytes. Since any number of segments can form a
class, there is no restriction on the size of a class.

 Compilers and assemblers also define a different relationship between
segments known as a group. The segments within a group do not

 A segment is the basic unit
of organization.

 A class is a collection of
related segments.

 We will cover how groups
affect the relocation

process on page 28.

Paradigm C++ Locate Reference Manual24

have to be contiguous but are all addressed using the same segment
base; they must fit into a single 64KB physical segment. When the
linker encounters a group, it replaces the offsets from the segment
base with offsets from the group base, adjusting them upward as
necessary.

 The linker output files
 The linker has the responsibility of resolving all external references and
creating the relocation table containing the list of segment fixups.
Although all external references have been resolved, the segment
fixups are still relocatable and can be moved anywhere within the
1MB address space, which is where the Paradigm C++ Locator
becomes involved.

 This information, along with other loading instructions and optional
debugging information, is written out in the .ROM and .MAP files.
The .ROM file is the relocatable load module. By default, linker
names in this file have an .EXE extension. The .MAP file is the
segment map file. Both .ROM and .MAP files are required by the
Paradigm C++ Locator. Being a relocatable load module has certain
advantages and is a necessary requirement for DOS, since the final
physical addresses of a program are unknown until the program is
loaded.

 Of course, for designers of embedded systems, this is unacceptable
since all segments must be at fixed addresses before the code is
committed to EPROM or downloaded to an in-circuit emulator. A
utility like the Paradigm C++ Locator solves this problem by extracting
the segments and relocation information from the linker files and
converting the relocatable segment references to absolute addresses in
the target system address space, as directed by the configuration file.

 Segment aliases
 The virtual segment, or frame number, is used as a handle by the
Paradigm C++ Locator to identify the target segment referred to by a
fixup record.

 The .ROM and .EXE files
are really the same - we

just want to distinguish
them.

 The Paradigm C++ Locator
will automatically warn of

alias conditions.

Chapter 2, Relocation primer 25

 It turns out that it is possible for two segments to share the same
virtual segment number, a situation known as aliasing. Since the fixup
records for aliased segments are indistinguishable, some restrictions are
placed on the developer to prevent aliases from being created.

 Segment aliases occur when a segment fails to cross a paragraph
boundary, and the start of the second segment shares the same virtual
fixup as the first. Whether or not a segment alias presents a problem
depends on whether the segments are members of the same class. If
both segments are members of the same class there is never a problem
since these segments will be located contiguously and the fixup is
unambiguous. If the offending segments are organized as a group,
there is again no problem since all segments in a group share a
common virtual segment number and the segment fixup will also be
unambiguous.

 The segment alias problem arises when the segments are members of
different classes and an attempt is being made to relocate the segments
to different regions of the memory address space by splitting them. If
a segment fixup is requested for an aliased virtual segment, the fixup is
ambiguous and the Paradigm C++ Locator cannot determine the
correct address translation.

 Fixing a segment alias is generally easy since a segment alias condition
can only occur when the length of the first segment and the alignment
of the next segment in the load module result in both segments having
segment bases in the same paragraph. Since the alias is a function of
segment length and alignment, adjusting either of these two parameters
can eliminate the possibility of a segment alias occurring.

 Segment ordering and alignment
 The solution to the segment alias problem involves specifying the
alignment characteristics for the first segment of each class such that
the start of the segment will be forced to the new paragraph.

 This is easily accomplished by using the assembly language startup
code to declare the segment alignment of the first segment in a class to
be on a paragraph boundary. This will allow the startup code to take

 The startup code supplied
with the Paradigm C++

Locator will always prevent
an alias, unless you modify

it.

Paradigm C++ Locate Reference Manual26

advantage of the way the linker organizes segments and classes within
the load module.

 The ability to control the segment length is limited, especially when
high level languages or pre-compiled library modules are involved. We
have seen that the DOS linkers order and align the segments in the
load module in the order they are encountered in the object modules.
By making sure that the first object file input to the linker specifies the
desired segment order and alignment for all the classes in the
application, the user has complete control over the final ordering and
alignment of the segments in the load module.

 The following are sample declarations which demonstrate the
technique. Notice that the first segment in each class has been
declared to be paragraph aligned using the assembler keyword 'para'.
So long as the previous class is not empty, this will guarantee a unique
segment address for the class. Also note that the subsequent segments
in a class can use any alignment since they are always manipulated
together and never split apart:

 _TEXT segment para public 'CODE'
_TEXT ends
_DATA segment para public 'DATA'
_DATA ends

 The case where a segment will have zero length, yet must be
manipulated independently, will be examined in the next topic, where it
arises naturally.

 Segment checking
 After converting from virtual to physical segment addresses, the
Paradigm C++ Locator checks for overlapping segments and outputs a
warning if any are detected.

 A segment overlap warning is generally the result of the class length
increasing to the point where it overlaps with one or more of the
following classes. This problem is easily corrected by changing the
starting addresses in the configuration file CLASS directives to match
the physical memory requirements of each class.

 This is the rationale behind
the declaration of the first

segment in each class
before any code or data

declarations.

 These are only an example
- use the DefSeg macros

supplied with the startup
code whenever possible.

Chapter 2, Relocation primer 27

 Also checked by the Paradigm C++ Locator is data exceeding the
upper limit of the CPU memory address space. This condition would
occur if the sum of the segment base address and the length of the
segment exceeds the 20-bit addressing capability of the
microprocessor. This is not an uncommon problem, as it is quite easy
for the application code to grow past the 1MB boundary.

 Another possibility that the Paradigm C++ Locator will check for is an
application completely filling the RAM or ROM address space
assigned to it. To check for code or data spilling into non-existent
regions of the address space, The Locator permits the user to define
regions of the memory address space which are reserved and cannot
be used.

 Absolute segments
 A potential problem with the use of DOS linkers is that segments
declared at an absolute address do not appear in the output link map.
Since any symbols defined in an absolute segment will appear as part
of the debugging record, an attempt by the Paradigm C++ Locator to
convert the virtual segment to a physical segment address will most
likely fail. When the virtual to physical segment translation fails, the
Locator assumes that the symbol is a member of an absolute segment
and does not fixup the segment component of the code or data and
issues a warning.

 The use of absolute segments is not recommended since the Paradigm
C++ Locator allows the user to delay the binding of the physical
segment address until the locate phase rather than when the file is
assembled. Besides leading to more portable code, error checking is
enhanced since the Locator can confirm that no other segments will
overlap the absolute segment.

 There is also the possibility that one of the other segments in the
application will have a logical segment index identical to the absolute
segment. Since the Paradigm C++ Locator has no way to verify the
symbol being absolute, the translation would take place and the
address of the symbol in the debugging records would be incorrect.
While a problem for the debugging information, this event would not
affect the correctness of the code.

 Any attempt to use the
reserved address is

flagged by the Locator.

 If necessary, the warning
messages for absolute

symbols can be disabled
with the -w- command line

option.

 Absolute segments are
also very limited in that

they can only be used to
define addresses.

Paradigm C++ Locate Reference Manual28

 The two steps needed when converting an application from using
absolute segment addressing to using the Paradigm C++ Locator to fix
the segment address are shown below. The first step is to change the
segment declaration in the assembly language source from the absolute
format to the relocatable format with a unique class name.

 ASEG segment at 0f000h ; Absolute
; your code
ASEG ends

ASEG segment para public 'MYSEG' ; Relocatable
; your code
ASEG ends

 The second step involves adding a directive to the LOCATE
configuration file to set the base address of the segment to the original
segment address.

 class MYSEG = 0xf000 // Fix the address

 Groups
 Currently there is no explicit support for groups in the Paradigm C++
Locator due to DOS linkers lacking sufficient information on the
segments that make up a group.

 If you are programming in assembly language, this should not cause
any problems since the groups and classes used are controlled
completely by the programmer. C and C++ application programmers
should pay careful attention to make sure that the rules for
manipulating groups are not violated.

 The Paradigm C++ Locator provides support for groups through the
use of the configuration file ORDER directive. After processing the
object modules, the linker adjusts the offsets within each segment in a
group relative to the start of the group. If the user supplies the class
name of the first class in a group, the other classes in the group can be
relocated relative to the base segment of the group. The location of a
group is handled by assigning the first class in the group a physical
segment with the CLASS directive and ordering the remaining classes
in the group located with the ORDER directive.

 Fixing absolute
segments

 Languages such as
Microsoft C/C++ and

Borland C++ use the group
DGROUP.

 The order of classes in a
group must follow the

ordering the .MAP file.

Chapter 2, Relocation primer 29

 Duplicating classes
 Some programs define initial values for read/write data structures that
are assumed to be correct when a program begins execution. Since
this is not the default case for a system just powered up, the Paradigm
C++ Locator must provide a mechanism for initializing this memory to
its initial values.

 The startup code is responsible for the initialization of RAM-based
data from an EPROM-based copy. This technique involves the
creation of a placeholder class which has a segment address but has no
length since the actual segments in the class will be filled in by the
Paradigm C++ Locator DUPLICATE directive. Since the placeholder
class will have zero length, any class that follows is guaranteed to be
aliased.

 The solution to this problem is to define a pair of classes, the first
serving as the placeholder and the second serving to mark the end of
the first.

 _rd segment para public 'ROMDATA'
ridata label byte
_rd ends

erd segment para public 'ENDROMDATA'
 db 16 dup (?)
_erd ends

 The above segment declarations define both classes to be paragraph
aligned with the second class following the first. While we cannot
avoid the alias condition, we can make it harmless by making sure that
the second class is always located contiguously to the first. The
Paradigm C++ Locator ORDER directive can now be used to fix the
relationship of the classes, relative to an anchoring class.

 order CODE ROMDATA ENDROMDATA

 Finding the start of the class ROMDATA is as simple as taking the
address of the label ridata or referencing the segment name. The
end of the class is marked by the class ENDROMDATA, which also
guarantees that the following class will not be aliased. This is
determined by the length of the class being 16 bytes, guaranteeing the
following class will have a unique fixup.

 You can't compute the size
of a duplicated class, only

of the original class.

 See your compiler startup
code for an example of this

technique.

Paradigm C++ Locate Reference Manual30

Chapter 3, Using configuration files 31

 C H A P T E R

 3

 Using configuration files

 The process of converting the relocatable output of the linker to a
format suitable for downloading to a remote debugger, an in-circuit
emulator, or an EPROM programmer begins with the instructions
contained in a LOCATE configuration file. A configuration file
contains any number of directives which allow you to control where
your application will reside within the target system memory address
space, the number and type of the output files, and any other the
Paradigm C++ Locator options of your choosing. Each directive may
also accept options which provide more specific results for the
directive.

 Because LOCATE configuration files use a C preprocessor, you have
full control over the application with macros, conditional processing
using standard C syntax.

 Configuration file format
 The default LOCATE configuration file is the filename of the load
module with the .CFG extension. For example, assuming you just
linked your application and have the newly created files DEMO.ROM
and DEMO.MAP, the following the Paradigm C++ Locator command
line would use the default configuration file DEMO.CFG for the

Paradigm C++ Locate Reference Manual32

directives to process the DEMO.ROM input file and create the
requested output files.

 locate demo

 Often it is more convenient to use different configuration files as you
proceed through the phases of the software development cycle or to
have multiple projects share a common configuration file. Using the
Paradigm C++ Locator -c command line option, the default
configuration filename can be overridden and a configuration file of
your choosing substituted. The Paradigm C++ Locator also offers full
control over the default file extensions. If you prefer to use a different
configuration file extension on a project basis, the Paradigm C++
Locator command line option -Xc can be placed in the
LOCATE.OPT file to substitute your own default configuration file
extension when the Paradigm C++ Locator is run.

 The Paradigm C++ Locator gives you considerable leeway in the
layout of your configuration file. With the exception of the few
directives that depend on options specified in a previous directive, the
Locator directives can be declared in any order in the configuration
file.

 Here is the format of a typical configuration file directive processed by
the Paradigm C++ Locator:

 directive option [option ...]

 Each configuration file directive accepts one or more options which
customize the actions of the directive to meet specific requirements.
Some directives accept a single option while others accept an unlimited
number of options. When a directive accepts multiple options, the
options can appear in any order unless otherwise specified.

 For example, the LISTFILE directive is used to create an absolute
listing file containing segments, publics, line numbers and local
symbols. In the following example, both LISTFILE directives are
equivalent.

 listfile segments publics lines
listfile publics lines segments

 Later on, we will see how
the preprocessor can help

manage multiple
configurations.

 Directive format

Chapter 3, Using configuration files 33

 The Paradigm C++ Locator processes each configuration file directive
up to the end of the line. For readability, and to permit an arbitrary
number of options in a directive, multiple physical lines can be
combined into a single logical line using a line continuation character,
the backslash (\). The following is a simple example of using line
continuation in the WARNINGS directive, used to enable and disable
specific warnings.

 warnings -w1000 \ // Turn off warning 1000
 -w1001 \ // Turn off warning 1001
 +w1002 // Turn on warning 1002

 Note that in the previous example, all text following the line
continuation character up to the end of the line is ignored. This
permits comments to be added to the source line, or allows the
formatting of the directive options in a vertical line. While the
WARNINGS directive is just as happy having all the options listed on
a single line, the line continuation feature of the Paradigm C++
Locator permits a clear view of the directive options without
destroying the layout or readability of the configuration file.

 Directive processing priority
 The Paradigm C++ Locator options can be specified in the
LOCATE.OPT; file, on the DOS command line or in the
configuration file. In the event of conflicting options, the following
processing order (lowest to highest) is used to determine which the
Locator options will be enabled.
n LOCATE.OPT options
n configuration file directives
n command line options

 With the exception of the -c command line option which is processed
immediately, all other command line options are processed after the
configuration file directives have been processed. This permits the
command line to be used to override any default actions specified in
the configuration file or in the LOCATE.OPT file.

 Line continuation

Paradigm C++ Locate Reference Manual34

 In the event of multiple directives within the configuration file,
subsequent directives will override the effect of the previous
directives, except for instances of the HEXFILE and LISTFILE
directives which always specify multiple, independent actions.
Command line options which enable an action can be disabled later by
the complementary command line option just as a later configuration
file directive can enable or disable a previous directive.

 The preprocessor
 In order to accommodate a diverse range of options, a full C
preprocessor is used to prepare configuration files for parsing by the
Paradigm C++ Locator. The preprocessor gives you great power and
flexibility in the following areas:
n Defining macros to reduce the development effort and improve the

readability of your configuration files
n Including directives from other files, such peripheral device

definitions
n Setting up conditional processing for improved portability and for

managing multiple builds

 Any line with a leading # is taken as preprocessing directive. The
initial # can be preceded or followed by white space if desired.

 The #define directive defines a macro, with or without parameters, as
shown in the following example:

 #define macro_indentifier <token_sequence>

 Each occurrence of macro_identifier in your configuration file will be
replaced with the token_sequence, which may be empty.

 You can undefine a previously defined macro by using the #undef
directive:

 #undef macro_identifier

 +

 Preprocessor directives
can appear anywhere in the

configuration file.

 The #define
directive

 The #undef
directive

Chapter 3, Using configuration files 35

 Once undefined, it can be redefined with #define, using the same or a
different token sequence.

 The -D option can be used on the Paradigm C++ Locator command
line to define identifiers before the start of the configuration file
processing.

 The Paradigm C++ Locator command line

 locate -DDEBUG=1 -DLIST test

 is equivalent to placing

 #define DEBUG 1
#define LIST

 at the start of the TEST.CFG configuration file.

 The #include directive is used to pull in other files into the original
configuration file. It uses one of the following forms, which are
treated the same by the Paradigm C++ Locator:

 #include <filename>
#include "filename"

 The action of the preprocessor is to remove the #include line from the
configuration file and replace it with the entire contents of the file
filename.

 The Paradigm C++ Locator supports conditional processing using the
#if, #elif, #else, and #endif directives. Using these directives you can
conditionally include configuration file source lines, based on the result
of an expression:

 #if expression
<section>
#elif expression
<section>
#else
<section>
#endif

 The -D option

 File inclusion with
#include

 The #if, #elif,
#else, and #endif

directives

Paradigm C++ Locate Reference Manual36

 If an expression evaluates to non-zero (after any macro expansion),
the source lines represented by the corresponding section are
preprocessed and passed on to the Paradigm C++ Locator. When an
expression evaluates to zero, the corresponding section is ignored.

 The #ifdef and #ifndef conditional directives let you test whether an
identifier is defined, that is, whether a previous #define is still in force
for the identifier. The line

 #ifdef identifier

 has exactly the same result as

 #if 1

 if identifier is defined, and the same effect as

 #if 0

 if identifier is undefined.

 #ifndef is used to test for the not defined condition.

 The defined operator offers a more flexible method of testing whether
one or more identifiers are defined. It is valid only in #if and #elif
expressions.

 The expression defined(identifier) evaluates to 1 (true) if the
identifier has been previously defined and has not been undefined,
otherwise it evaluates to zero. The directive

 #if defined(aSymbol)

 is the same as

 #ifdef aSymbol

 The advantage of using the defined operator is that it can be used
repeatedly in a complex expression, such as

 #if defined(thisSymbol) && !defined(thatSymbol)

 The #ifdef and
#ifndef directives

 The operator
defined

Chapter 3, Using configuration files 37

 The #error directive is used to terminate processing and output an
error diagnostic of your choosing. The #error directive is typically
used in a conditional clause to catch an unexpected condition, as
shown in the following example:

 #if !defined(A_MACRO)
#error Failed to define macro A_MACRO
#endif

 The #message directive can be used to emit diagnostic information to
the console or Paradigm C++ when the locate tool is run:

 #ifdef __PDREMOTE__
#message Building for PDREMOTE/ROM target
#endif

 The following macros are predefined by the Paradigm C++ Locator
for use in configuration files:

 __PARADIGM__ 1
__LOCATE__ Paradigm C++ Locator version number

 Comments
 Configuration files do more than instruct the Paradigm C++ Locator
how to process the relocatable load module; they are also a key
component of the design documentation. To help you in properly
documenting your design, comments can be added freely to the
configuration file.

 The start of a comment field is defined using the C++ syntax, which is
a pair of slashes ('/') with the comment continuing to the end of the
line. Blank lines and comments can appear anywhere within the
configuration file, improving the readability while providing complete
flexibility.

The #error
directive

The #message
directive

 Predefined macros

 Old-style C comments
may also be used.

Paradigm C++ Locate Reference Manual38

 Finding errors
 Any time the Paradigm C++ Locator finds a discrepancy parsing a
configuration file directive, it issues a diagnostic indicating the
configuration file source line in error. A complete list of diagnostics
produced by the Locator, together with a description of the probable
cause and possible corrective actions, can be found in Appendix A for
warning diagnostics, and in Appendix B for error diagnostics.

 In the event of an error in a directive spanning multiple lines, the
source line number reported in an error diagnostic may be inaccurate.
Because the reported position may be the line following the actual
error, it is important to examine the entire directive for the error, not
just the reported line.

 These diagnostics are
designed to pinpoint errors

or warn of hazardous
conditions.

 Check both the reported
line and the previous line

for the error.

 Chapter 4, Configuration file directives 39

 C H A P T E R

 4

 Configuration file directives

 This chapter offers a detailed description of the LOCATE
configuration file directives, the commands that build an absolute
load module in a file format of your choosing. Before introducing
each directive, a short review of the layout used to document the
directives is in order.

 The LOCATE configuration file directives contain a detailed
description of the directive, the syntax and a list of options accepted
by the directive. Any command line equivalent options are also listed
to round out the detailed description. To place each directive in the
context of an application, each entry concludes with a list of examples
showing the directive as it might be used in a LOCATE configuration
file for a typical embedded system.

 All configuration file directives are shown with the directive and any
options shown in uppercase. A valid directive or option must have at
least the significant characters although it may have more. The
Paradigm C++ Locator keywords are case-insensitive so you can use
either upper or lowercase in your configuration files. Options to
directives are also case-insensitive, with the exception of segment and
class names which are case-sensitive and must match the names from
the link map.

 Any optional arguments for a directive are shown enclosed by square
brackets ([and]) with an ellipsis (...) used to indicate repeated

 All user input is shown in
lowercase

Paradigm C++ Locate Reference Manual40

arguments. The following mnemonics are used throughout to identify
the type of argument expected by the Locator.

n data 8- or 16-bit data

n data8 8-bit data

n data16 16-bit data

n addr16 16-bit segment (paragraph) address

n addr20 20-bit physical address

n addr24 24-bit physical address

n addr A addr20 or addr24 address (depending on the
input file)

n file A filename with optional path. A valid Paradigm
C++ Locator filename must begin with a letter
and be followed by any combination of letters or
numbers.

n list One or more class names

n name A segment or class name

 ABSFILE

 Chapter 4, Configuration file directives 41

 The ABSFILE directive is used to select the file type and optionally
supply a filename for the absolute output file. The ABSFILE directive
is used when you will be working with the integrated debugger, or a
development tool accepting Intel OMF86 files.

 ABSFILE [AXE86 | OMF86 | NONE] \
[FORMAT=type] \
[FILENAME=file]

 The following are valid options for the ABSFILE directive:

 AXE86 Selects the the integrated debugger format for the
absolute output file. The default file extension is
.AXE and may be changed with the -Xa option.

 OMF86 Selects the Intel OMF86 format for the absolute
output file. The default file extension is .ABS
and may be changed with the -Xo option.

 NONE Disables the creation of an absolute output file.

 FILENAME This argument permits you to change the name
of the absolute output file to file. The default
filename is the same as the input file with the
extension determined by the output file type.

 Use slashes (/) instead of backslashes (\) for path name
separators. For example,
file = c:/output/test.axe

 FORMAT The FORMAT option is used to specify different
AXE file formats, for use with older versions of
the integrated debugger. This option accepts a
single argument, depending on the version of the
debugger being used. All versions of Paradigm
C++ use PD60 formats.

 PD60
 PD50
 PD40

 Paradigm DEBUG 6.0
Paradigm DEBUG 5.0
Paradigm DEBUG 4.0

 Description

 Syntax

 Options

 All current versions of the
integrated debugger use

the default AXE file format.

 ABSFILE

 Paradigm C++ Locate Reference Manual 42

 The following ABSFILE directives can be specified from the Paradigm
C++ Locator command line as well as in the configuration file.
 -Apd60
 -Apd50
 -Apd40
 -Aomf
 -Ad
 -Anfile

 AXE86 FORMAT=PD60
AXE86 FORMAT=PD50
AXE86 FORMAT=PD40
OMF86
NONE
FILENAME=file

 absfile omf86 filename=myprog.abs
absfile axe86 format=pd40

 Command line
options

 Examples

 CHECKSUM

 Chapter 4, Configuration file directives 43

 The CHECKSUM directive is used to define a region of the memory
address space and calculate the CRC or checksum of that region. At
run-time, the target system can then compare the computed CRC or
checksum with the stored value to determine if any changes have been
made to the program or data.

 CHECKSUM addr TO addr \
[ADDRESS=addr] \
[FILL=fill] \
[ROMBIOS | CRC16 | CRC32]

 The following are valid options for the CHECKSUM directive.
 ADDRESS The ADDRESS option is used to set the

physical address of the checksum. If not
specified, the computed checksum will default
to the address immediately following the end of
the checksum region. The address can also be
the name of a class, as well as a 20-bit physical
address.

 FILL The FILL option is used to inform the Paradigm
C++ Locator of the background pattern of
unused bytes within the checksum region. The
value used for the fill and background contents
of the EPROM must agree for checksum
calculation to occur. If not specified, the fill
pattern defaults to 0xFF.

 ROMBIOS This option selects the IBM PC ROM BIOS
extension checksum for the defined region,
which writes a one byte checksum at the
specified address.

 CRC16 The CRC16 option selects the CRC-16
checksum for the defined region, which writes a
two byte checksum at the specified address.

 Description

 Syntax

 Options

 CHECKSUM

 Paradigm C++ Locate Reference Manual 44

 CRC32 This option selects the CRC-32 checksum for
the defined region, which writes a four byte
checksum at the specified address.

 None

 checksum 0xc0000 to 0xc07fe fill=0xff rombios
checksum 0xf8000 to 0xffffd address=0xffffe crc16
checksum CODE to ROMDATA crc32

 Command line
options

 Examples

 CLASS

 Chapter 4, Configuration file directives 45

 The CLASS directive is used to assign a physical address to each of
the segments in a class.

 CLASS classname = addr16

 The 16-bit segment address in the argument addr16 is bound to the
first segment in the class classname. Each of the remaining segments
in the class are then assigned physical addresses that are relative to
preceding segments in the class.

 None

 class CODE = 0xfc00
class DATA = 0x0040

 Description

 Syntax

 Options

 Command line
options

 Examples

 COMPRESS

 Paradigm C++ Locate Reference Manual 46

 The COMPRESS directive is used to compress a duplicated class,
reducing the size of the class to save space. The Paradigm C++
Locator will write out a compressed version of the named class in the
output file.

 Each Paradigm C++ Locator compiler support package includes a
decompression module that decompresses the result during the startup
code. This module is automatically inserted into the ROMable run-
time libraries.

 The Paradigm C++ Locator runs a two step compression algorithm to
compress a class. During the first phase, the Locator estimates the
compressed size of the class, a requirement for the binding of
addresses to the segments and classes that follow the compressed
class. In the second phase, the class is compressed after any segment
fixups have been applied.

 COMPRESS classname

 classname is the name of the class to be compressed. This class must
appear in a DUP directive as it is not possible to decompress in place.

 None

 dup FARDATA ROMFARDATA
compress ROMFARDATA

 Description

 A sample application
demonstrating

compression is included
with each compiler.

 Syntax

 Options

 Command line
options

 Examples

 CPUTYPE

 Chapter 4, Configuration file directives 47

 The CPUTYPE directive informs the Paradigm C++ Locator of the
target system microprocessor. The Locator uses the CPUTYPE
directive to select the set of peripheral registers permitted in the
INITCODE directive.

 CPUTYPE cpu_id

 The following is a list of microprocessor IDs supported by the cpu_id
argument.

 I8088 D70108 (V20)
 I8086 D70116 (V30)
 I80188 D70208 (V40)
 I80186 D70216 (V50)
 I80C188 D70320 (V25)
 I80C186 D70330 (V35)
 I80C188EA D70325 (V25+)
 I80C186EA D70335 (V35+)
 I80L188EA D70136 (V33)
 I80L186EA D70236 (V53)
 I80C188EB D70423 (V55SC)
 I80C186EB D70433 (V55PI)
 I80L188EB D70208H (V40H)
 I80L186EB D70216H (V50H)
 I80C188EC
 I80C186EC AM186CC
 I80C188XL AM186EM
 I80C186XL AM188EM
 I80286 AM186ES
 I80386 AM188ES
 I80386CX AM186ER
 I80386EX AM188ER
 I80486 AM186ED
 Turbo186

 None

 Description

 Syntax

 Options

 Command line
options

 CPUTYPE

 Paradigm C++ Locate Reference Manual 48

 cputype i80c186eb
cputype i80c188xl
cpu D70325

 Examples

 DEBUG

 Chapter 4, Configuration file directives 49

 The DEBUG directive is used by the Paradigm C++ Locator to
determine which debug information data structures will be included in
the Intel OMF86 output file. By eliminating unnecessary debugging
information such as types, the Locator can run significantly faster
while producing smaller output files.

 This directive is also used to enable the integrated debugger OMF86
extensions or force compatibility with the Intel iC86 C compiler.
These extensions add support for enumerations and C++ objects and
are used by third-party debugging tools that accept OMF86 files.

 DEBUG option [option ...]

 The following are valid options for the DEBUG directive.
 IC86
NOIC86

 These options enable/disable compatibility
with the Intel iC86 compiler. When
enabled, the IC86 option restricts the debug
information output and folds all symbols to
uppercase to match the output of the Intel
compiler.

 TYPES
NOTYPES

 These options enable/disable the inclusion of
type records in the output OMF86 file.

 PUBLICS
NOPUBLICS

 These options enable/disable the inclusion of
public symbol records in the output OMF86
file.

 SYMBOLS
NOSYMBOLS

 These options enable/disable the inclusion of
local symbol records in the output OMF86
file.

 LINES
NOLINES

 These options enable/disable the inclusion of
line number records in the output OMF86
file.

 ALL This option enables all debug information in
the output OMF86 file and is the same as
specifying the TYPES, PUBLICS,

 Description

 Syntax

 Options
 The default for this option is

NOIC86.

 This is the default for the
DEBUG directive.

 DEBUG

 Paradigm C++ Locate Reference Manual 50

SYMBOLS and LINES options.

 NONE This option disables all debug information in
the output OMF86 file and is the same as
specifying the NOTYPES, NOPUBLICS,
NOSYMBOLS and NOLINES options.

 EXTENSIONS
NOEXTENSIONS

 This option enables or disables the Paradigm
OMF86 extensions, which include extended
enumerations and C++ support.

 The default for these options is NOEXT, as
extensions may not be compatible with third-
party debuggers.

 CLASSES
NOCLASSES

 This option enables or disables the output of
C++ class type information in the OMF86
output file.

 ENUMS
NOENUMS

 This option enables or disables the output of
extended enumeration debug information in
the OMF86 output file.

 BIGTYPES
NOBIGTYPES

 This option enables or disables the output of
extended types in the OMF86 output file.
Only enable this option if your debugger
supports 64K type records.

 MEMBER-
FUNCTION
NOMEMBER-
FUNCTION

 This option enables or disables the output of
C++ member function in the OMF86 output
file.

 DESTRUCTORS
NODESTRUCTORS

 This option enables or disables the output of
C++ destructors in the OMF86 output file.
Some tools may not be able to handle C++
destructor syntax so enable this option only if
it is supported by your tools.

 OPERATORS This option enables or disables the output of
C++ operators in the OMF86 output file.

 DEBUG

 Chapter 4, Configuration file directives 51

NOOPERATORS Some tools may not be able to handle C++
operator syntax so enable this option only if it
is supported by your tools.

 CLASSTEMPLATES
NOCLASS-
TEMPLATES

 This option enables or disables the output
of C++ templates in the OMF86 output
file.

 SPACES
NOSPACES

 This option enables or disables the removal
of spaces from symbols.

 PARAMETERS
NOPARAMETERS

 This option enables or disables the
inclusion of function parameters in C++
function names.

 SPECIALS
NOSPECIALS

 This option enables or disables the output
of special C++ characters in names.

 ALLEXTENSIONS
NOEXTENSIONS

 This option enables all C++ extensions,
except BIGTYPES or disables all
extensions.

 Because of limited support for C++ types and symbols, C++
developers may wish to enable additional C++ OMF output.

 Each of the DEBUG arguments can be specified using the Paradigm
C++ Locator command line options, as shown below.

 -Od NONE
 -Od- ALL
 -Oe EXTENSIONS
 -Oe- NOEXT
 -Oi IC86
 -Oi- NOIC86
 -Ol LINES
 -Ol- NOLINES
 -Op PUBLICS
 -Op- NOPUBLICS
 -Ot TYPES
 -Ot- NOTYPES
 -Ox SYMBOLS

 +
 Command line

options

 DEBUG

 Paradigm C++ Locate Reference Manual 52

 -Ox- NOSYMBOLS
 -Oea[-] Enable/disable all C++ extensions
 -Oec[-] Enable/disable C++ class translation
 -Oed[-] Enable/disable C++ destructor support
 -Oee[-] Enable/disable enumeration extensions
 -Oem[-] Enable C++ member function extensions
 -Oeo[-] Enable C++ operator extensions
 -Oep[-] Enable C++ parameter extensions
 -Oes[-] Enable space removal from C++ names
 -Oet[-] Enable/disable OMF large types
 -Oex[-] Enable/disable C++ template support
 -Oez[-] Enable C++ special symbol extensions

 This directive only affects the output of the Paradigm C++ Locator
when the ABSFILE OMF86 directive or -Aomf command line option
is in effect.

 debug notypes nosymbols \
 nopublics nolines

debug none // Same as above

 Notes

 Examples

 DISPLAY

 Chapter 4, Configuration file directives

 53

 The DISPLAY directive controls the level of diagnostic information
output emitted by the Paradigm C++ Locator during the processing of
input and output files.

 The Locator can display the names of each output file as it is being
written, display compression statistics, or track module names as they
are processed to indicate the progress towards completion.

 DISPLAY option [option ...]

 The option argument can be selected from one of the following
options

 NONE Disables all display diagnostics.

 FILES Displays the filenames of the output files as
they are processed.

 MODULES Displays the modules names found in the
input files as they are processed.

 COMPRESSION Enables the display of compression statistics
for compressed classes.

 ALL Enables the display of all the Paradigm C++
Locator diagnostics.

 The DISPLAY directive options can also be specified from the
command line as follows

 -d0 NONE
 -d1 FILES
 -d2 MODULES
 -d3 COMPRESSION
 -d4 ALL

 display files compression
display all
display none

 Description

 Syntax

 Options

 Command line
options

 Examples

 DUPLICATE

 Paradigm C++ Locate Reference Manual 54

 The DUPLICATE directive is used to make a copy of a class.
Typically, the copy of the class is located in the EPROM address
space to be used to initialize RAM by the startup code.

 DUPLICATE src_class dest_class

 DUPLICATE makes a copy of the class src_class and appends it to
the class dest_class, creating the dest_class class if it does not already
exist.

 None

 If the duplicated class already exists, the newly made copy will be
concatenated to the existing class; otherwise, the new class is simply
created. The segments in the duplicated class keep the same segment
names and offsets, but pick up the name of the new class. The same
offsets are kept to permit multiple classes to be concatenated together
into a single duplicated class while preserving the address relationships
between the classes.

 This is the method used to make copies of initialized data for
placement in EPROM. Since the first segment in the duplicated class
has been defined in the startup code and has a physical address, and
the length of the original class is known, it is a simple matter for the
compiler startup code to copy the class from EPROM to RAM.

 dup DATA ROMDATA // Copy class DATA

class DATA = 0x0040 // DATA at 00400H
class CODE = 0xfc00 // CODE at FC000H

order CODE ROMDATA // ROMDATA after CODE

 Description

 Syntax

 Options

 Command line
options

 Notes

 Example

 HEXFILE

 Chapter 4, Configuration file directives 55

 The HEXFILE directive is used to create hex and binary files suitable
for download to an EPROM programmer. You can use as many
HEXFILE directives as desired in a configuration file to create any
number of different output files.

 If you choose to create multiple output files in a single pass of the
Paradigm C++ Locator, be sure to use the FILENAME option to
name the output file for each HEXFILE directive so that the Locator
will not overwrite any of the files.

 HEXFILE [INTEL80|INTEL86|BINARY|TEKHEX] \
 [OFFSET=addr] \
 [SIZE=size] \
 [SPLIT=split] \
 [FILL=fill] \
 [LENGTH=len] \
 [TRUNCATE] \
 [EOFRECORD | NOEOFRECORD] \
 [ENTRYPOINT | NOENTRYPOINT] \
 [FILENAME=file]

 The following is a description of the HEXFILE options.

 INTEL80
INTEL86
INTEL386
BINARY
TEKHEX

 These mutually exclusive arguments select one of
the following output file types. The number in
parentheses indicates the maximum size of the
address space supported by each file type.
 INTEL80 Intel hex (64KB)
 INTEL86 Intel extended hex (1MB)
 INTEL386 Intel 386 extended hex (1MB or
 16MB)
 BINARY Binary (1MB)
 TEKHEX Tektronix hex (64KB)

 INTEL86 is the default output file type for the
HEXFILE directive.

 OFFSET The OFFSET option is used to select a subset of
the 1MB address space. The address defined in
addr is used as the base for any subsequent file

 Description

 Syntax

 Options

 If left unspecified, the
address for the OFFSET

argument defaults to 0.

 HEXFILE

 Paradigm C++ Locate Reference Manual 56

operations.

 For example, to burn a 32KB EPROM using the
Intel hex format that starts at address F8000H, the
offset field should be set to F8000H, which makes
offset 0000H within the EPROM correspond to
offset F8000H of the address space.

 SIZE The SIZE option is used to set an upper limit on
the image size (in KB), up to the upper limit
imposed by the output file type. The size field can
be any value from 1 (a 1KB EPROM image) up to
1024 (a full 1MB EPROM image).

 The default image size is the maximum size of the
selected output file type, except for binary files
which default to 32K bytes.

 SPLIT The SPLIT option is used to extract a set of 1 to 4
EPROM files from the specified region, where
each file corresponds to a memory bank. Splitting
the EPROM image is normally required when
working with 16- and 32-bit buses implemented
using 8-bit wide EPROMs. The split field can take
on the values 1, 2 or 4 with 1 being the default
value.

 FILL The FILL option is used to inform the Paradigm
C++ Locator of the value of the background fill
character for use in binary output. The fill
character defines the background pattern for binary
files; all other file types require that the EPROM
programmer be used to set the fill prior to
downloading the file. If not specified, the fill
character defaults to 0FFH.

 LENGTH The LENGTH options lets you change the record
length for hex output files. The default hex record
contains a maximum of 16 bytes per record. Using
this option, you can change the record length from

 If you are creating multiple
EPROM images using the
SPLIT option, each image

will be the selected size.

 Intel extended hex files
cannot be split due to the

presence of segment
records.

 This option used to be
called PAD in previous

versions of the Paradigm
C++ Locator.

 HEXFILE

 Chapter 4, Configuration file directives 57

8 to 64 bytes in size.

 TRUNCATE This option is used to create binary files having
only the data contained in the load module. When
this option is not in effect, the size of the binary
output files will be determined by the SIZE option.
When TRUNCATE is used, the file size will be the
minimum of the SIZE option and the offset of the
last data written into the file.

 EOFRECORD
NOEOF-
RECORD

 Enables or disables the placement of the hex file
end of file record in the hex file. This option is used
if multiple hex files will be produced and merged
into a single hex file. This is enabled by default.

 ENTRY-
POINT
NOENTRY-
POINT

 This option will add or remove the hex file entry
point record and is enabled by default.

 FILENAME The FILENAME option sets the output filename
for an EPROM image. If left unspecified, the
output filename defaults to the same filename as
the input file.

 Use slashes (/) instead of backslashes (\) for path name
separators. For example,
file = c:/output/test.hex

 The Paradigm C++ Locator command line can be used to set the
options for a single EPROM image using the following switches:

 Command line
options

 HEXFILE

 Paradigm C++ Locate Reference Manual 58

 -Hb BINARY
 -Hdsize SIZE=size
 -He INTEL86
 -Hffill FILL=fill
 -Hi INTEL80
 -Hllen LENGTH=len
 -Hnfile FILENAME=file
 -Hoaddr OFFSET=addr
 -Hssplit SPLIT=split
 -Ht TEKHEX

 -H options work independent of the configuration file HEXFILE
directive. If you have a HEXFILE directive(s) and -H options in one
single pass of the Locator, LOCATE will first create all EPROM
output based upon the HEXFILE directive, then create an additional
EPROM output based solely upon -H command options.

 The following are the file extensions used by the HEXFILE directive.
File extensions are determined by the file type and cannot be changed.

 Notes

 HEXFILE

 Chapter 4, Configuration file directives 59

 File type/Split 1 2 4

 INTEL86 .HEX --- ---

 INTEL386 .HEX --- ---
 INTEL80 .HEX .HX? .HX?
 BINARY .BIN .BN? .BN?
 TEKHEX .TEK .TK? .TK?

 hexfile intel86

 This example creates an Intel extended output file containing all classes
identified in OUTPUT directives.

 hexfile intel80 offset=0xe0000 file=no1
hexfile intel80 offset=0xf0000 file=no2

 This example is for an 8-bit system having a pair of 64KB EPROMs
in the upper 128KB of the address space. Because the Intel hex file
format can hold at most 64KB of code/data, two HEXFILE directives
are used to create separate EPROM images. The OFFSET option is
used with each HEXFILE directive to specify which 64KB of the
address space we wish to be extracted and placed in the output file.

 hexfile intel80 offset=0xf0000 size=32 file=no1
hexfile intel80 offset=0xf8000 size=32 file=no2

 This example is similar to the preceding example except that only
64KB of address space is available and the SIZE option is used to limit
each output file to the 32KB regions of the address space occupied by
each EPROM.

 hexfile intel80 offset=0xc0000 split=2 file=no1
hexfile intel80 offset=0xe0000 split=2 file=no2

 This final example is for a 16-bit system having a total of 256KB of
EPROM divided into two 128KB banks. In this case the output files
would be NO1.HX0, NO1.HX1, NO2.HX0, and NO2.HX1,
containing the even and odd addresses for each pair of EPROMs.

 Examples

 INITCODE

 Paradigm C++ Locate Reference Manual 60

 The INITCODE directive is used to automatically generate reset
vectors, stack initialization and peripheral register initialization code.
The INITCODE directive accepts a list of peripheral register
assignments that depend on the microprocessor type. This permits
chip select, DRAM refresh and wait state initialization code to be
handled independently of the application and startup code. This
makes it a simple task to ensure the physical ROM and RAM in the
system are addressable before the application is handed control of the
target microprocessor.

 If stack or I/O port initialization code is created using this directive, the
Paradigm C++ Locator will automatically change the entry point to
ensure that the initialization code, if present, is executed in the
following order: reset code, stack initialization, peripheral register
initialization code, and the startup code.

 INITCODE [BOOT386] \
 [RESET | NORESET] \
 [NOTHING] \
 [STACK | NOSTACK] \
 [ioport = data] \
 [OUTBYTE addr16 = value8] \
 [OUTWORD addr16 = value16] \
 [OUTDWORD addr16 = value32] \
 [INBYTE addr16] \
 [INWORD addr16] \
 [INDWORD addr16] \
 [WRITEBYTE addr32 = value8] \
 [WRITEWORD addr32 = value16] \
 [WRITEDWORD addr32 = value32] \
 [READBYTE addr32] \
 [READWORD addr32] \
 [READDWORD addr32] \
 [filename=file.ext CLASS = class_name]

 The INITCODE directive supports the following options:

 BOOT386 Generates a bootstrap instruction compatible

 Description

 Syntax

 Options

 INITCODE

 Chapter 4, Configuration file directives 61

with 386 and later processors.

 RESET
NORESET

 The RESET option enables the generation of a
far jump instruction at address FFFF0H to the
application entry point. The option NORESET
disables the creation of the far jump.

 NOTHING This option is used to force the creation of the
class ??LOCATE, even if there is nothing else
to be added to it. It is useful to allow exact
positioning of the INITCODE jump
instruction.

 STACK
NOSTACK

 The STACK option generates code to initialize
the SS:SP registers with the default stack (the
segment having the stack attribute). If
enabled, the stack initialization code will be
placed in the segment ??STACKINIT in class
??LOCATE.

 ioport

 +

 The ioport option accepts processor peripheral
registers to be initialized from the configuration
file. The order of the I/O or special function
register operations is the order of the port
arguments in the configuration file INITCODE
directive. Any port initialization code created
using the INITCODE directive will be placed
in the segment ??CPUINIT in the class
??LOCATE.

 See appendix D on page 121 for a list of
supported microprocessors and peripheral
registers.

 OUTBYTE
OUTWORD
OUTDWORD
INBYTE
INWORD

 General purpose I/O can also be performed
using the generic forms for input and output.
Note that the input functions discard the input
value and are used only for any side effects.

 INITCODE

 Paradigm C++ Locate Reference Manual 62

INDWORD

 WRITEBYTE
WRITEWORD
WRITEDWORD
READBYTE
READWORD
READDWORD

 Memory and memory-mapped I/O locations
can be written and read with the INITCODE
command. Note that the read functions
discard the input value and are used only for
any side effects.

 INITCODE
NOTHING

 Use this option to create a segment with a far
jump to the application entry point but no other
initializations.

INITCODE filename=file.ext CLASS = class_name assigns the
contents of the binary file file.ext to class class_name and places
the code in the startup code execution list by jumping to the start
and appending a far jump to the next code block in the startup code
sequence at the end of the file.

 The following INITCODE arguments can be specified on the
command line:

 -b RESET
 -b- NORESET
 -s STACK
 -s- NOSTACK

 Peripherals in the Intel 80C186-family are accessed using word-aligned
byte writes. This allows updating a 16-bit chip select register with a
single external bus cycle, even when 8-bit processors are used.

 cputype i80186
initcode reset \
 umcs = 0xf038 \ // UMCS value
 lmcs = 0x0ff8 // LMCS value

initcode outbyte 0xfffe = 0x11

Command line
options

 Notes

 Examples

 LISTFILE

 Chapter 4, Configuration file directives 63

 The LISTFILE directive is used to create listing files containing
information such as a segment map, lists of public and local symbols
and source line numbers. There is no limit on the number of
LISTFILE directives used in a configuration file, permitting multiple
output files with different reports to be created in a single pass.

 If you choose to create multiple output files in a single pass of the
Paradigm C++ Locator, be sure to use the FILENAME option to
name the output file of each LISTFILE directive so that the Locator
will not overwrite any of the files.

 The Paradigm C++ Locator can only output listings for information to
which it has access. If there is no debugging information in the input
file, the Locator will be restricted to creating the segment and region
maps.

 LISTFILE[SEGMENTS] \
 [PUBLICS [(BY ADDRESS|BY NAME)] \
 [COLUMNS=(1 | 2)] \
 [WIDTH=(80 | 132)] \
 [SYMBOLS] \
 [LINES] \
 [REGIONS] \
 [CHECKSUMS] \
 [FILENAME=file]

 The following options control the different fields in the Paradigm C++
Locator map file:

 SEGMENTS The SEGMENTS option is used to create an
absolute segment map showing the starting
address, ending address and length for each
segment in the application.

 REGIONS The REGIONS option is used to include a copy of
the memory address space assignments specified
in the MAP directives and their usage.

 CHECKSUMS The CHECKSUMS option is used to include the

 Description

 Syntax

 Options

 LISTFILE

 Paradigm C++ Locate Reference Manual 64

details of any checksums or CRCs used by the
application, including the starting addr, ending
addr and checksum value.

 PUBLICS
COLUMNS
WIDTH

 The three PUBLICS options are used to control
the output of public symbols in the Paradigm C++
Locator map file. Used alone, PUBLICS will
output the public symbol table sorted first by
name and then by address. You may also qualify
the output to get one or the other by using the
PUBLICS BY NAME or PUBLICS BY
ADDRESS arguments.

 You can use the COLUMNS and WIDTH options
to adjust the number of symbol columns (1 or 2)
or the output width (80 or 132 columns) to create
an optimally-sized public symbol table.

 SYMBOLS The SYMBOLS option controls whether the
extended debugging information, such as local
symbols, appears in the output file organized by
source module.

 LINES The LINES option controls whether or not line
number records appear in the output file organized
by source module.

 FILENAME This option permits you to change the name of the
Paradigm C++ Locator listing file to file. The
default filename is the same as the input file but
with the .LOC extension.

 Use slashes (/) instead of backslashes (\) for path name
separators. For example,
file = c:/output/test.loc

 The following Paradigm C++ Locator command line switches can be
used to select the options for a single LISTFILE directive:

 The default for COLUMNS
is 1 and the default for

WIDTH is 80.

 Be careful - large
applications can create

very large local symbol list
files.

 Command line
options

 LISTFILE

 Chapter 4, Configuration file directives 65

 -Lc COLUMNS=2
 -Ld CHECKSUMS
 -Ll LINES
 -Lnfile FILENAME=file
 -Lp PUBLICS
 -Lr REGIONS
 -Ls SEGMENTS
 -Lw WIDTH=132
 -Lx SYMBOLS

 -L options work independent of the configuration file LISTFILE
directive. If you have a LISTFILE directive(s) and -L options in one
single pass of the Locator, LOCATE will first create all listing output
based upon the LISTFILE directive, then create an additional listing
output based solely upon -L command options.

 listfile segments file=test.loc
listfile publics lines symbols segments

 Examples

 MAP

 Paradigm C++ Locate Reference Manual 66

 The MAP directive is used to assign an access attribute to a region of
the memory address space. These attributes are then used by the
Paradigm C++ Locator to verify that reserved regions of the memory
address space are vacant. The Locator will report the use of reserved
regions, or a segment spanning regions with different attributes.
Warnings will also be generated if the Locator detects segments
mapped in read-only regions are not being output, or segments
mapped in non-read-only regions are being output.

 Please note that the MAP directive does not assign physical addresses
to segments. The purpose of the MAP directive is to describe the
target address space partitions so that the Paradigm C++ Locator can
check for overlaps and errors.

 MAP [name] addr TO addr AS memtype

 The following fields must be defined in each MAP directive.
 name An optional name to be associated with the region.

 addr
addr

 The first argument defines the start of the region of
the memory address space to be mapped while the
second argument defines the end of the region,
where the first address must be less than or equal to
the second.

 memtype The memtype field is used to assign one of the
following access attributes to the region.
 RDONLY Read only address space
RDWR Read/write address space
RESERVED No access
MMIO Memory-mapped I/O
IRAM Internal RAM
SFR Special function registers

 None

 map my_data 0x00000 to 0x0ffff as rdwr
map 0x10000 to 0xEFFFF as reserved
map 0xF0000 to 0xFFFFF as rdonly

 Description

 Syntax

 Options

 Command line
options

 Examples

 ORDER

 Chapter 4, Configuration file directives

 67

 The ORDER directive is used to concatenate one or more classes
relative to the anchoring class. The ORDER directive is important
since it allows unrelated classes to be grouped together in the memory
address space, independent of the lengths of the individual classes.

 ORDER anchor_class class_list

 The first argument anchor_class is the anchor class and must appear
in a CLASS directive or in a previous ORDER directive. The classes
defined in the argument class_list are then located contiguous to the
anchor class, subject to the class alignment requirements.

 None

 order DATA BSS STACK // RAM classes

order DATA BSS // Same as above
order BSS STACK

order DATA \ // Still the same
 BSS \
 STACK

 Description

 Syntax

 Options

 Command line
options

 Examples

 OUTPUT

 Paradigm C++ Locate Reference Manual 68

 The OUTPUT directive is used to specify the classes containing code
or data destined for any of the output files created with the ABSFILE
or HEXFILE directives.

 OUTPUT class_list

 The argument class_list is a list of one or more class names that are to
be placed in the output file.

 Classes containing program code and constant data must be named in
an OUTPUT directive to be available when the system is powered up
and initialized. Other classes, such as those containing uninitialized
data or the program stack, require only to be assigned a physical
address. While these classes are assigned a position within the
memory address space, they do not need to appear in the output file
since they contain only uninitialized data.

 Warnings will be generated if the Paradigm C++ Locator detects that
segments mapped in read-only regions are not in output or segments
mapped in non-read-only regions are in output.

 None

 output CODE ROMDATA // One style

output CODE // Another style
output ROMDATA

 Description

 Syntax

 Options

 Command line
options

 Examples

 SEGMENT

 Chapter 4, Configuration file directives 69

 The SEGMENT directive is used to assign a physical address to a
segment, independently of the segment's membership in a class.
While supported in the Paradigm C++ Locator, it is strongly
recommended that segments be placed in unique classes to place them
anywhere in the address space.

 SEGMENT segname=addr16

 The segment segname is assigned the 16-bit physical segment
specified by the addr16 argument.

 SEGMENT directives are always processed before CLASS directives
to allow the removal of the segment from the class before physical
addresses are assigned to the class.

 There is a restriction on the use of the SEGMENT directive in that it
cannot be used to set the address of any segment that is a member of
a group. Segments within a group have segment fixups relative to the
group base and all offsets are from the group base, not the start of the
segment.

 None

 segment MY_CODE=0xfc00
segment TEST_TEXT=0x0800

 Description

 Syntax

 Options

 +

 Command line
options

 Examples

 WARNINGS

 Paradigm C++ Locate Reference Manual 70

 The WARNINGS directive is used to enable or disable the warning
diagnostics output by the Paradigm C++ Locator. Either individual
warnings or all warnings can be enabled or disabled.

 WARNINGS ALL \
 NONE \
 EXITCODE=n \
 warn_list

 The options ALL or NONE enable or disable all warnings.

 The EXITCODE option can be used to have the Paradigm C++
Locator return a non-zero exit code should any warnings be detected
during the processing of the input files.

 The option warn_list is one or more warning diagnostics identifiers,
prefixed with a '+' to enable the warning or a '-' to prevent the warning
from being displayed. A list of warnings organized by number can be
found in Appendix A of this manual.

 The WARNINGS directive is useful to eliminate certain warnings that
occur each time the Paradigm C++ Locator is used - such as the
register variable warning for OMF86 output. To disable a warning
permanently, you should add the appropriate command line version of
this directive to your LOCATE.OPT file.

 The following command line switches can also be used to enable or
disable warning diagnostics:

 -w+Wid WARNINGS +Wid
 -w-Wid WARNINGS -Wid
 -w+ WARNINGS ALL
 -w- WARNINGS NONE

 -W- WARNINGS EXITCODE=0
 -W WARNINGS EXITCODE=1

 warnings -w1001 -w1002 \
 +w1004
warnings exitcode=1

 Description

 Syntax

 Options

 The default state for all
warning diagnostics is

enabled.

 Command line
options

 Examples

 Chapter 5, Command line options 71

 C H A P T E R

 5

 Command line options

 In addition to the configuration file directives described in the previous
section, the Paradigm C++ Locator can process options from the
command line or a special file that the Locator searches for each time
it is run. These options enable the Locator user to define the default
behavior of the Locator and provide a convenient means to override
the default when circumstances dictate a different response. Whether
defined on the command line or in an option file, the syntax used for
the command line options is the same.

 Command line options
 When defined on the command line, all the Paradigm C++ Locator
options are preceded by the hyphen ('Ä') character and are separated
from the Paradigm C++ Locator program name, any other command
line options, and the application filename by one or more spaces or
tabs.

 locate [option [option ...]] filename

 where the filename defaults to the extension .ROM. The Paradigm
C++ Locator will then look for the files filename.MAP and
filename.CFG, unless overridden by command line options.

 The following are some typical examples of the Paradigm C++
Locator command line options:

 Paradigm C++ Locate Reference Manual 72

 locate -b myfile
locate -Aomf -Anherfile.omf herfile

 In addition to the options specified on the command line, additional
options can be placed in the LOCATE.OPT; option file.
LOCATE.OPT options can be listed on the same line separated by
spaces or tabs or can be placed on multiple lines as shown below.

 -Xoomf -Xlmp2
-Aomf

 When you run the Paradigm C++ Locator, it looks for LOCATE.OPT
in the current directory. If it is not found and you are running DOS
3.3 or higher, the directory containing the Locator will be searched for
this file.

 We have seen that the Paradigm C++ Locator can receive option input
from three different sources; the command line, the LOCATE.OPT
file, and the configuration file. Should conflicting options be specified,
the processing order (from lowest to highest priority) of options is:

n LOCATE.OPT options
n configuration file directives
n command line options

 This processing order permits options defined in either the
configuration file or on the DOS command line to override the default
options in the LOCATE.OPT file, while command line options can
also be used to override any options specified in the configuration file.

 Summary of options
 Table 5.1 is a summary of the command line options accepted by the
Paradigm C++ Locator. Each of the options is described in further
detail later in this section, where the different options are organized
into related groups.

 LOCATE.OPT file

 Option priorities

 Chapter 5, Command line options 73

 Option Page Function

 -Apdxx 84 Select AXE86 absolute file output
 -Ad 84 Disable absolute output file
 -Anfile 84 Supply a filename for the absolute output file
 -Aomf 84 Select OMF86 absolute file output
 -b 74 Enable reset vector generation
 -b- 75 Disable reset vector generation
 -cfile 79 Specify a different configuration file name
 -Dmacro 74 Define macro
 -Dmacro=text 74 Define macro to text
 -d0 75 Disable processing diagnostics
 -d1 75 Enable filename processing diagnostics
 -d2 75 Enable filename and module processing diagnostics
 -d3 76 Enable compression diagnostics
 -d4 76 Enable all processing diagnostics
 -Ee 76 Enable the error/warning log
 -Enfile 76 Supply a filename for the error/warning log
 -Hb 80 Select a binary EPROM output file
 -Hdsize 80 Specify the EPROM size in KB
 -He 80 Select Intel extended hex EPROM output
 -Hffill 80 Specify the EPROM fill character
 -Hi 81 Select Intel hex EPROM output
 -Hllen 81 Select hex record length
 -Hnfile 81 Supply a filename for the EPROM output file
 -Hoaddr 81 Specify the EPROM file offset
 -Hssplit 81 Specify the EPROM split size
 -Ht 81 Select Tektronix hex EPROM output
 -Lc 82 Set public symbol display columns to 2
 -Ld 82 Write checksum statistics to listing file
 -Ll 82 Write line numbers to listing file
 -Lnfile 83 Supply a filename for listing file
 -Lp 83 Write public symbols to listing file
 -Lr 83 Write the region map to listing file
 -Ls 83 Write the segment map to listing file
 -Lw 83 Set public symbol output width to 132 columns
 -Lx 83 Write extended debug information to listing file
 -Od[-] 77 Enable/disable all OMF86 debug information
 -Oe[-] 78 Enable/disable Paradigm OMF86 extensions

 Table 5.1
Command line summary

 Paradigm C++ Locate Reference Manual 74

 -Ol[-] 78 Enable/disable output line number records
 -Op[-] 78 Enable/disable public records in OMF86 output
 -Ot[-] 79 Enable/disable type records in OMF86 output
 -Ox[-] 79 Enable/disable symbol records in OMF86 output
 -q 75 Disable sign on displays
 -s 75 Enable stack initialization code
 -s- 75 Disable stack initialization code
 -W 76 Enable a non-zero exit code on warnings
 -w+ 77 Enable the display of all warnings
 -w- 77 Disable the display of all warnings
 -w-Wxxxx 77 Disable the display of warning Wxxxx
 -w+Wxxxx 77 Enable the display of warning Wxxxx
 -Xaext 85 Set the default AXE86 output file extension
 -Xcext 85 Set default configuration file extension
 -Xlext 85 Set the default listing file extension
 -Xmext 85 Set the default linker map file extension
 -Xoext 85 Set the default OMF86 output file extension

 Macros for the LOCATE configuration file can be defined on the
command line with the -D command line option.

 -Dname Defines the macro identifier name and sets its value
to 1.

 -Dname=text Defines the macro identifier name and sets its value
to text.

 The following options permit the Paradigm C++ Locator to
automatically generate the reset vector and stack initialization code:

 -b Enables the automatic creation of a reset vector
pointing to the program entry point and places the
code at the absolute address FFFF0H.

 Directive: INITCODE RESET

 Defining macros

 Initialization

 Chapter 5, Command line options 75

 -b- Disables any reset vector code generation (the
default).

 Directive: INITCODE NORESET

 -s Enables the automatic creation of initialization code
for the SS:SP register pair and places it in the class
??LOCATE.

 Directive: INITCODE STACK

 -s- Disables any stack initialization code (the default).

 Directive: INITCODE NOSTACK

 The following set of options control the display of diagnostic
messages. The Paradigm C++ Locator gives you complete control
over the display of output diagnostics and log files, plus the ability to
customize the display of individual warning messages.

 These options control the display of the Paradigm C++ Locator
copyright and version information when the Locator is first started.

 -q Disables the output of the Paradigm C++ Locator
copyright and version displays.

 Processing diagnostics enable the Paradigm C++ Locator to keep you
informed of which files and modules are being processed and where
errors and warnings are being generated.

 -d0 Disables the output of all processing diagnostics
(the default).

 Directive: DISPLAY NONE

 -d1 Enables the display of the filename of each file as it
is processed by the Paradigm C++ Locator.

 Directive: DISPLAY FILES

 -d2 Enables the display of the filename of each file as it
is processed by the Paradigm C++ Locator, along

 Diagnostics

 Startup display

 Processing
diagnostics

 Paradigm C++ Locate Reference Manual 76

with the module names from the input files. This
mode is especially useful to help identify which of
the input modules is generating errors or warnings.

 Directive: DISPLAY MODULES

 -d3 Enables the display of compression diagnostics.
Use this display mode to see how much the
Paradigm C++ Locator is compressing your
classes.

 Directive: DISPLAY COMPRESSION

 -d4 Enables the display of all diagnostics.

 Directive: DISPLAY ALL

 The Paradigm C++ Locator can keep a log file containing all errors,
warnings and output diagnostics. These options allow you to enable,
disable and name the error log managed by the Paradigm C++
Locator.

 -Ee Enables the creation of an error/warning log file.
Unless overridden with the -En option, the log will
have the same filename as the input file with the
.ERR extension.

 -Enfile Specifies a filename to be used for the
error/warning log and enables logging diagnostic
output to the file. If no filename is specified in the
file field, the Paradigm C++ Locator will use the
default filename for log files.

 By default, the Paradigm C++ Locator returns a zero exit code if
processing is successfully completed without any errors. If it is
desirable to have the Locator return a non-zero exit code when
warnings have been issued, such as to stop a build by a MAKE utility,
the -W command line option can be used.

 -W Enables the Paradigm C++ Locator to return a non-

 Error/warning log

 Use
-Ee- to disable the error log.

 Exit code control

 Chapter 5, Command line options 77

zero exit code when warnings have been issued.

 -W- Disables the Locator from returning a non-zero exit
code when warnings have been issued.

 The warning control options permit individual warnings to be enabled
or disabled, making it easy to filter out any warnings which are
harmless but distracting.

 -w- Disables the display of all warning diagnostics.

 Directive: WARNINGS NONE

 -w+ Enables the display of all warning diagnostics (the
default).

 Directive: WARNINGS ALL

 -w-Wxxxx Disables the display of warning Wxxxx.

 Directive: WARNINGS -Wxxxx

 -w+Wxxxx Enables the display of warning Wxxxx.

 Directive: WARNINGS +Wxxxx

 The following group of command line options control how debug
information is treated as the input files are processed into OMF86
output files. By eliminating unnecessary debugging information, the
output file size is reduced and processing speeded up.

 -Od Places all debugging records in the OMF86 output
file (the default).

 Directive: DEBUG ALL

 -Od- Disables all debugging records from appearing in
the OMF86 output file.

 Directive: DEBUG NONE

 Warning diagnostic
control

 OMF86 debug
control

 Paradigm C++ Locate Reference Manual 78

 -Oe Enables the use of the Paradigm OMF86 debug
extensions. See the description on page 51 for the
list of supported OMF86 extensions.

 -Oe- Disables the use of Paradigm OMF86 debug
extensions (the default).

 Directive: DEBUG NOEXT

 -Oi Enables the output of an Intel iC86-compatible
OMF86 file. Intel iC86 supports only one scope
per function, folds all symbols to uppercase and
does not use leading underscores on public
symbols. With this option enabled, the Paradigm
C++ Locator will output an OMF86 file that closely
matches the output from the Intel compiler.

 Directive: DEBUG IC86

 -Oi- Disables the output Intel iC86-compatible OMF86
(the default).

 Directive: DEBUG NOIC86

 -Ol Enables the output of line numbers in the OMF86
output file.

 Directive: DEBUG LINES

 -Ol- Disables the output line numbers in the OMF86
output file. Use this option to strip out line
numbers if they are not needed by your debugger
or in-circuit emulator.

 Directive: DEBUG NOLINES

 -Op Enables the output of public symbols in the
OMF86 output file.

 Directive: DEBUG PUBLICS

 -Op- Disables the output of public symbols in the

 Chapter 5, Command line options 79

OMF86 output file. Use this option to strip out
public symbols if they are not needed by your
debugger or in-circuit emulator.

 Directive: DEBUG NOPUBLICS

 -Ot Enables type information in OMF86 output.

 Directive: DEBUG TYPES

 -Ot- Disables the output of type information in the
OMF86 output file. Use of this option to eliminate
type information if not needed by your debugger or
in-circuit emulator.

 Directive: DEBUG NOTYPES

 -Ox Enables the output of extended debug information
(local symbols and scopes) in the OMF86 output
file.

 Directive: DEBUG SYMBOLS

 -Ox- Disables extended debug information in OMF86
output.

 Directive: DEBUG NOSYMBOLS

 The remaining options have to do with managing the files created and
used by the Paradigm C++ Locator.

 This option permits any file to be used in place of the default
configuration file for the Paradigm C++ Locator.

 -cfile Use the filename file as the LOCATE configuration
file. If not specified in this option, the Paradigm
C++ Locator will use the filename from the load
module with the .CFG extension (unless changed
with the -Xc option).

 File management

 Configuration files

 Paradigm C++ Locate Reference Manual 80

 This group of options control the creation of files suitable for
download to an EPROM programmer. The output file(s) will have the
same filename as the input file with the extension determined by the
file type and number of splits.

 These options can process at most one EPROM image from the
command line. Using the configuration file HEXFILE directive, as
many EPROM images as desired can be created in a single pass of the
Paradigm C++ Locator.

 -H options work independent of the configuration file HEXFILE
directive. If you have a HEXFILE directive(s) and -H options in one
single pass of the Locator, LOCATE will first create all EPROM
output based upon the HEXFILE directive, then create an additional
EPROM output based solely upon -H command options.

 -Hb Selects the binary EPROM format for the output
file. This file format can hold up to 1MB of data.

 Directive: HEXFILE BINARY

 -Hdsize Allows the EPROM size to be selected. The unit
of measurement for the size argument is in KB and
can be value from 1 (1KB EPROM image) to 1024
(a 1MB EPROM image).

 Directive: HEXFILE SIZE=size

 -He Selects the Intel extended hex EPROM format for
the output file. This file format can hold up to
1MB of data.

 Directive: HEXFILE INTEL86

 -Hffill Permits the specification of the fill character for the
unused locations in the EPROM image. Only
binary output files will contain the fill character; all
other formats use it only in checksum/CRC
calculations and it must be set by the EPROM
programmer before loading the EPROM image.
The default fill character is 0xFF.

 EPROM files

 Chapter 5, Command line options 81

 Directive: HEXFILE FILL=fill

 -Hi Selects the Intel hex EPROM format for the output
file. This format can hold up to 64KB of data.

 Directive: HEXFILE INTEL80

 -Hllen This options allows the size of the hex file data
records to be adjusted between 8 and 64 bytes per
record.

 Directive: HEXFILE LENGTH=len

 -Hnfile Specifies a filename to be used for the output
file(s). Note that the file extension is determined
by output file type and split (see the HEXFILE
directive for a table of file extensions). If no
filename is specified in the file field, the Paradigm
C++ Locator will use the default filename.

 Directive: HEXFILE FILENAME=file

 -Hoaddr Allows the specification of an address space offset
to permit Intel hex, binary and Tektronix hex files
to select the subset of the 1MB address to be
included in the output file. The argument addr is a
20-bit physical address and defaults to zero if not
specified.

 Directive: HEXFILE OFFSET=addr

 -Hssplit Specifies the EPROM split count (1, 2 or 4) in the
split argument. Splitting Intel extended hex files is
not allowed as they contain segment information.
The default split is 1.

 Directive: HEXFILE SPLIT=split

 -Ht Selects the Tektronix hex EPROM format for the
output file. This format can hold up to 64KB of
data.

 Paradigm C++ Locate Reference Manual 82

 Directive: HEXFILE TEKHEX

 This group of options control the creation of a listing file containing
design documentation using the target system addresses. The output
file will have the same filename as the input file with the .LOC
extension (unless changed with the -Xl option).

 This option can process at most one listing file from the command
line. Using the configuration file LISTFILE directive, as many listing
files as desired can be created in a single pass of the Paradigm C++
Locator.

 -L options work independent of the configuration file LISTFILE
directive. If you have a LISTFILE directive(s) and -L options in one
single pass of the Locator, LOCATE will first create all listing output
based upon the LISTFILE directive, then create an additional listing
output based solely upon -L command options.

 -Lc Sets the number of symbol columns for the public
symbol tables to use two columns. This option
results in a more compact display when many
public symbols are part of the application.

 Directive: LISTFILE COLUMNS=2

 -Lc- Sets the number of symbol columns for the public
symbol tables to use a single column.

 Directive: LISTFILE COLUMNS=1

 -Ld[-] This option enables the output of the checksum
map to the listing file. If no CHECKSUM
directives are present in the configuration file, no
output will be generated.

 Directive: LISTFILE CHECKSUMS

 -Ll[-] Writes the source module name and line numbers
to the listing file. If no line numbers are present in
the input file, no output will be generated.

 Use the -Ll- option to disable the inclusion of line
number in the listing file.

 Listing files

 Chapter 5, Command line options 83

 Directive: LISTFILE LINES

 -Lnfile Supplies a filename for the listing file. If no
filename is specified in the file field, the Paradigm
C++ Locator will use the default filename.

 Directive: LISTFILE FILENAME=file

 -Lp[-] Writes the public symbols sorted by name and by
address to the listing file. If no public symbols are
present in the input file, no output will be
generated.

 Directive: LISTFILE PUBLICS

 -Lr Writes the memory address space attribute map to
the listing file.

 Directive: LISTFILE REGIONS

 -Ls Writes the absolute segment map to the listing file.

 Directive: LISTFILE SEGMENTS

 -Lw Sets the width of the output for the public symbol
table to 132 columns. Using this option can
prevent the clipping of public symbols when the
two column format is used.

 Directive: LISTFILE WIDTH=132

 -Lw- Sets the width of the output for the public symbol
table to 80 columns.

 Directive: LISTFILE WIDTH=80

 -Lx Writes the local symbols and other debugging
information to the listing file. If the extended
debug information is not available in the input file,
no output will be generated.

 Directive: LISTFILE SYMBOLS

 Paradigm C++ Locate Reference Manual 84

 These options control the type of absolute output file created by the
Paradigm C++ Locator. Unless you plan to use a debugger (like the
integrated debugger) or an in-circuit emulator, there is no need to
create an absolute output file with debug information. These options
can be set from the configuration file using the ABSFILE directive.

 -Ad Disables the creation of any absolute output file
(the default).

 Directive: ABSFILE NONE

 -Anfile Supplies a filename to be used for the absolute
output file. If no filename is specified in the file
field, the Paradigm C++ Locator will use the
default filename.

 Directive: ABSFILE FILENAME=file

 -Aomf Selects an Intel OMF86 output file. The output file
will have the same filename as the input file with
the .ABS extension (unless changed with the -Xo
option). The format and debug information
content of the OMF86 file are controlled by the
-D? options.

 Directive: ABSFILE OMF86

 -Apd60
-Apd50
-Apd40
-Apd31
-Apd30
-Apd20
-Apd10

 Selects the Paradigm AXE86 output file format for
a specific version of the integrated debugger. The
output file will have the same filename as the input
file with the .AXE extension (unless changed with
the -Xa option).

 Directive: ABSFILE AXE86

 The Paradigm C++ Locator comes with a set of default file extensions
for input and output files but you can choose your own if you don't
care for the default extensions. While these options can be used on
the command line, they are much better suited for inclusion in the
LOCATE.OPT; file.

 Absolute files

 Filename
extensions

 Chapter 5, Command line options 85

 The argument ext in the -X? options must be three characters or less;
otherwise an error will be reported. If no file extension is specified,
the -X? switch will restore the default file extension used by the
Paradigm C++ Locator.

 -Xaext Sets the default file extension for files using the
Paradigm AXE86 format.

 Default: .AXE

 -Xcext Sets the default file extension for the LOCATE
configuration file.

 Default: .CFG

 -Xlext Sets the default file extension used by listing files
created with the -L? options or the LISTFILE
directive.

 Default: .LOC

 -Xmext Sets the default file extension used to open the
segment map produced by the linker.

 Default: .MAP

 -Xoext Sets the default file extension used for output files
in the Intel OMF86 format.

 Default: .ABS

 None of these options can
be set with configuration file

directives.

Paradigm C++ Locate Reference Manual86

Chapter 6, Checksums and CRCs 87

 C H A P T E R

 6

 Checksums and CRCs

 Adding checksums or CRCs (cyclic redundancy checks) to an
application can provide a higher degree of protection against the failure
of a device in the field, or the ability to detect an incorrect update of a
system employing technology such as flash EPROMs.

 The Paradigm C++ Locator offers a number of checksum and CRC
options, each designed to address the needs of applications using
embedded PCs, or those that need the greatest degree of fault
protection in the target system. The CHECKSUM directive is used to
define a region of the target system address space to be included in a
checksum or CRC calculation, the background fill to be used by any
undefined addresses within the region, and optionally specify the exact
position to place the calculated checksum or CRC.

 Here we introduce the general concept of a checksum or CRC but we
don't go into too much detail as there is nothing better than a working
example. For more information and for an actual application
employing checksums and CRCs, see the compiler examples available
on the Paradigm C++ distribution disk.

 ROMBIOS checksums
 The CHECKSUM directive uses the ROMBIOS option to select the
checksum technique used by the IBM PC ROM BIOS for ROM
BIOS extensions. This technique uses a simple sum of bytes, carries

 Look for the example
CRCDEMO in the

EXAMPLES subdirectory
for your compiler.

Paradigm C++ Locate Reference Manual88

ignored, which must sum to zero to be accepted as a legitimate ROM
BIOS extension. The PC ROM BIOS scans the ROM BIOS address
space looking for the signature bytes, 55H, AAH, followed by the
count of 512 byte blocks when performing the extension ROM BIOS
scan during the BIOS initialization phase.

 If the ROM BIOS finds a valid signature during the expansion ROM
BIOS scan, the ROM BIOS will calculate the checksum of the region
using the block count field. If the checksum is zero, the ROM BIOS
will perform a far call to the ROM BIOS extension entry, which is
located immediately following the expansion ROM BIOS block count
field.

 Defining a PC ROM BIOS extension requires that the signature and
block size be added to the start of a segment that will be placed on a
2KB boundary. The CHECKSUM directive placed in the LOCATE
configuration file should look like:

 CHECKSUM addr1 TO addr2 ROMBIOS

 where addr1 and addr2 define the size of the ROM BIOS extension,
minus one, since the default position for the calculated PC BIOS
extension checksum is immediately following the end of the region.
You can also place the address elsewhere using the ADDRESS option,
but the checksum byte must be within the region of the memory
address space determined by the signature and block count in order to
be recognized as a legitimate ROM BIOS extension.

 For example, the CHECKSUM directive for a ROM BIOS extension
occupying the region E0000H to 0EFFFFH would be

 CHECKSUM 0xe0000 TO 0xefffe ROMBIOS

 If a non-zero fill value is used, the CHECKSUM directive FILL option
must be used as it will affect the calculated checksum.

 CRC-16 checksums
 The CRC-16 checksum is an improvement over the simple sum of
bytes used in the expansion ROM BIOS checksum. When an
application requires better odds in detecting an error condition, a CRC

 You can also set the
background fill that will be

used so the final checksum
calculation is correct.

Chapter 6, Checksums and CRCs 89

check is much more capable of finding not only single errors, but also
multiple errors.

 Defining a CRC-16 checksum is done in an identical fashion to that
used in the PC ROM BIOS example:

 CHECKSUM addr1 TO addr2 CRC16

 where addr1 and addr2 define the size of the address to have the
CRC-16 calculated, minus two, since the default position for the
calculated CRC-16 is immediately following the end of the region.
(We need to leave the last two bytes free to hold the calculated CRC.)
If necessary, you can specify a different address to hold the calculated
CRC using the ADDRESS option. Unlike the PC ROM BIOS
extension, you could store the calculated CRC separately, as shown in
the following example:

 CHECKSUM 0xE0000 TO 0xFFFFF CRC16 ADDRESS=0x80000
FILL=0xff

 If the checksum is included in the CRC calculation, the result should
be zero.

 The polynomial and initial value used by the Paradigm C++ Locator to
calculate the 16-bit CRC is

 0xA001U (polynomial)
0x0000U (initial value)
0x0000U (final value)

 The following C code can be used to calculate the 16-bit CRC in the
target system and is taken from the file CRC16.C, available in the
EXAMPLES\CRCDEMO directory on the Paradigm C++ distribution
disk. This is a complete working example which defines a CRC-16
region and verifies that the checksum is correct. For more information
on the CRC-16 polynomial and the initial value, refer to the file
CHECKSUM.H in the same directory.

 /* Pass thru the buffer and add the new data to the checksum */
wCRC = CRC16_INIT ;
while (dwStart <= dwStop) {
 /* Build a pointer to the start of the next calculation */
 pByte = MK_FP((UINT)(dwStart >> 4), (UINT)(dwStart & 0xf)) ;

 You can also specify the
background fill if it is not

zero.

 CRC-16 details

 Figure 6.1
CRC-16 polynomial and

initial value.

 Figure 6.2
CRC-16 checksum

algorithm.

Paradigm C++ Locate Reference Manual90

 /* Compute the size of the buffer */
 wSize = (UINT) min(CRC_BUFSIZE, dwStop - dwStart + 1) ;

 /* Adjust the starting position by the buffer size */
 dwStart += wSize ;

 /* Calculate the CRC on the region */
 while (wSize--) {
 wIndex = (UINT8) (*pByte++ ^ wCRC) ;
 wCRC >>= 8 ;
 wCRC ^= wCRCTable[wIndex] ;
 }
}

/* Return the computed CRC */
return wCRC ^ CRC16_FINAL ;

 CRC-32 checksums
 The CRC32 option works identically as the 16-bit CRC option, except
that a different polynomial and algorithm is used.

 Defining a CRC32 checksum is done in an identical fashion:

 CHECKSUM addr1 TO addr2 CRC32

 where addr1 and addr2 define the size of the address to have the
CRC-32 calculated, minus four, since the default position for the
calculated CRC-32 is immediately following the end of the region.
(We need to leave the last four bytes free to hold the calculated CRC.)
If necessary, you can specify a different address to hold the calculated
CRC using the ADDRESS option.

 The polynomial and initial value used by the Paradigm C++ Locator to
calculate the 32-bit CRC is

 0xEDB88320UL (polynomial)
0xFFFFFFFFUL (initial value)
0xFFFFFFFFUL (final value)

 The following C code is used to calculate the 32-bit CRC in the target
system and is taken from the file CRC32.C, available in the
EXAMPLES\CRCDEMO directory on the Paradigm C++ distribution
disk. This is a complete working example which defines a CRC-32
region and verifies that the checksum is correct. For more information

 CRC-32 details

 Figure 6.3
CRC-32 polynomial and

initial value.

Chapter 6, Checksums and CRCs 91

on the CRC-32 polynomial and the initial value, refer to the file
CHECKSUM.H in the same directory.

 /* Pass thru the buffer and add the new data to the checksum */
dwCRC = CRC32_INIT ;
while (dwStart <= dwStop) {
 /* Build a pointer to the start of the next calculation */
 pByte = MK_FP((UINT)(dwStart >> 4), (UINT)(dwStart & 0xf)) ;
 /* Compute the size of the buffer */
 wSize = (UINT) min(0x8000, dwStop - dwStart + 1) ;

 /* Adjust the starting position by the buffer size */
 dwStart += wSize ;

/* Calculate the CRC on the region */
 while (wSize--) {
 wIndex = (UINT8) (*pByte++ ^ dwCRC) ;
 dwCRC >>= 8 ;
 dwCRC ^= dwCRCTable[wIndex] ;
 }
}
 /* Return the computed CRC */
return dwCRC ^ CRC32_FINAL ;

 Note that the 32-bit CRC32 result will not be zero if the CRC is
included in the CRC calculation.

 Tech tips
 Here are some useful tips to help you get the most out the Paradigm
C++ Locator checksum options:
n Use the CHECKSUM FILL option to set the default state for any

memory regions that are undefined (and do the same with the
debugger before loading the application)

n When debugging, avoid the use of software breakpoints in a
checksum region (they will change the checksum calculation)

n Make sure that all classes in the checksummed region are named in
OUTPUT directives

n LISTFILE CHECKSUMS option displays the details of any
checksums used including the checksum region address range and
checksum value.

 Figure 6.4
CRC-32 checksum

algorithm.

 +

Paradigm C++ Locate Reference Manual92

Chapter 7, Using compression 93

C H A P T E R

7

Using compression

The Paradigm C++ Locator offers a compressed data option for
applications that require a small EPROM footprint yet have modest
amounts of code or initialized data that must be copied from EPROM
to RAM at startup. By discussing the various tradeoffs associated
with compression, we hope to lend some insight into when it is
appropriate to use this advanced feature of the Paradigm C++ Locator
and when it should not be considered.

There are no concrete guidelines when an application should use and
when it is best to avoid compressed initialized data. While the impact
on the EPROM footprint can be significant, compression, (actually
decompression), will cost time as decompression can be from 20 to 50
times slower than straight copying of initialized data from EPROM.
Careful consideration of the different options available can make for
an optimally designed system if the tradeoffs are well understood.

Likewise, the selection of compiler will also prove to be an important
factor in whether compression/decompression will be part of your
embedded application. The supported compilers vary in their ability to
keep constant data and string literals in the EPROM address space,
where the need for copying or decompression can be completely
avoided. In extreme cases, it may be preferable to select the compiler
on the basis of its ability to control the placement of data, just as one
would select the fastest compiler if speed were the dominating factor.

Paradigm C++ Locate Reference Manual94

Compression requirements
Adding compressed data to an application requires that the Paradigm
C++ Locator compress the class and output it to an address within the
EPROM address space. In the target system, the decompression
module must be given the source and destination addresses of the
compressed data, and sufficient stack space to perform the
decompression.

The interface code to the decompression routine lies in a compiler
helper file supplied as part of the Paradigm C++ Locator compiler
support package. When enabled, this code will pass the default source
and destination addresses to the decompression function. If you wish
to add you own compressed classes, this code will need to be modified
to include support for the additional classes.

The final requirement is sufficient stack space for the decompression
code to do its work. While no static data is required, the class
decompression code requires slightly more than 5KB of stack space
during the actual decompression phase. Once completed the stack size
can be set to accommodate the run-time needs of the application.

Compression algorithm
The compression algorithm used by the Paradigm C++ Locator is a
variant of the LZW algorithm. This algorithm was chosen over
competing algorithms for its ability to highly compress the most
commonly found initialized data types, an ability the other
compression algorithm candidates lack.

Most competing solutions use a variant of the run length encoding
(RLE) algorithm which compresses repeating sequences of 8- or 16-bit
data. While an RLE algorithm works well with segments or classes
initialized to a constant value, it fails to deliver acceptable compression
on string literals, arrays of data, or lookup tables. Since all classes
initialized to a constant value, such as the Borland or Microsoft BSS
class, have alternative initializations that are faster and occupy less
space, the RLE algorithm typically fails to deliver acceptable
performance on the most commonly encountered data types.

Check out the
COMPRESS example to

see the use of
compression on FAR

DATA class

Note on decompression
stack size.

Chapter 7, Using compression 95

Paradigm C++ Locate Reference Manual96

Appendix A, Warning diagnostics 97

A P P E N D I X

A

Warning diagnostics

The warnings listed in this appendix indicate potential problems or
relay diagnostic information to the user concerning the translation
process. Each warning message is listed in numerical order and may
be disabled by a command line option or in the configuration file, if
you prefer to ignore the warning.

Paradigm C++ Locate warnings

The following warning diagnostics are produced by the Paradigm C++
Locator while the processing the input files, command line arguments,
or configuration file.

No address assigned to segment 'seg/class'
The identified segment did not appear in a CLASS, SEGMENT or
ORDER directive and no physical address assignment has been made,
leaving the segment to start at address 0x00000.

Unable to translate debug info for 'module':'symbol'
The Paradigm C++ Locator does not support the translation of the
type information for the symbol and the type information is lost from
the debug records.

Message
explanations

W1000

W1001

Paradigm C++ Locate Reference Manual98

Assumed absolute symbol 'name'
The Paradigm C++ Locator failed to successfully translate the segment
address for the specified symbol. While this can indicate a problem, it
is very likely that the symbol is already an absolute address and no
address translation is possible.

Segment constant is larger than 16-bits in 'file', line 'nnn'
The physical address assigned to a segment or class cannot be
represented as a 16-bit unsigned integer and has been truncated.
Segment fixups should have values between 0x0000 and 0xFFFF.

Address 'addr' is large in 'file', line 'nnn'
The specified address in the configuration file directive is too large to
be represented as a 20-bit unsigned integer and has been truncated.

Output data truncated in 'file', line 'nnn'
The output data used in the INITCODE I/O port output argument is
larger than 0xFFFF and has been truncated.

Linker output files have different creation times
The file dates and times for the linker output are different. This
warning may indicate that the relocatable load module (.ROM) and the
corresponding map file (.MAP) were not produced at the same time.
This warning can also occur when a post-processing utility is used to
process the relocatable load module before running the Paradigm C++
Locator.

Segment 'seg' lacks a class name
The segment seg has been declared without a class name. This
segment can only have a physical address assigned using the
SEGMENT directive.

Multiple address assignments made to class 'name'
The class name appears in two or more CLASS or ORDER directives.
The Paradigm C++ Locator only recognizes the first address
assignment made to a class.

W1002

W1003

W1004

W1005

W1006

W1007

W1008

Appendix A, Warning diagnostics 99

Multiple address assignments made to segment 'seg'
The identified segment appears in two or more SEGMENT directives.
The Paradigm C++ Locator only recognizes the first address
assignment made to a segment.

'class' in multiple DUP directives in 'file', line 'nnn'
The Paradigm C++ Locator has found a class named in multiple DUP
directives, perhaps indicating a configuration file problem.

'class' in multiple COMPRESS directives in 'file', line 'nnn'
The named class has turned up in multiple COMPRESS directives,
where only the first directive is effective.

Alias between segments 'seg/class' and 'seg/class'
Two or more segments in different classes share a common segment
fixup and the configuration file directives have assigned unique
physical addresses. This makes the segment translation process for
these segments ambiguous and it is possible for a fixup to be
incorrectly computed. This warning is usually the result of a zero
length segment ending a class.

Overlap between segments 'seg/class' and 'seg/class'
The memory address spaces for the two named segments intersect,
causing one segment to overlap the other. This warning is most likely
due to a segment growing into another segment or an error in the
configuration file address assignments.

Segment 'seg/class' exceeds the 1MB address space
The length of the segment seg in class 'class' extends it beyond the
end of the 1MB address space, preventing all or part of the segment
from being addressed.

Reserved region violation by segment 'seg/class'
All or part of the specified segment is located in a region of the
memory address space that has been marked as reserved using the
MAP directive.

W1009

W1010

W1011

W1012
In the event of an alias, the
Paradigm C++ Locator will
use the address of the first
non-zero length segment.

W1013

W1014

W1015

Paradigm C++ Locate Reference Manual100

Overlap between regions at 'addr' and 'addr'
Two regions defined in configuration file MAP directives share a
common portion of the memory address space yet have different
memory access attributes.

Segment 'seg/class' is mapped to multiple address spaces
The segment ‘seg’ in class 'class' spans two separate regions of the
memory address space having different memory access attributes.

Intel OMF86 does not support register variables
Intel OMF86 debug information does not support the use of register
variables and the debug information was lost. If you are using a
debugger or in-circuit emulator and wish to see the variables assigned
to registers as part of the debug record, you must disable the use of
register variables by your compiler or assembler.

Intel OMF86 does not support object languages
Intel OMF86 does not support languages like C++ or Object Pascal
and object-related debugging information may have been lost.

Intel OMF86 does not support register parameters
Intel OMF86 does not support parameters to functions and procedures
to be passed in registers and the debug information was lost.

Intel OMF86 does not support based pointers
Intel OMF86 debug information does not support the use of based
pointers and the debug information was lost.

Intel OMF86 does not support inline functions
Intel OMF86 does not support inline functions and the debug
information was lost.

Unsigned 32-bit value truncated to 24-bits
Intel OMF86 does not have support for 32-bit unsigned integers and
the corresponding debug information was truncated to 24-bits.

Ambiguous structure detected - type information lost
The Paradigm C++ Locator is unable to determine the size of a
structure and the debug information for the structure has been lost.

W1016

W1017

W1018
Many compilers can

disable the use of register
variables.

W1019

W1020
Pass parameters on the

stack when using Intel
OMF86 files.

W1021

W1022
Disable inline functions

while debugging.

W1023

W1024

Appendix A, Warning diagnostics 101

This warning is caused by insufficient debugging information being
available, often when unnamed structure members are used.

Ambiguous type reference in function 'name'
Due to a lack of debug information output by the compiler, the
parameter names and types for the function name have been lost.
There isn't anything you can do but disable this warning should it
occur.

Type index too large ('index') - type info lost
A type index greater than 07FFFH has been detected in the output and
has been eliminated. This warning is most likely due to an error in the
debugging information or more type records than are supported by
Intel OMF86.

Illegal type index detected for 'symbol'
The named symbol has a type index larger than the maximum defined
for the module and has been eliminated from the debug information.
This warning is caused by an error in the debug information.

Too many line number records in module 'name'
The number of line number records in the module exceed the
capabilities of the Paradigm C++ Locator and have been lost. To
correct this problem, split the offending source module into two or
more parts and rebuild the application.

No 'type' output was written to 'file'
This warning diagnostic occurs when an EPROM output file was
requested but no data was found in the region defined by the base
address and size of the EPROM. This warning is most likely due to
the failure to include the segments in the address space of the EPROM
image in an OUTPUT directive or the failure to define a suitable offset
and size for extracting the EPROM image.

Requested 'type' output exceeds 1MB address space
You are creating a file that exceeds the 1MB address space boundary.
Adjust the SIZE, OFFSET, and/or SPLIT parameters to stay within
the 1MB address space.

W1025

W1026

W1027

W1028

W1030
You probably need to add

OFFSET=0x????? to your
HEXFILE directive.

W1031

Paradigm C++ Locate Reference Manual102

Segment 'seg/class' is output to a memtype region
The Paradigm C++ Locator expects that the segments identified in an
OUTPUT directive are destined for read-only memory yet the
segment seg in class 'class' is assigned to a region mapped as
memtype. While this condition is inappropriate for ROM-based
execution (the segment won't be available if not in EPROM), it is
permitted for downloading a segment to RAM and the warning can be
ignored.

Class 'class' not named in an OUTPUT directive
The named class is in a region of the memory address space defined
with the read-only attribute but the class was not named in a
configuration file OUTPUT directive. This warning may indicate a
potential problem since the class would not be in an EPROM if the
class is not part of an OUTPUT directive.

All segments have been removed from class 'class'
All of the segments in the named class have been assigned addresses
using the SEGMENT directive. Including the class in an ORDER
directive has no effect on the address assignments and can be
eliminated.

Debug information nesting error, fixup applied
The Paradigm C++ Locator has detected a scoping error in the input
debug information and has attempted to fix the error by supplying the
missing scopes. This warning is usually accompanied by a warning
from the compiler that debug information was lost due to the
complexity of the input source file. Fix the problem in the source
module to get rid of this warning.

Lack of debug information prevents structure padding
This warning occurs when the debug information is insufficient or
does not accurately indicate the size of a structure member. You can
use the -d2 option to identify which module is responsible for the
faulty debug information.

W1032

W1033

W1034

W1035

W1036

Appendix A, Warning diagnostics 103

Ambiguous debug information, translation not possible
The input debug information is incomplete and the Paradigm C++
Locator is unable to completely translate it.

Can't translate register variable using two registers
The input debug information contains register variable pairs not
supported by the integrated debugger and the debug information is
lost.

Segment 'seg/class' has been truncated in file 'file'
This warning is output by the evaluation version of the Paradigm C++
Locator when a segment exceeds the internally set limits. Because the
segment has been arbitrarily truncated, the application may no longer
work correctly although the debugging information attached is still
intact.

TRUNCATE option ignored in 'file', line 'nnn'
The TRUNCATE option can only be used with binary files.

'option' option in 'file', line 'nnn' is obsolete
The named option is no longer supported by the Paradigm C++
Locator and has been replaced with improved capabilities.

Listing file can't process case insensitive links
The Paradigm C++ Locator requires that case-insensitive symbols be
used in order to demangle C++ names in the listing file.

'option' option in 'file', line 'nnn' is not supported
The named option is not supported by this version of the Paradigm
C++ Locator.

Bad CodeView debug information, fixup applied - 'nnn'
The CodeView debugging information on the input load module (the
.ROM or .EXE file created by the linker) was found to be corrupt.
The Paradigm C++ Locator has done its best to work around the
problem but some debugging information may be lost.

W1037
Assembly language

modules with absolute
segments are usually the

culprit.

W1038

W1039

W1040

W1041

W1042

W1043

W1044

Paradigm C++ Locate Reference Manual104

Bad Borland debug information, fixup applied - 'nnn'
The Borland debugging information on the input load module (the
.ROM or .EXE file created by the linker) was found to be corrupt.
The Paradigm C++ Locator has done its best to work around the
problem but some debugging information may be lost.

'type' checksum skipped for 'segment'/'class'
The named segment is not declared in an OUTPUT directive yet
appears in a checksum calculation. The Paradigm C++ Locator will
only calculate checksums on segments identified in OUTPUT
directives.

Unable to fixup virtual segment 'seg' at 'seg:off'
The specified segment fixup in the relocation table could not be
translated. This error usually indicates the load module and segment
map were not created on the same linker run, or the input files are
corrupt.

Mismatch in load module size and segment map size
The size of the load module and the segment map don't agree in size.
This may or may not be a problem but you can get rid of this warning
by completely defining all segments in the load module by avoiding the
use of DUP 'nnn' (?) constructs in your code.

C++ namespaces present - Paradigm DEBUG 6.0 or
version of Paradigm C++ recommended
The debug information contains namespace information but the output
is for an earlier version of the integrated debugger that lacks
namespace support.

Class 'class' not in link map - 'name' directive ignored
A class name was used in the LOCATE configuration file which was
not included in the link map, or class ??LOCATE was specified, and
no corresponding INITCODE register values are defined in the .CFG
file.

W1045

W1046

W1047

W1048

W1049

W1050

Appendix A, Warning diagnostics 105

Segment exceeds 64KB, application may not operate as
intended
This warning is displayed when the length of a segment in the map file
exceeds 64KB. Non-protected mode applications may not run
properly when this occurs.

Preprocessor warnings

The following warning diagnostics are produced by configuration file
preprocessor during the parsing of the configuration file.

Macro 'macro' needs argument in 'file', line 'nnn'
An argument was expected with the macro.

Wrong number of arguments 'args' in 'file', line 'nnn'
The wrong number of macro arguments was detected during macro
expansion.

Expected formal parameter in 'file', line 'nnn'
A formal parameter was expected by the Paradigm C++ Locator.

Undefined symbol 'symbol' in expression in 'file', line 'nnn'
A symbol that has not been defined in a configuration or on the
command line was used in an expression.

W1051

Message
explanations

W2000

W2001

W2002

W2003

Paradigm C++ Locate Reference Manual106

Appendix B, Error diagnostics 107

A P P E N D I X

B

Error diagnostics

The errors listed in this appendix indicate the existence of a serious
problem that prevents the Paradigm C++ Locator from producing
useful output. Each of the error messages are listed in numerical order
for easy lookup.

Paradigm C++ Locate errors

The following error diagnostics are produced by the Paradigm C++
Locator while the processing the input files, command line arguments,
or configuration file.

Internal error 'id' - contact Paradigm Systems
A serious internal error has been detected by the Paradigm C++
Locator. Please contact Paradigm Systems with the internal error ID
for assistance in resolving the error.

Error opening 'file' - 'err_info'
The Paradigm C++ Locator was unable to open the specified file for
the reason given in err_info.

Message
explanations

E1000

E1001

Paradigm C++ Locate Reference Manual108

Error reading 'file' - 'err_info'
The Paradigm C++ Locator was unable to satisfy a read of the named
file for the displayed reason. This error usually indicates an
incomplete load module or some other serious error.

Error writing 'file' - 'err_info'
The Paradigm C++ Locator was unable to complete a write to file for
the reason err_info. The most likely cause of this error is a device
with no space - a full disk.

Insufficient memory available for the Locator
The dynamic memory requirements needed by the Paradigm C++
Locator are unavailable to complete the processing. Attempt to free
up some memory and retry the operation or reduce the amount of
debug information in the load module if this error is encountered.

Unable to find configuration file 'file'
The LOCATE configuration file 'file' could not be found. Check that
the configuration file exists in the directory with the relocatable load
module or in the directory specified by the -c command line option. If
the -c command line option is not used, the Paradigm C++ Locator
assumes that the configuration file has the same name as the
relocatable load module with a .CFG extension and that it is located in
the same directory as the relocatable load module (.ROM file), for
example, locate -cdemo.cfg demo.rom.

The Paradigm C++ Locator input/output filenames must be
unique
To avoid confusion and preserve all files, the Paradigm C++ Locator
does not permit the input and output filenames to be the same. This
error will most likely occur when the output file extension is .EXE and
the input file also has the .EXE file extension. The workaround is to
have the linker name the output file .ROM (relocatable load module)
or some other extension of your choosing.

Unable to fixup virtual segment 'seg'
The specified segment fixup in the debug information could not be
converted to an absolute segment address.

E1002

E1003

E1004

E1005

E1006

E1008
This is usually caused by

absolute segments.

Appendix B, Error diagnostics 109

Unable to fixup program entry point - 'seg:off'
The program entry point failed segment translation. Since the entry
point must be in a defined segment, this error is likely to be
accompanied by a more serious error. Often this error is caused by
trying to process an input file that was packed by the Microsoft linker.

Unable to fixup initial stack - 'seg:off'
The program stack failed segment translation. Since the stack
initialization is picked up from the segment with the stack attribute,
this error is likely due to the lack of a stack segment in the application.
Often this error is caused by trying to process an input file that was
packed by the Microsoft linker.

New executable file 'file' is not supported
The Paradigm C++ Locator does not support new style (Microsoft
Windows or OS/2) executable files. Check your linker options and
select the original DOS .EXE file format.

Corrupted relocatable load module in file 'file'
The Paradigm C++ Locator has determined the header on the load
module is corrupt or the file is not in the EXE format. Check you’re
the Locator command line options. Be sure that you pass the .ROM
or .EXE as an input file, for example, locate demo.rom
-cdemo.cfg.

Input file 'file' is already an AXE file
The named file is already in AXE format, most likely because the file
has been processed by the Paradigm C++ Locator.

Multiple segment fixup records detected in 'file'
Only one segment fixup for a single location is allowed. Should this
error occur, contact Paradigm Systems for assistance.

Size must be between 1 and 1024 in 'file', line 'nnn'
The EPROM size specified in the HEXFILE SIZE option must be an
integer between 1 and 1024. Note that the size value is in KB, for
example, size=8 means 8096 bytes.

E1009

E1010

E1011

E1012

E1013

E1014

E1015

Paradigm C++ Locate Reference Manual110

Fill argument must be between 0 and 255 in 'file', line 'nnn'
The EPROM fill character specified in the HEXFILE FILL option
must be in the range 0x00 to 0xFF.

Offset must be in 1MB address space in 'file', line 'nnn'
The EPROM offset specified in the HEXFILE OFFSET option must
be in the range 0x00000 to 0xFFFFF.

Split argument must be 1, 2 or 4 in 'file', line 'nnn'
The EPROM split specified in the HEXFILE SPLIT option must be
either 1 for no split, 2 for a pair of EPROMs or 4 if a 32-bit wide split
is required.

Unable to split Intel extended hex in 'file', line 'nnn'
The Paradigm C++ Locator does not split Intel extended hex files. If
your design requires a set of EPROMs, the Intel hex, binary or
Tektronix hex output formats must be used.

Length must be between 8 and 64 bytes in 'file', line 'nnn'
The HEXFILE LENGTH option accepts a hex file record length of 8
to 64 bytes in length.

Unable to find segment map in 'file'
The Paradigm C++ Locator is unable to find the segment map in the
linker map file. The segment map is needed by the Locator to find
and extract the individual segments from the relocatable load module.

Syntax error at or near 'this' in 'file', line 'nnn'
The syntax of the specified configuration file directive is in error and
must be corrected. Note that the line number used to identify the
error may be after the point of the error if the line has been continued
one or more times.

Unknown class 'class' in 'file', line 'nnn'
The Paradigm C++ Locator is unable to find the class named class in
the list of classes. Make sure that the class name is spelled exactly as
it appears in the linker map (.MAP) since the Locator uses case-
sensitive class names.

E1016

E1017

E1018

E1019

E1020

E1021

E1022

E1023

Appendix B, Error diagnostics 111

Unknown segment 'seg' in 'file', line 'nnn'
The Paradigm C++ Locator is unable to find the segment named seg
in the list of segments. Make sure that the segment name is spelled
exactly as it appears in the linker map (.MAP) since the Locator uses
case-sensitive segment names.

Missing or unsupported CPU type in 'file', line 'nnn'
The target microprocessor field in the CPUTYPE directive is either
unsupported, missing or multiply defined.

CPU does not support the initialization in 'file', line 'nnn'
The target microprocessor specified in the CPUTYPE directive cannot
perform the identified peripheral register initialization. Either change
the target microprocessor defined in the CPUTYPE directive or use
the generic port I/O options of the INITCODE directive.

I/O port address too large in 'file', line 'nnn'
The I/O port address must be in the range of 0x0000 to 0xFFFF.

One or more classes required in 'file', line 'nnn'
The specified directive requires at least one class to be named in the
list of classes.

Two or more classes required in 'file', line 'nnn'
The specified directive requires two or more classes to be named in
the list of classes.

Illegal warning control option in 'file', line 'nnn'
One or more of the warnings specified in the WARNINGS directive
do not correspond to a valid warning ID.

MAP directive address range error in 'file', line 'nnn'
A valid region requires that the first address in a MAP directive be less
than or equal to the second address.

Class 'class' must be DUPLICATEd before compression
You are attempting to compress a class that has not been duplicated or
does not have a zero-length segment as the first segment in the class.

E1024

E1025

E1026

E1027

E1028

E1029

E1030

E1031

E1032
It is not possible for a class
to decompress on to itself.

Paradigm C++ Locate Reference Manual112

Compressed class 'class' too large during pass 2
The Paradigm C++ Locator runs a two pass compression algorithm,
the first pass to estimate the size of the compressed class, which is
needed to apply segment fixups. A second pass is then performed,
after segment fixups have been applied, to compress the class. On
pass 2, the class compressed less than expected, generating this error.

Unknown or illegal command line option 'option'
The specified command line option is incorrect and requires fixing
before the Paradigm C++ Locator will continue.

SPLIT option incompatible with Intel extended hex
The command line option to split the EPROM files is incompatible
with Intel extended hex output. If your design requires a set of
EPROMs, the Intel hex, binary or Tektronix hex output formats must
be used.

SIZE argument out of range in option 'option'
The EPROM size specified in the -Hd command line option must be a
power of 2. Valid EPROM sizes (in KB) are 1, 2, 4, 8, 16, 32, 64,
128, 256, 512 and 1024.

OFFSET argument out of range in option 'option'
The offset field in the -Ho command line option must be a 20-bit
unsigned integer.

FILL argument out of range in option 'option'
The EPROM fill character specified in the -Hf option must be in the
range 0x00 to 0xFF.

SPLIT argument out of range in option 'option'
The EPROM split specified in the -Hs command line option must be
either 1 for no split, 2 for a pair of EPROMs or 4 if a four EPROM
set is required.

LENGTH argument out of range in option 'option'
The hex record length specified in the -Hl command line option must
be between 8 and 64.

E1033

E1034

E1035

E1036

E1037

E1038

E1039

E1040

Appendix B, Error diagnostics 113

Diagnostics level out of range in option 'option'
The diagnostics output level specified in the -d command line option
must be either 0 for no diagnostics, 1 for filename diagnostics, 2 for
filename and module diagnostics, 3 for compression statistics, or 4 to
enable all diagnostics.

Illegal or out of range warning argument in option 'option'
The warning ID in the -w command line option is not a valid warning
ID.

Debug information version is not supported
The debug information supplied to the Paradigm C++ Locator is
beyond the currently supported version. This error is most likely due
to a compiler or linker update by the compiler vendor.

Packed CodeView debugging information not supported
The Microsoft CVPACK utility was used to pack the debugging
information, preventing the Paradigm C++ Locator from processing
the file.

Unpacked CodeView debugging information not
supported
The Paradigm C++ Locator expects to see packed debug information,
so something prevented CVPACK from successfully completing.

Bad or missing CV2 debug information - 'code'
An error occurred translating the Microsoft CodeView debug
information. Indication of corrupted debug information found in the
.ROM or .EXE file that was created by the linker. Please contact
Paradigm Systems with the details of this error. Uploading your
application (.ROM, .MAP and configuration file) will help our
technical support group resolve this problem more quickly.

Bad or missing CV4 debug information - 'code'
An error occurred translating the Microsoft CodeView debug
information. Indication of corrupted debug information found in the
.ROM or .EXE file that was created by the linker. Please contact
Paradigm Systems with the details of this error. Uploading your

E1041

E1042

E1043

E1044

E1045

CVPACK usually fails to
run when there is a linker

error.

E1046

E1047

Paradigm C++ Locate Reference Manual114

application (.ROM, .MAP and configuration file) will help our
technical support group resolve this problem more quickly.

Bad or missing Borland TD2 debug information - 'code'
An error occurred translating the Borland debug information.
Indication of corrupted debug information found in the .ROM or .EXE
file that was created by the linker. Please contact Paradigm Systems
with the details of this error. Uploading your application (.ROM,
.MAP and configuration file) will help our technical support group
resolve this problem more quickly.

Bad or missing Borland TD3 debug information - 'code'
An error occurred translating the Borland debug information.
Indication of corrupted debug information found in the .ROM or .EXE
file that was created by the linker. Please contact Paradigm Systems
with the details of this error. Uploading your application (.ROM,
.MAP and configuration file) will help our technical support group
resolve this problem more quickly.

Bad or missing Borland TD4 debug information - 'code'
An error occurred translating the Borland debug information.
Indication of corrupted debug information found in the .ROM or .EXE
file that was created by the linker. Please contact Paradigm Systems
with the details of this error. Uploading your application (.ROM,
.MAP and configuration file) will help our technical support group
resolve this problem more quickly.

'name' debug information exceeds translation limits
The named debug records exceeds the capacity of the output file
format. The only solution is to eliminate some modules with debug
information and re-run the Paradigm C++ Locator.

CHECKSUM directive address range error in 'file', line
'nnn'
A valid checksum region requires that the first address in a
CHECKSUM directive be less than or equal to the second address.

E1048

E1049

E1050

E1051

E1052

Appendix B, Error diagnostics 115

CHECKSUM FILL option out of range error in 'file', line
'nnn'
The fill character specified in the CHECKSUM directive must be in
the range 0x00 to 0xFF.

CHECKSUM type option not specified in 'file', line 'nnn'
The CHECKSUM record type is incorrectly specified. Please select
one of following CHECKSUM type options: ROMBIOS, CRC16, or
CRC32.

ADDRESS option out of range error in 'file', line 'nnn'
The ADDRESS option in the CHECKSUM directive is outside the
target system memory address space.

ADDRESS cannot be part of checksum in 'file', line 'nnn'
You can not specify an address to place the checksum that is inside
the range of the checksum calculation.

Include file size cannot be greater than 64KB in 'file', line
'nnn'
The binary include file size has exceeded the 64KB limit.

DUP must copy class 'class' to a unique class in 'file', line
'nnn'
You cannot duplicate a class to itself.

Preprocessor errors

The following error diagnostics are produced by configuration file
preprocessor during the parsing of the configuration file.

Internal error 'num' - contact Paradigm Systems
This is issued by all preprocessor internal errors. Please contact
Paradigm Systems should you encounter an internal error.

E1053

E1054

E1055

E1056

E1057

E1058

Message
explanations

E2000

Paradigm C++ Locate Reference Manual116

Conditional block nesting error in 'file'
Your configuration file has incorrectly nested #if/#else/#endif
directives.

Conditional without an argument in 'file', line 'nnn'
You used a conditional directive but failed to provide an expression to
evaluate.

#include syntax error in 'file', line 'nnn'
#include requires the name of the include file enclosed in either
double quotes (") or left ("<") and right angle (">") brackets.

#else may not follow #else in 'file', line 'nnn'
An #else clause can only follow an #if or #elif directive.

#endif must be in an #if block in 'file', line 'nnn'
The Paradigm C++ Locator found an #endif with a corresponding #if
directive.

Unsupported #control definition in 'file', line 'nnn'
An unsupported preprocessor control was found. Valid controls are
#if, #else, #endif, #elif, #define, #undef, and #include.

Include file 'incfile' not found in 'file', line 'nnn'
The named include file could not be found. Check that the path
specifies the correct location of the file.

Too many nested 'token' statements in 'file', line 'nnn'
You broke the preprocessor with a configuration file beyond
comprehension. You are going to have to simplify the file before
continuing.

Macro expansion error in 'file', line 'nnn'
An error occurred when expanding a macro. Identify the macro in
error and correct the problem.

Redefining defining variable 'var' in 'file', line 'nnn'
Another #define for the same variable has been found. Use the
#undef directive before redefining the variable.

E2001

E2002

E2003

E2004

E2005

E2006

E2007

E2008

E2009

E2010

Appendix B, Error diagnostics 117

#define syntax error in 'file', line 'nnn'
You must specify a variable name for the macro you wish to define.

Illegal #undef argument in 'file', line 'nnn'
#undef requires that a macro name be supplied.

End of file in macro argument in 'file', line 'nnn'
An end of file condition was found while processing the macro
argument list. Check the macro and correct before continuing. This
error can also occur if the end of the file is reached while processing a
C comment.

Recursive macro definition 'macro' in 'file', line 'nnn'
Recursive macros are not permitted. Correct the error before
continuing.

Empty character constant in 'file', line 'nnn'
A character constant was expected but not found.

Unterminated string or character constant in 'file', line
'nnn'
An improperly terminated string literal or character constant was
found.

Can't use string in #if in 'file', line 'nnn'
String literals are not valid in conditional expressions.

Bad #if defined in 'file', line 'nnn'
An expression that could not be evaluated was found.

Assignment not allowed in #if in 'file', line 'nnn'
Use of the assignment operator is not permitted in conditional
expressions.

Error in multiline #if in 'file', line 'nnn'
The multiline #if directive needs work before it can be accepted by the
Paradigm C++ Locator.

E2011

E2012

E2013

E2014

E2015

E2016

E2017

E2018

E2019

E2020

Paradigm C++ Locate Reference Manual118

Divide by zero error in 'file', line 'nnn'
The result of an expression evaluation resulted in division by zero.

#if stack overflow in 'file', line 'nnn'
Too many nested #if directives has been found, you will have to
simplify the configuration file.

Operator 'op' context fault in 'file', line 'nnn'
This is an inappropriate use of the named operator.

Expression error in 'file', line 'nnn'
The Paradigm C++ Locator was unable to evaluate the expression.
Correct or simplify before continuing.

#define syntax error in command line option 'opt'
A macro defined with the -D command line option is incorrectly
formed.

#error in 'file', line 'nnn': 'errmsg'
A #error directive in your configuration was processed.

Macro exceeds preprocessor limit in 'file', line 'nnn'
A macro definition may have been too long and needs to be simplified
and shortened.

E2021

E2022

E2023

E2024

E2025

E2026

E2027

Appendix C, Exit codes 119

A P P E N D I X

C

Exit codes

The exit code returned by the Paradigm C++ Locator can be used by
MAKE utilities or batch files to determine the success or failure of the
processing. The following table indicates the meaning assigned to each
error code.

Exit Code Meaning

0 No errors, possibly warnings
1 Error(s)
2 Serious error
3 Critical or fatal error

The severity of errors depends on the action which caused the error.
Regular errors are unexpected conditions detected with the conversion
of relocatable input file to an absolute output file, including the
conversion of type information. Some errors terminate processing
immediately while others continue until other exceptional conditions
have been checked.

Serious or critical errors are associated with the operating system of
I/O operations and cause the Paradigm C++ Locator to immediately
finish, clean up and exit.

Table C.1
LOCATE exit codes

Paradigm C++ Locate Reference Manual120

The Paradigm C++ Locator has the -W option to generate a non-zero
exit code should any warnings be detected during processing. This
option should be used when an environment might not display any
messages and an indication of warning is required.

The WARNINGS
EXITCODE option can also
be used to set the exit code

for warning conditions.

Appendix D, INITCODE port definitions 121

A P P E N D I X

D

INITCODE port definitions

The Paradigm C++ Locator INITCODE directive can be used to
initialize peripheral registers found in the Intel 80C186 and NEC
V-Series microprocessors. This capability is especially attractive since
it permits memory and peripheral chip selects, wait states, and DRAM
refresh devices to be initialized before the application startup code
takes control of the CPU, without the need to modify the startup code.
By avoiding the need to customize the startup code with complex
segmentation and initialization code, the user can focus on more
interesting applications.

Table D.1 uses the standard peripheral register names as defined by
each microprocessor vendor. The table is ordered by microprocessor,
as it is used in the CPUTYPE directive. If a specific microprocessor
does not appear in the following table, it does not support any port
initializations.

CPUTYPE Register Port address

I80186
I80188

UMCS
LMCS
PACS
MMCS
MPCS

FFA0H
FFA2H
FFA4H
FFA6H
FFA8H

Only peripheral devices
which impact memory

initialization are supported.

Table D.1
INITCODE port definitions

Paradigm C++ Locate Reference Manual122

CPUTYPE Register Port address

I80C186
I80C186XL
I80C188
I80C188XL

UMCS
LMCS
PACS
MMCS
MPCS
MDRAM
CDRAM
EDRAM

FFA0H
FFA2H
FFA4H
FFA6H
FFA8H
FFE0H
FFE2H
FFE4H

I80C186EA
I80C188EA
I80L186EA
I80L188EA

UMCS
LMCS
PACS
MMCS
MPCS

RFBASE
RFTIME
RFCON

FFA0H
FFA2H
FFA4H
FFA6H
FFA8H

FFE0H
FFE2H
FFE4H

I80C186EB
I80C188EB
I80L186EB
I80L188EB

GCS?ST
GCS?SP
LCSST
LCSSP
UCSST
UCSSP

RFBASE
RFTIME
RFCON

FF80H-FF9EH
FF80H-FF9EH
FFA0H
FFA2H
FFA4H
FFA6H

FFB0H
FFB2H
FFB4H

I80C186EC
I80C188EC

GCS?ST
GCS?SP
LCSST
LCSSP
UCSST
UCSSP

FF80H-FF9EH
FF80H-FF9EH
FFA0H
FFA2H
FFA4H
FFA6H

Appendix D, INITCODE port definitions 123

CPUTYPE Register Port address

I80C186EC/188EC
continued

186EC
watchdog timer
registers

RFBASE
RFTIME
RFCON

MPICP0
MPICP1
SPICP0
SPICP1

WDTRLDH
WDTRLDL
WDTCNTH
WDTCNTL
WDTCLR
WDTDIS

FFB0H
FFB2H
FFB4H

FF00H
FF02H
FF04H
FF06H

FF20H
FF22H
FF24H
FF26H
FF28H
FF2AH

AM186ED
AM186EM/188EM
AM186ER/188ER
AM186ES/188ES

ARC International
VT8086
VT80186
VT80186EM
VT80186ES

UMCS
LMCS
PACS
MMCS
MPCS
IMCS

PDCON
PIOMODE0
PIODIR0
PIOMODE1
PIODIR1
PIOMODE2
PIODIR2

FFA0H
FFA2H
FFA4H
FFA6H
FFA8H
FFACH (ER only)

FFF0H (EM ER only)
FF70H
FF72H
FF76H
FF78H
FFD4H
FFD6H

Paradigm C++ Locate Reference Manual124

CPUTYPE Register Port address

AM186Ex continued MDRAM
CDRAM
EDRAM

SYSCON
AUXCON
WDTCON
WDCON

FFE0H (EM ER ES only)
FFE2H
FFE4H

FFF0H (ES ED only)
FFF2H (ES ED only)
FFE6H (ES ED only)
FF42H (ES ED only)

 AM186CC UMCS
LMCS
PACS
MMCS
MPCS
PIOMODE0
PIODIR0
PIOMODE1
PIODIR1
PIOMODE2
PIODIR2

CDRAM
EDRAM

WDTCON
SYSCON

FFA0H
FFA2H
FFA4H
FFA6H
FFA8H
FFC0H
FFC2H
FFCAH
FFCCH
FFD4H
FFD6H

FFAAH
FFACH

FFE0H
FFF0H

RDC
R1100/R8800/R8810

R1120/R8820/R8830

R1122/R8822

R1610/R1620

R2000/R2010/R2020

UMCS
LMCS
PACS
MMCS
MPCS

PDCON
PIOMODE0
PIODIR0
PIOMODE1

FFA0H
FFA2H (not in R16xx/R20xx)
FFA4H (not in R2000/R2010/R2020)
FFA6H (not in R16xx/R20xx)
FFA8H (not in R2000/R2010/R2020)

FFF0H (R1100/R8800/R8810 only)
FF70H (not in R2000/R2010/R2020)
FF72H (not in R2000/R2010/R2020)
FF76H (not in R2000/R2010/R2020)

Appendix D, INITCODE port definitions 125

CPUTYPE Register Port address

RDC continued

R1100/R8800/R8810

R1120/R8820/R8830

R1122/R8822

R1610/R1620

R2000/R2010/R2020

PIODIR1

MDRAM
CDRAM
EDRAM

SYSCON
AUXCON
WDTCON

BUSCON

UMCS
LMCS
PCS0
PCS1

SDRAMACR
SDRAMMSR
SDRAMCR
SDRAMTPR

CCR

FF78H (not in R2000/R2010/R2020)

FFE0H (not in R1122/R8822/R20xx)
FFE2H
FFE4H

FFF0H (not in R1100/R8800/R8810)
FFF2H (not in R1100/R8800/R8810)
FFE6H (not in R1100/R8800/R8810)

FFEAH (R1610/R1620 only)

FFA0H (R1620)
FFA2H (R1620)
FFA4H (R1610/R1620 only)
FFA8H (R1610/R1620 only)

FEF0H (R1620 only)
FEF2H (R1610/R1620 only)
FEF4H (R1610/R1620 only)
FEF6H (R1610/R1620 only)

FEC0H (R1610 only)

I80386EX CS?ADH
CS?ADL
CS?MSKH
CS?MSKL
UCSADH
UCSADL
UCSMSKH
UCSMSKL

RFSBAD
RFSCIR
RFSCON
RFSADD

F400H-F436H
F400H-F436H
F400H-F436H
F400H-F436H
F43AH
F438H
F43EH
F43CH

F4A0H
F4A2H
F4A4H
F4A6H

Paradigm C++ Locate Reference Manual126

CPUTYPE Register Port address

I80386EX continued

386EX
watchdog timer
registers

ICW1M
ICW2M
ICW1S
ICW2S

P1CFG
P2CFG
P3CFG
PINCFG

MPICP0
MPICP1
SPICP0
SPICP1
REMAPCFG

WDTRLDH
WDTRLDL
WDTCNTH
WDTCNTL
WDTCLR
WDTSTATUS

F020H
F021H
F0A0H
F0A1H

F820
F822H
F824H
F826H

F020H
F021H
F0A0H
F0A1H
F0022H

F4C0H
F4C2H
F4C4H
F4C6H
F4C8H
F4CAH

D70208 V40
D70216 V50

RFC
WMB
WCY1
WCY2

FFF2H
FFF4H (V40/V50 only)
FFF5H
FFF6H

D70208H V40H
D70216H V50H

RFC
SCTL
WCY1
WCY2
WCY3
EXMB
WSMB
WIOB

FFF2H
FFF7H
FFF5H
FFF6H
FFEAH
FFEDH
FFECH
FFEBH

Appendix D, INITCODE port definitions 127

CPUTYPE Register Port address

D70320 V25
D70325 V25+
D70330 V35
D70335 V35+

IDB
RFM
WTC
PRC

PMC0
PMC1
PMC2

[IDB]00:0FFFH
[IDB]00:0FE1H
[IDB]00:0FE8H
[IDB]00:0FEBH

[IDB]00:0F02H
[IDB]00:0F0A
[IDB]00:0F12

D70236 V53 RFC
WMB0
WMB1
WCY0
WCY1
WCY2
WCY3
WCY4
WAC
SBCR

FFF2H
FFEAH
FFF3H
FFECH
FFEBH
FFF4H
FFF5H
FFF6H
FFEDH
FFF1H

D70423 V55SC
D70433 V55PI

PRC
RFM
MBC
PWC0
PWC1

FFFEFH
FFFECH
FFFEAH
FFFE8H
FFFE9H

Turbo186 UMCS
LMCS
PACS
MMCS
MPCS

FFA0H
FFA2H
FFA4H
FFA6H
FFA8H

Paradigm C++ Locate Reference Manual128

CPUTYPE Register Port address

Infinior
IMS16B
IMS16C

PIOMODE2
PIODIR2

WDCON
SDEN
SDCR
SDDUTY
SDMODE
SRCR

FF6AH (IMS16C only)
FF6CH (IMS16C only)

FF42H
FFEAH (IMS16B only)
FFEAH (IMS16C only)
FFECH
FFEEH
FFE8H (IMS16C only)

Advantech EVA
X1610C
X1630C

UMCS
LMCS

CDRAM
EDRAM
BUSCON

PCS0
PCS1
PIOMODE0
PIODIR0
PIOMODE1
PIODIR1
PIOMODE2
PIODIR2

AUXCON
SYSCON
WDTCON

SDRAMACR
SRRAMMSR
SDRAMCR
SDRAMTPR
CCR

FFA0H
FFA2H

FFE2H
FFE4H
FFEAH

FFA4H
FFA8H
FF70H
FF72H
FF76H
FF78H
FFD4H
FFD6H

FFF2H
FFF0H
FFE6H

FEF0H (X1610C only)
FEF2H
FEF4H
FEF6H
FEC0H (X1630C only)

Appendix E, AXE utility 129

A P P E N D I X

E

AXE utility

The AXE utility is a program which displays various statistics about
AXE86 files created by the Paradigm C++ Locator. The fields
displayed from the input AXE file are
n program entry point
n AXE header size
n region list
n segment list

 The AXE utility first looks for a file extension of .AXE before trying
to open a file with the .EXE extension. The format of the AXE
command line is

 axe filename[.ext]

 The following figure contains sample output from the AXE utility,
together with a brief description of each section in the AXE file
header.

 1) AXE Version 1.00
 Entry Point: FFFF:0000
 AXE Header Size: 256 bytes

2) \LOCATE\DEMO\SIEVE.AXE contains 3 regions
 000000 03FFFF Read/Write
 040000 0F7FFF No access
 0F8000 0FFFFF Read Only

3) \LOCATE\DEMO\SIEVE.AXE contains 6 segments

 Figure E.1
AXE header information

Paradigm C++ Locate Reference Manual130

 0 F800:0000 00133 O- 000100
 1 F813:0004 00010 O- 000280
 2 F815:0000 00004 O- 000300
 3 F816:0000 00010 O- 000380
 4 FFF0:0000 00013 O- 000400
 5 FFFF:0000 00005 O- 000480

 Load module size: 367 bytes

 Section 1 is the AXE header information, containing the version of
AXE file, the program entry point, and the size of the AXE segment
descriptor buffer.

 Section 2 is the region map, displaying the mapping instruction for the
target system memory from the Paradigm C++ Locator MAP
directives. The first item is the starting address of the region, the
second address is the ending address of the region followed by the
access type of the region.

 The segment map in section 3 lists the segment index, the segment
base address and segment length, segment attributes, and the offset of
the segment within the AXE file. The first segment attribute indicates
whether the segment is read-write ('-') or if it is read-only ('O'). The
second attribute indicates whether the segment is present in the AXE
file ('-') or if the segment descriptor is provided as a reference ('R') but
the segment doesn't actually exist.

 The load module size is the
sum of the sizes of each
segment in the AXE file.

 Appendix F, Hex file formats 131

 A P P E N D I X

 F

 Hex file formats

 This appendix documents the Intel hex file formats used by the
Paradigm C++ Locator. This information is provided to those users
that need to read Intel hex or extended hex file formats created by the
Locator HEXFILE configuration file directive.

 Intel extended hex
 Intel extended hex is a file format designed to represent binary data
within the 80186-family address space using the standard ASCII
character set. The hexadecimal representation of each binary byte is
encoded in a pair of ASCII characters in the range '0' - '9' and 'A' to
'F'.

 There are four different record types which make up the Intel
extended hex file format:
n Extended Address Record
n Start Address Record
n Data Record
n End of File Record

Each Intel extended hex record begins with a colon (':') character as
the record mark. The record mark field is then followed by a record

 Paradigm C++ Locate Reference Manual 132

length field which specifies the number of bytes of information that
follow the record type field.

Each record ends with a checksum field that contains the ASCII
representation of the two's complement of the binary data from the
record length field. If the record is correct, the sum of all fields,
including the checksum field, will be zero.

The Extended Address record is used to define a segment base
address (SBA) for the following Data records, which supply the
offsets for each data record from this base address.

The segment base address is zero until it is defined in an Extended
Address record. Once defined, the segment base address will remain
in effect until a subsequent Extended Address record is encountered.

Mark
':'

Length
'02'

Offset
'0000'

Type
'02'

SBA
'XXXX'

Checksum
'XX'

Each Data record defines part of the memory address space of the
application. The absolute address of a Data record is determined by
the Offset field and the segment base address in the last Extended
Address record.

Mark
':'

Length
'XX'

Offset
'XXXX'

Type
'00'

Data
'XXXXXXXX'

Checksum
'XX'

The Length field is determined by the amount of data to be output and
the LENGTH option in the configuration file HEXFILE directive.

The Start Address record is used to specify the program entry point
for the application, as computed by the Paradigm C++ Locator.

Mark
':'

Length
'04'

Offset
'0000'

Type
'03'

CS
'XXXX'

IP
'XXXX'

Checksum
'XX'

The Paradigm C++ Locator will always set this record to the program
entry point, enabling Intel extended hex file loaders to automatically set
CS:IP to the first instruction of the application.

Extended Address
Record

Data Record

Start Address
Record

 Appendix F, Hex file formats 133

This record marks the end of the Intel extended hex file and is always
the last record output by the Paradigm C++ Locator.

Mark
':'

Length
'00'

Offset
'0000'

Type
'01'

Checksum
'FF'

Intel hex
This is the original Intel hex file format, dating back to the days of the
8080 microprocessor. Being the original hex file format for Intel
microprocessors having a 64KB address space, the Intel extended hex
file format added the Start Address and Extended Address record
types to expand the address space to the 1MB used in the 8086/88 and
subsequent 16-bit microprocessors.

Intel hex file is often used with 16-bit data paths since Intel extended
hex can't be represented in a split format because of the Extended
Address records. Still, Intel hex has its limitations since it can never
support more than 64KB of data per file.

Tektronix hex
Tektronix hex, also referred to as Tekhex, is also a file format
designed to represent of top 64KB of binary data using the standard
ASCII character set. The hexadecimal representation of each binary
byte is encoded in a pair of ASCII characters in the range '0' - '9' and
'A' to 'F'.

Each Tekhex record begins with a slash ('/') character as the record
mark. The record mark field is then followed by the load address and
a record length fields which specify the offset and count of the data
that follow.

Both the header and data fields have a checksum field that contains
sum, modulo 256, of the data in the preceding records.

Each Data record defines part of the memory address space of the
application. The absolute address of a Data record is determined by
the Offset field.

End of File Record

Data Record

 Paradigm C++ Locate Reference Manual 134

Mark
'/'

Offset
'XXXX'

Length
'XX'

Chk1
'XX'

Data
'XXXXXXXX'

Chk2
'XX'

The Length field is determined by the amount of data to be output and
the LENGTH option in the configuration file HEXFILE directive.

Index 135

I N D E X

#
??CPUINIT 61
??LOCATE 20, 61, 75
??STACKINIT 61
80186/188

INITCODE support 121
80186CC

INITCODE support 124
80186ED

INITCODE support 123
80186EM/188EM

INITCODE support 123
80186ER/188ER

INITCODE support 123
80186ES/188ES

INITCODE support 123
80386EX

INITCODE support 125
80C186/188

INITCODE support 122
80C186EA/188EA

INITCODE support 122
80C186EB/188EB

INITCODE support 122
80C186EC/188EC

INITCODE support 122

80C186-family support 47
80C186XL/188XL

INITCODE support 122

A
.ABS file extension 85
.AXE file extension 85
ABSFILE

AXE86 option 41
configuration file directive 41
FILENAME option 41
FORMAT option 41
NONE option 41
OMF86 option 41

absolute files
AXE86 41, 84
AXE86 file format 41
file naming 41, 84
none 41, 84
OMF86 41, 84

absolute segments 27
-Ad 84
ADDRESS

CHECKSUM directive 43
Advantech EVA processor ports 128
aliases

segment 25

 Paradigm C++ Locate Reference Manual 136

ALL
DEBUG directive 49
DISPLAY directive 53
WARNINGS directive 70

-An 84
-Aomf 84
Apd10 84
Apd20 84
Apd30 84
Apd31 84
Apd40 84
Apd50 84
Apd60 84
AXE86

ABSFILE directive 41

B
-b 74
BIGTYPES

DEBUG directive 50
BINARY

HEXFILE directive 55
BOOT386

INITCODE directive 60
bootstrap vector 61

C
-c 79
.CFG file extension 85
??CPUINIT 61
CHECKSUM

configuration file directive 43
checksums

CRC-16 88
CRC-32 90
ROMBIOS 87

CHECKSUMS
LISTFILE directive 63

checksums, in listing file 63
CLASS

configuration file directive 45
CLASSES

DEBUG directive 50
CLASSTEMPLATES

DEBUG directive 51
COLUMNS

LISTFILE directive 64
command line options

priority 72
summary 72

comments, configuration file 37
COMPRESS

configuration file directive 46
compressing data 93
compressing initialized data 46
COMPRESSION

DISPLAY directive 53
compression algorithm 94
compression requirements 94
configuration file 16

comments 37
diagnostics 38
file naming 79
format 31
line continuation 33
preprocessor 34
priority 33

configuration file directives
ABSFILE 41
CHECKSUM 43
CLASS 45
COMPRESS 46
CPUTYPE 47
DEBUG 49
DISPLAY 53
DUPLICATE 54
HEXFILE 55

Index 137

INTICODE 60
LISTFILE 63
MAP 66
ORDER 67
OUTPUT 68
SEGMENT 69
WARNINGS 70

CPUTYPE
configuration file directive 47, 121

CRC16
CHECKSUM directive 43

CRC-16 checksum 88
CRC32

CHECKSUM directive 44
CRC-32 checksum 90
CRCs, in listing files 63

D
#define directive 34
-D 74

command line option 35
-d0 75
-d1 75
-d2 75
-d3 76
-d4 76
DEBUG

ALL option 49
BIGTYPES option 50
CLASSES option 50
CLASSTEMPLATES option 51
configuration file directive 49
DESTRUCTORS option 50
ENUMS option 50
EXTENSIONS option 50
IC86 option 49
LINES option 49
MEMBERFUNCTION option 50

NOBIGTYPES option 50
NOCLASSES option 50
NOCLASSTEMPLATES option 51
NODESTRUCTORS option 50
NOENUMS option 50
NOEXTENSIONS option 50
NOIC86 option 49
NOLINES option 49
NOMEMBERFUNCTION option 50
NONE option 50
NOOPERATORS option 50
NOPARAMETERS option 51
NOPUBLICS option 49
NOSPACES option 51
NOSPECIALS option 51
NOSYMBOLS option 49
NOTYPES option 49
OPERATORS option 50
PARAMETERS option 51
PUBLICS option 49
SPACES option 51
SPECIALS option 51
SYMBOLS option 49
TYPES option 49

debug control 49
line numbers 78
local symbols 79
public symbols 78
types 79

debug control, OMF86 77
defined operator 36
DEMO project 12
DESTRUCTORS

DEBUG directive 50
diagnostics

all 53
compression 53
errors 107
file names 53, 75

 Paradigm C++ Locate Reference Manual 138

log file 76
module names 53, 75, 76
none 53, 75
warnings 97

directives
ABSFILE 41
CHECKSUM 43
CLASS 45
COMPRESS 46
CPUTYPE 47
DEBUG 49
DISPLAY 53
DUPLICATE 54
HEXFILE 55
INTICODE 60
LISTFILE 63
MAP 66
ORDER 67
OUTPUT 68
SEGMENT 69
WARNINGS 70

DISPLAY
ALL option 53
COMPRESSION option 53
configuration file directive 53
FILES option 53
MODULES option 53
NONE option 53

DUPLICATE
configuration file directive 54

duplicating classes 29

E
#elif directive 35
#else directive 35
#endif directive 35
#error directive 37
.EXE files 24

-Ee 76
-En 76
ENTRYPOINT

HEXFILE directive 57
ENUMS

DEBUG directive 50
EOFRECORD

HEXFILE directive 57
EPROM

binary format 55, 80
file naming 57, 81
fills 56, 80
hex record length 81
Intel extended hex format 55, 80
Intel hex format 55, 80
length 56
offsets 55, 81
sizing 56, 80
splitting 56, 81
Tektronix hex format 55, 81

error messages 107
exit codes 76, 119
EXITCODE

WARNINGS directive 70
EXTENSIONS

DEBUG directive 50
extensions, file 84

F
file extensions 84

.ABS 85

.AXE 85

.CFG 85

.LOC 85

.MAP 85
AXE86 file 85
configuration file 85
listing files 85

Index 139

map file 85
OMF86 files 85

FILENAME
ABSFILE directive 41
HEXFILE directive 57
LISTFILE directive 64

filenames
in configuration file directives 40

files
.EXE 24
.MAP 24
.ROM 24
AXE.EXE 129
LOCATE.OPT 32, 33, 72, 84

FILES
DISPLAY directive 53

FILL
CHECKSUM directive 43
HEXFILE directive 56

FORMAT
ABSFILE directive 41

G
groups 28

H
-Hb 80
-Hd 80
-He 80
hex file formats

Intel extended hex 131
Intel hex 133
Tektronix hex 133

HEXFILE
BINARY option 55
configuration file directive 55
ENTRYPOINT option 57
EOFRECORD 57

FILENAME option 57
FILL option 56
INTEL386 option 55
INTEL80 option 55
INTEL86 option 55
LENGTH option 56
NOENTRYPOINT option 57
NOEOFRECORD 57
OFFSET option 55
SIZE option 56
SPLIT option 56
TEKHEX option 55
TRUNCATE option 57

-Hf 80
-Hi 80
-Hl 81
-Hn 81
-Ho 81
-Hs 81
-Ht 81

I
#if directive 35
#ifdef directive 36
#ifndef directive 36
#include directive 35
IC86

DEBUG directive 49
IMS16B

INITCODE support 128
IMS16C

INITCODE support 128
INBYTE

INITCODE directive 61
peripheral register initialization 61

INDWORD
INITCODE directive 61
peripheral register initialization 61

 Paradigm C++ Locate Reference Manual 140

Infinior processor ports 128
INITCODE

80186CC registers 124
80186ED registers 123
80186EM/188EM registers 123
80186ER/188ER registers 123
80186ES/188ES registers 123
80386EX registers 125
80C186/188 registers 122
80C186EA/188EA registers 122
80C186EB/188EB registers 122
80C186EC/188EC registers 122
80C186XL/188XL registers 122
Advantech EVA-X1610C registers 128
Advantech EVA-X1630C registers 128
ARC International VT80186 registers 123
ARC International VT80186EM registers

123
ARC International VT80186ES registers

123
ARC International VT8086 registers 123
BOOT386 option 60
INBYTE option 61
INDWORD option 61
Infinior IMS16B registers 128
Infinior IMS16C registers 128
INITCODE NOTHING option 62
INWORD option 61
NORESET option 61
NOSTACK option 61
NOTHING option 61
OUTBYTE option 61
OUTDWORD option 61
OUTWORD option 61
RDC R1100 registers 124
RDC R1120 registers 124
RDC R1122 registers 124
RDC R1610 registers 124
RDC R1620 registers 124

RDC R2000 registers 124
RDC R2010 registers 124
RDC R2020 registers 124
RDC R8800 registers 124
RDC R8810 registers 124
RDC R8820 registers 124
RDC R8822 registers 124
RDC R8830 registers 124
READBYTE option 62
READDWORD option 62
READWORD option 62
RESET option 61
STACK option 61
V25/V35 registers 127
V25+/V35+ registers 127
V40/V50 registers 126
V40H/V50H registers 126
V53 registers 127
V55SC/V55PI registers 127
WRITEBYTE option 62
WRITEDWORD option 62
WRITEWORD option 62

INITCODE directive 121
INITCODE NOTHING

INITCODE directive 62
INITCODE support

80186/188 registers 121
Turbo186 registers 127

initialization
boot386 option 60
nothing option 61
peripheral registers 61
reset vector 61, 74
stack 61, 75

Intel iC86 compatibility 49
INTEL386

HEXFILE directive 55
INTEL80

HEXFILE directive 55

Index 141

INTEL86
HEXFILE directive 55

INTICODE
configuration file directive 60

introduction 5
INWORD

INITCODE directive 61
peripheral register initialization 61

L
.LOC file extension 85
??LOCATE 20, 61, 75
-Lc 82
-Ld 82
LENGTH

HEXFILE directive 56
line numbers, in listing file 64
LINES

DEBUG directive 49
LISTFILE directive 64

linker map 24
LISTFILE

CHECKSUMS option 63
COLUMNS option 64
configuration file directive 63
FILENAME option 64
LINES option 64
PUBLICS option 64
REGIONS option 63
SEGMENTS option 63
SYMBOLS option 64
WIDTH option 64

listing files 82
checksums 63, 82
file names 64, 83
line numbers 64, 82
local symbols 64, 83
public columns 82

public symbols 64
public width 83
publics 83
regions 63, 83
segments 63, 83

-Ll 82
-Ln 83
load module 24
local symbols, in listing file 64
LOCATE.OPT 33, 72
log file

enable 76
file naming 76

-Lp 83
-Lr 83
-Ls 83
-Lw 83
-Lx 83

M
#message directive 37
.MAP file extension 85
.MAP files 24
macros

command line definition 74
defining 34

MAP
configuration file directive 66

MEMBERFUNCTION
DEBUG directive 50

MODULES
DISPLAY directive 53

N
NOBIGTYPES

DEBUG directive 50
NOCLASSES

DEBUG directive 50

 Paradigm C++ Locate Reference Manual 142

NOCLASSTEMPLATES
DEBUG directive 51

NODESTRUCTORS
DEBUG directive 50

NOENTRYPOINT
HEXFILE directive 57

NOENUMS
DEBUG directive 50

NOEOFRECORD
HEXFILE directive 57

NOEXTENSIONS
DEBUG directive 50

NOIC86
DEBUG directive 49

NOLINES
DEBUG directive 49

NOMEMBERFUNCTION
DEBUG directive 50

NONE
ABSFILE directive 41
DEBUG directive 50
DISPLAY directive 53
WARNINGS directive 70

NOOPERATORS
DEBUG directive 50

NOPARAMETERS
DEBUG directive 51

NOPUBLICS
DEBUG directive 49

NORESET
INITCODE directive 61

NOSPACES
DEBUG directive 51

NOSPECIALS
DEBUG directive 51

NOSTACK
INITCODE directive 61

NOSYMBOLS
DEBUG directive 49

NOTHING
INITCODE directive 61

NOTYPES
DEBUG directive 49

O
-Od 77
-Oe 77
OFFSET

HEXFILE directive 55
-Oi 78
-Ol 78
OMF86

ABSFILE directive 41
-Op 78
OPERATORS

DEBUG directive 50
options

command line 71
LOCATE.OPT 72
priority 72
summary 72

ORDER
configuration file directive 67

-Ot 79
OUTBYTE

INITCODE directive 61
peripheral register initialization 61

OUTDWORD
INITCODE directive 61
peripheral register initialization 61

OUTPUT
configuration file directive 68

OUTWORD
INITCODE directive 61
peripheral register initialization 61

-Ox 79

Index 143

P
PARAMETERS

DEBUG directive 51
peripheral register initialization 61
predefined macros 37
preprocessor

configuration file 34
projects 12

files 12
TargetExpert dialog box 14
window 12

public symbols, in listing file 64
PUBLICS

DEBUG directive 49
LISTFILE directive 64

Q
-q 75
quiet mode 75

R
.ROM files 24
R1100

INITCODE support 124
R1120

INITCODE support 124
R1122

INITCODE support 124
R1610

INITCODE support 124
R1620

INITCODE support 124
R2000

INITCODE support 124
R2010

INITCODE support 124
R2020

INITCODE support 124
R8800

INITCODE support 124
R8810

INITCODE support 124
R8820

INITCODE support 124
R8822

INITCODE support 124
R8830

INITCODE support 124
RDC processor ports 124
READBYTE

INITCODE directive 62
peripheral register initialization 62

READDWORD
INITCODE directive 62
peripheral register initialization 62

READWORD
INITCODE directive 62
peripheral register initialization 62

REGIONS
LISTFILE directive 63

regions, in listing file 63
relocatable load module 24
RESET

INITCODE directive 61
reset vector initialization 61
ROMBIOS

CHECKSUM directive 43
ROMBIOS checksum 87

S
-s 75
??STACKINIT 61
segment

1MB boundary 27
absolute 27

 Paradigm C++ Locate Reference Manual 144

aliases 25
alignment 26
fixups 23
ordering 26
overlap 27

SEGMENT
configuration file directive 69

SEGMENTS
LISTFILE directive 63

segments, in listing file 63
SIZE

HEXFILE directive 56
Software Problem Reports 9
SPACES

DEBUG directive 51
SPECIALS

DEBUG directive 51
SPLIT

HEXFILE directive 56
STACK

INITCODE directive 61
stack initialization 61
suggestions 9
SYMBOLS

DEBUG directive 49
LISTFILE directive 64

T
TargetExpert 14
technical support 8

E-mail 8
FAX 9
FTP 9
internet 9

TEKHEX
HEXFILE directive 55

TRUNCATE
HEXFILE directive 57

truncating binary files 57
Turbo186

INITCODE support 127
tutorial 12
TYPES

DEBUG directive 49

U
#undef directive 34
utilities

AXE file contents 129

V
V25/V35

INITCODE support 127
V25+/V35+

INITCODE support 127
V40/V50

INITCODE support 126
V40H/V50H

INITCODE support 126
V53

INITCODE support 127
V55SC/V55PI

INITCODE support 127
V-Series support 47
VT80186

INITCODE support 123
VT80186EM

INITCODE support 123
VT80186ES

INITCODE support 123
VT8086

INITCODE support 123

W
-w- 77

Index 145

-W 76
-w+ 77
warning diagnostics 97
warnings

disable 70
disable all 77
disable warning 77
enable 70
enable all 77
enable warning 77
exit code control 76

WARNINGS
configuration file directive 70

WARNINGS directive
ALL option 70
EXITCODE option 70
NONE option 70

WIDTH
LISTFILE directive 64

WRITEBYTE

INITCODE directive 62
peripheral register initialization 62

WRITEDWORD
INITCODE directive 62
peripheral register initialization 62

WRITEWORD
INITCODE directive 62
peripheral register initialization 62

X
X1610C

INITCODE support 128
X1630C

INITCODE support 128
-Xa 85
-Xc 85
-Xl 85
-Xm 85
-Xo 85

 Paradigm C++ Locate Reference Manual 146

	Table of Contents
	Introduction
	Chapter 1, Using the Locator
	Chapter 2, Relocation primer
	Chapter 3, Using configuration files
	Chapter 4, Configuration file directives
	Chapter 5, Command line options
	Chapter 6, Checksums and CRCs
	Chapter 7, Using compression
	Appendix A, Warning diagnostics
	Appendix B, Error diagnostics
	Appendix C, Exit codes
	Appendix D, INITCODE port definitions
	Appendix E, AXE utility
	Appendix F, Hex file formats
	Index

