Paradigm C++ Locate
Reference Manual

For Paradigm C++ Professional Real Mode Application Development

Paradigm Systems

The authors of this software make no expressed or implied warranty of any kind
with regard to this software and in no event will be liable for incidenta or
consequential damages arising from the use of this product. The software
described in this document is furnished under alicense and may only be used or
copied in accordance with the terms of the licensing agreement.

The information in this document is subject to change without notice.
Copyright © 1998, 2000, 2002 Paradigm Systems. All rights reserved.

Paradigm C++ Professional is atrademark of Paradigm Systems. Other brand
and product names are trademarks or registered trademarks of their respective
holders.

January 19, 2004

No part of this document may be copied or reproduced in any form or by any
means without the prior written consent of Paradigm Systems.

Paradigm Systems
Suite 2214
3301 Country Club Road
Endwell, NY 13760

(607)748-5966
(607)748-5968 (FAX)

Sdles information: sal es@devtools.com
Technica support: support@devtools.com
Web: http://ww.devtools.com
FTP: ftp://ftp.devtools.com

For prompt attention to your technica questions, please contact our tech support
team viathe Internet at support@devtools.com Please note that 90 days of free
technica support is available to registered users of Paradigm C++. For an
additional 12 months, a SurvivalPak maintenance agreement can be purchased.

C O N T

Introduction
What's in the Paradigm C++ Locator 5
The Paradigm C++ package.........ccccceeveveeee.e. 7
The Reference Manual...........cccccoeeeiinnnnee. 7
Technical assistanCe..........ooecvvveeeiieeeeiiiee 8
E-mail.....ooeeiiieiee e 8
INTEINEL ..o 9
FT P e 9
FAX e 9
Problems and suggestions..............ccuveveeennnnnn. 9
Chapter 1 Using the Locator
QLI L0 = PR 12
Filesinthetutorial.........ccccccooviiiiiiiiieneenn. 12
The LOCATE configuration file..................... 16
Chapter 2 Relocation primer
Relocation basiCs..........cvveeeveeeiiiiiiiiiiieeeee, 23
The linker output files........c.cvvvvvviviveiiiieieee, 24
Segment aliases..........ooooeeiiiii 24
Segment ordering and alignment 25
Segment checking.....................l 26
ADbSOlUte SEgMENES.......uuvueiiiiiiians 27
Fixing absolute segments...........cvvvvveveeeneeee. 28
L] (010 o 28
Duplicating classes...........uuueuiiiieinnnns 29
Chapter 3 Using configuration files
Configuration fileformat............................... 31
Directive format..........cccccveeeeiiiciiiiiieeeeen 32
Line continuationcccceevviicuvieeeeneennnn 33
Directive processing priorityccoceeeeeeeennnns 33

Contents

The PreproCESSOrvuvvvrrrririiirininennnnnenenrnnnnns 34
The #define directive........oooovvvveieeivinnnens 34
The #undef directive........coooevivviiiieiiinnnens 34
The -D optioncuvvvvininieiniiiiiiiiiniinnnnnnnn 35
Fileincluson with #include........................ 35
The #if, #elif, #else, and #endif directives...35
The #ifdef and #ifndef directives................ 36
The operator defined...........uvvvvvvieiiiiininnnnn, 36
The #Herror direCtive.........evvevvvveieeiiieees 37
The #message directive........ccccvvvvvvnnnnnnnnns 37
Predefined macros.........ccooevvevveeieievveeeeene, 37

COMMENTS. ...t 37

Finding erors.........ccccooeeee 38

Chapter 4 Configuration file directives

Directive descriptions..............cccoeeeeeeeeeeeeenn. 39
ABSFILE.......ooi e 41
CHECKSUMooviiiiieeeie e 43
CLASS. ... 45
COMPRESS.......ooiiiiiteeeee e 46
CPUTYPE ... 47
DEBUG......cotiieiieeeeee e 49
DISPLAY .o 53
DUPLICATE......eeeeeee e, 54
HEXFILE ... 55
INITCODE......co i 60
LISTFILE. ... 63
MAP e 66
ORDER......ooiiiiee e 67
OUTPUT oo 68
SEGMENT ..o 69

3

WARNINGS.......oooiiiiiiiiiiiiiiiiieeeeeeeee 70

Chapter 5, Command line options

Command line options............ccceeeeeeeeeeeen... 71
LOCATE.OPT fil€ v 72
Option Priorities......ccoeeeeeeeieiecececcccans 72

Summary of options..............coooeeee. 72
Defining MaCroS..........vvvvvvveeeveeeeeeeeeeeeenenee 74
Initidization...........oeveeveeeiiee e 74
DT g (0= (oS 75

Startup display ..o 75
Processing diagnostics..............ccoeeeeee.. 75
Error/warning 10g........cceeeeviiiiiiieieneeens 76
Exit code controlccooeiciiiieieneennn 76
Warning diagnostic contral 77
OMF86 debug controlcccceeeeeeeiiinnnnns 77
File management...........ccceevvvvevveeeveeeeeennnee. 79
Configuration files........ccoceeiiiiiiiiiiiiinnns 79
EPROM fil€S ... 80
Liging files ... 82
Absolute files........ccccvveeeiiiieee 84
Filename extensions............cooovcvvieeeeneennn. 84

Chapter 6 Checksums and CRCs

ROMBIOS checkSumS.........coevviiiiiiieieneeens 87

CRC-16 checksums..........ccccvveereeeeeiiiiiieeen. 88

CRC-32 checksums..........cccuvveeieeeeeiiiiiieeen. 90

1= 01 (] oS 91

Chapter 7 Using compression

Compression requirements..............ccocceeeee.... 94

Compression algorithm................................. 94

Appendix A Warning diagnostics

Paradigm C++ Locate warnings............cccc..... 97

Preprocessor wWarnings..........coceeeeeeeeeennnnns 105

Appendix B Error diagnostics

Paradigm C++ Locate errors........ccceeeeeunnnne. 107
Message explanations...............eevveeeeeneeee. 107

Preprocessor ETOrS ... vvvvvnveeeeieeeeeeiineeeeens 115

4

Message explanations..................coeeeee. 115
Appendix C Exit codes
EXit COOBS.....iveeeeee e 119
Appendix D INITCODE port definitions
INITCODE port definitions......................... 121
Appendix E AXE utility
AXE ULty .o, 129
Appendix F Hex file formats
Hex file formatS.......oceveveeeeiieieeeeeeeeee 131
Intel extended heX......couvveeeeeiieeeeeeeeeee 131
Extended Address Record............cceeevnn.e. 132
DataRecord........covveeeeeieiiieeiieeees 132
Start Address Record..........ccovveevveennneen. 132
End of FileRecord...........coovvvuviiieieiinnns 133
10105 I 01 TP 133
TeKLrONiX NEX c.ovveeeeeeeee e 133
DataRecord........cocvvveeeeeiiiiieieiieeee 133
Index
1010 [QTP 135

Paradigm C++ Locate Reference Manual

T

R O D U C T I O N

The Paradigm C++ Locator is a professional utility for preparing 16-bit
Paradigm C++ applications for use in embedded systems. The Locator
is fast, easy-to-use, and creates the exact output files you need to
develop and debug embedded system applications for the Intel, AMD
or NEC x86-compatible microprocessors.

Paradigm C++ is unique in its support of al the Paradigm software
development tools, including all versions of their popular C, C++, and
assembly language packages. With output file formats supporting the
integrated debugger, popular in-circuit emulators and EPROM
programmers, everything is included to help you get the most out of
your embedded system application.

What's in the Paradigm C++ Locator

Chapter 1 tells you how to
use the Paradigm C++
Locator. This introduction
tells you about the features

Introduction

of the Locator.

Paradigm C++, including the Locator, the integrated debugger, a
compiler, assembler, and linker, is a complete embedded system
development package. For this manual, lets look at some of the many
features of the Locator offers:

m Fast: No other product even comes close to the Paradigm C++
Locator in getting your application fully debugged and into
EPROM.

m C, C++, and assembly language: Develop your application in the
language of your choosing, knowing it is fully supported.

m Startup code and run-time library support: The Locator
includes complete ROMable startup code for each supported
compiler. Comprehensive run-time library support is also included
for al memory models so you can use stream 1/0O, dynamic
memory management, and floating point run-times in any
embedded system without DOS or a BIOS.

Sample applications. Plenty of sample applications, complete
with makefiles and LOCATE configuration files, are available to
demonstrate various embedded system development techniques for
each supported compiler.

Intel OMF86 support: Absolute OMF86 output files with full
debug information are available for users having an in-circuit
emulator accepting this file format.

EPROM programmer support: The Locator supports al popular
EPROM programmer file formats, including Intel extended hex,
binary and Tektronix hex. The Locator will also optionaly split
EPROM images or fill with any background pattern. Optimally-
sized binary file output is also supported.

Compressed initialized data: Constant and initialized data can be
compressed in EPROM and decompressed by the startup code to
save valuable EPROM space.

Configuration files: A configuration file is how you inform the
Locator about your target system address space, output file types,
and other options. A full C preprocessor is standard, with macros,
include files, and conditionals available to meet the most
demanding requirements.

Chip select, wait state, DRAM refresh initialization: Only the
Locator can automatically generate processor-specific initialization
code so there is no need to write custom startup code.

Reset vector initialization: The Locator will, at your request,
automatically create afar jump to the program entry point from the
reset vector.

Stack initialization: Stack initialization is also available, for
applications which require a stack be setup automatically.

Target system documentation: Create list files with any of the
following information: segments, regions, public symbols, local
symbols, or line numbers. Full application documentation is
standard with the Paradigm C++ Locator.

Checksums and CRCs: Calculate a PC ROM BIOS extension
checksums or generate CRC16 or CRC32 checksums on any
region of memory.

Paradigm C++ Locate Reference Manual

The Paradigm C++ package

The Reference

Introduction

Manual

Y our Paradigm C++ package contains all the programs and files you
need to create embedded applications. The CD-ROM also contains
sampl e applications demonstrating the use of the run-time libraries and
the integrated debugger.

This Reference Manual introduces you to the Paradigm C++ Locator
and contains all the information needed to create embedded system
applications with . This manual is arranged so you can either follow a
short tutorial to quickly get up to speed or use it as a reference,
depending on your level of experience.

Here are the key chapters in this manual:

= |ntroduction: introduces you to the key features of the L ocator
and tells you how to access the Paradigm technical support system.

m Chapter 1: Using the L ocator isashort tutoria of asimple
embedded application built with the Locator.

m Chapter 2: Relocation primer isareview of the techniques used
by the Locator to bind physical addresses to your segments.

m Chapter 3: Using configuration filesis a detailed introduction
into designing a custom LOCATE configuration file for your target
system.

m Chapter 4: Configuration file directivesis the detailed review of
the LOCATE configuration file directives.

m Chapter 5: Command line options is the detailed review of the
command line options available to the L ocator users.

Also included in the Reference Manua are the following appendices.
These contain useful information covering the use of the Paradigm
C++ Locator and utilities.

m Appendix A: Warning diagnostics is a detailed description of the
warnings output by the Locator

m Appendix B: Error diagnostics is a detailed reference of all
Paradigm C++ Locate error messages.

m Appendix C: Exit codes lists the various exit code output by the
Locator as aresult of processing an input file.

m Appendix D: INITCODE port definitionsisalist of supported
peripheral register initializations supported by each processor.

m Appendix E: AXE utility is a short description of the Paradigm
AXE file utility.

m Appendix F: Hex file for mats documents the hex file formats
supported by the Locator.

Wrapping up the manual is a comprehensive index, making all
components of the Paradigm C++ LocateReference Manual available
at your fingertips.

Technical assistance

Ninety days free technical
support is available to
registered users of
Paradigm C++. Purchase
of a maintenance
agreement adds an
additional 12 months.

The use of an on-line
service is recommended
since it offers timely
turnaround of problem
reports and maintenance
releases of software.

E-malil

If you have technical questions or need assistance in setting up or
using the Paradigm C++ Locator, contact our technical support staff at
(607)748-5966 during normal business hours (EST) or at
support@devtools.com. We will be more than happy to discuss your
problem and provide the fastest possible response. Please have the
following information available before you contact us:

Product names and version numbers for all Paradigm products
Product names and version number for third-party products

A detailed description of the problem, and how to reproduce it

If sending us files, be sure to include a README file with the
details of the problem, and your name, address, phone/fax numbers
S0 we can get back to you. Please use a compression utility to
keep the size of any files to a minimum.

We encourage all customers to contact us with their application,
compiler, debugger, or in-circuit emulator questions. We have experts
on staff to deal with any questions relating to the Paradigm C++
Locator, the use of compilersin embedded systems, or using the
integrated debugger with an in-circuit emulator. Please feel freeto
contact us any time you need assistance.

Y ou may send technical questions or problem reports to our technical
support group via the following e-mail address:

Paradigm C++ Locate Reference Manual

Internet

FTP

FAX

support @evt ool s. com

Y ou can reach us on the Web at:

http://ww. devt ool s. com

Internet users can access technical support, application notes, third
party vendor information and product information on our website.

To obtain patch files, service packs and application notes quickly,
access our anonymous FTP site at:

ftp://ftp.devtool s. com

Y ou may also fax your problem reports or questions to our technical
support group at (607)748-5968. This s the least desirable method
since we may lack the ability to reproduce your problem.

Problems and suggestions

Introduction

We welcome your suggestions and feedback and hope you find that
the Paradigm C++ Locator meets your requirements for embedded
system software development. The Locator has been extensively
tested prior to its release, but unforeseen problems or incompatibilities
can arise due to the number of possible system configurations. Should
you find a problem with this software or have an idea for an
improvement, don't hesitate to contact us. We appreciate your
feedback and suggestions for improving the Locator.

Using the Locator

The Paradigm C++ IDE contains all of the tools needed to build an
embedded application with a single mouse click. The Paradigm C++
Locator is one of those tools. The primary function of the Locator is
to resolve code and data references in your application to a fixed
address, for use in flash, EPROM, or some other device on your
embedded target. To understand the Locator, it is best to first
understand the build process. The following diagram shows how the
Paradigm C++ Locator fits into the 16-bit real mode embedded
application build process:

Figure 1-1 Paradigm C++ Software Development Process

PARAD G C++
COMPILER

PARADIGHM C++
ASSEMBLER

0Bl

PARADIGM C++ PARADIGM C4++ PARADIGM C++

LINKER

0B

POREMOTEROM

OFR EMULATOR
LOCATOR IMTEGRATED

ROM DEBUGEER TARGET S¥STEM

COMNFIGURATION

INSTRUCTIONS

PARADIGM C++ IDE

Chapter 1, Using the Locator 11

Tutorial

This section covers the use The easiest way to describe how the Paradigm C++ Locator is used is
o g;tt;‘reif %@%grﬂ;d?gﬁ by example. The DEMO example, found in the _
C++ embedded app“cation EXAM PLES\REAL\DEMO Sde| I’eCtory Of the Pal’adlgm C++
development cycle. installation directory, is the smplest place to start. Open the project by
selecting Project | Open project in the Paradigm C++ IDE. The
Paradigm C++ project window appears. Select View | Project to
display the project window at any time. The project window contains
all of the source files and libraries used in the application build process.

Figure1-2 Paradigm C++ Project window

Eprnjecl: : c:\program files\ paradig
N wMd =0 o= [axe] o TaroetROH

¢ [dems efg [.cfg]
+ ErOdeno.ron [.rom]
. wMdemo.c [.c] lines=99%

B [readne txt [tmt]

E EII:I Helpey files [SourcePool]
+ [console. = [.c]

s [fpint . asn [.asn]

The DEMO project uses a number of files:

DEMO.C Thisisthe only source file in the DEMO
example. A double-click with the mouse will
alow you to view it.

DEMO.ROM Thisfile represents the link stage of the build
process, where all of the compiled or assembled
source files are linked together.

DEMO.CFG The LOCATE configuration file contains the
instructions for the real mode location process.

DEMO.AXE This represents the target node or final output.

README.TXT This node is not part of the build process, but
exists for documentation purposes.

12 Paradigm C++ Locate Reference Manual

Helper files The files in the Sourcepool are not part of the

Sour cePool build process in this case, but they are made
visible to the user, to be added into the build
process if needed. See the Paradigm C++ User's
Guide for details on sourcepools.

A right-click with the mouse on DEMO.AXE will display aloca menu
where you can invoke the TargetExpert to change application options.

Chapter 1, Using the Locator 13

14

Figure 1-3 Paradigm C++ TargetExpert dialog box

W 0K

A Cancel

New Target
— Project Path and Name:
Ic:'\,paradigm'\,examples\demu'\,mydemu.ide
— Target Name:
Itest
— Target Type: — Options

Faradigm Application [.axe
Static Library (for .axe) [lik]
Dwnamic Library [.di]
Static Library (for .dif) [1ik]

Caonfigure Settings |

Target Model:

[smal =
Target Connection
[Ma Target/ROM =

— Math Support:
" Floating Point
€ Emulation
& [Mone

— Lilararies:
¥ Mo Exceptions

[T Compress class FAR_DATA

— Startup Code
[T Use alternate startup code

@rget Expert

'i'a_ Browse

B Advanced

Bl

? Help

The TargetExpert is used to specify the type of application to build.
The platform is set to Real address mode, which is required for a 186
type processor. The target model can be Small, Medium, Compact,
Large, or Huge (see the memory model descriptions in the Paradigm
C++ User's Guide for more details). Math support is required when

Paradigm C++ Locate Reference Manual

Figure 1-4

your application is performing floating point operations (select
Emulation if your target does not have a coprocessor). If you do not
wish to have exception handling in your application, select the No
exceptions checkbox. There are also checkboxes for far data
compression and alternate startup code (for advanced users who do
not wish to use the default startup code).

The target connection determines the type of debugging session to be
used. A target connection of No Target/ROM is used for the final
product and resultsin a.HEX or .BIN file to be placed into flash or
EPROM. Other target connections are available depending on the
version of Paradigm C++ being used. For example, a target connection
of PDREMOTE/ROM will result in a debugging session where the
integrated debugger expects to communicate with a
PDREMOTE/ROM monitor running on the target.

When using the TargetExpert to configure the application, some
default libraries will be added and removed. These libraries are not
normally visible, because they are run-time nodes that are almost
always required to make your application work properly. To see all of
the files used in the build process, select Options | Environment |
Project View and select the Show run-time nodes checkbox of the
Project display settings group.

DEMO project

[E‘Pruiecl:

¢ ~[demo.cfg [.cfg]

. B0 demo.rom [.rom]
“Mdemo.c [.c] line=s=99
[eolz.obji [.obj]
[noshs. 1ib [1ib]
“Mos. lib [.1ib]

@ [readne. tzt [. tmt]

@ B0 Helper files [SourcePool]

' ~[0) console.c [.c]

o e B fpint . a=sn [.a=n]

Chapter 1, Using the Locator

15

If the TargetExpert settings previoudy displayed were used, the three
run-time nodes marked in yellow in Figure 1-4, page 1-15 would have
been added. These files will change depending on the TargetExpert
settings and are described as follows:

C0X.0BJ The startup code for the application, where x is
the first letter of the memory model used. It
contains no target specific initializations and
performs application stack and data
initializations.

CX.0BJ The run-time library, where x is the first letter of
the memory model used. This contains run-time
library functions, such as printf(). Code from
this library will only add to the size of your
application if calsto run-time library functions
are made.

NOEHX.LIB The no exceptions library, where x is the first
letter of the memory moddl used. Use this
library if you are not using exception handling in
your application.

Selecting Project | Build All for the DEMO example will compile .C
source files into an object file to be linked in with the libraries. The last
stage of the build process is the absolute location process. Paradigm
C++ will automatically perform the location process as the last step of
the build process. It is at this point where a .HEX, .BIN or .AXE file
will be generated. When the locate process has been completed, afile
with a.LOC extension will be generated (in this case it will be
DEMO.LOC). This file shows the locations in memory where the
application code and data has been placed.

The LOCATE configuration file

The configuration file used in the DEMO example, DEMO.CFG,
contains al of the commands used in the location process. The
following listing describes the configuration file usage line by line:

16 Paradigm C++ Locate Reference Manual

Figure 1-5
LOCATE configuration file

O~NOODWNERE

17
18
19
20
21
22
23
24
25
26
27

28
29

30
31

32
33

34
35

36

Chapter 1, Using the Locator

/1

/1l LOCATE configuration file for a Paradi gm C++
/1 16-bit ermbedded system application.
/1 purpose configuration file can be used with a

/1 standal one target or with a PDREMOTE/ ROM t ar get .

/1

Thi s general

/1 Select the options based on if you have a stand-al one
/1 target or if you will be connecting to a PDREMOTE/ ROM

/1 target system
/1

cputype AN 86ES /] Select the target system processor

#if defined(__PDREMOTE_) || defined (__JTAG)

map 0x00000 to Ox00fff as reserved
map 0x01000 to OxOffff as rdwr

map 0x10000 to Ox1ffff as rdonly
map 0x20000 to Oxfffff as reserved
#defi ne DATA_START 0x0100

#defi ne CODE_START 0x1000

#defi ne BOOT_START 0x1fcO

#el se
map 0x00000 to Ox1ffff as rdwr

map 0x20000 to Oxeffff as reserved

map 0xf 0000 to Oxfffff as rdonly

#defi ne DATA_START 0x0040

#defi ne CODE_START 0xf 000

#defi ne BOOT_START oxffcoO

i ni tcode reset \
uncs = Oxf03c \

/1
/1

/1

/1
/1
/1

/1

/1
/1

/1

/1
/1
/1
/1

PDREMOTE/ ROM and
int vector table
System RAM ar ea
(60KB RAM)

Si mul at ed EPROM
area (64KB RAM
No access al | owed

Start of
application data
Start of
application code
Start of
initialization code

128KB RAM addr ess
space

No access

64KB EPROM addr ess
space

Start of
application data
Start of
application code
Start of
initialization code

Reset vector to
program entry point
64KB, 0 wait
states, i gnore ready

17

37 I ncs = 0x1f 3c /1 128KB, 0 wait
/| states,ignore ready
38
39 class ??LOCATE = BOOT_START /1 Chip select
/] initialization
40 out put ??LOCATE
41
42 hexfile intel 86 /'l Intel extended hex
/] out put
43
44 #endif
45
46
47 1
48 // Start of common configuration file settings
49 //

50

51 absfile axe86 /1 Paradi gm C++
/1 debuggi ng out put

52 listfile segnents /| Absol ute segnent
/'l map

53

54 dup DATA ROVDATA /1l Make a copy of
/1l initialized data

55 dup FAR_DATA ROVFARDATA /1 Make a copy of far
/1l initialized data

56

57 #if defined(__COWFARDATA) /1 Comnpress and

/1 display results
58 conpress ROWARDATA
59 display conpr essi on

60 #endif
61
62 class CODE = CODE_START /1 Application code
63 class DATA = DATA_START /1 Application data
64
65 order DATA \ /'l RAM cl ass
/] organi zation
66 BSS \
67 NVRAM \
68 EDATA \
69 STACK \
70 FAR_DATA ENDFAR_DATA \
71 FAR_BSS ENDFAR_BSS \
72 FAR_HEAP ENDFAR_HEAP
73
74 order CODE \ /'l EPROM cl ass
/1 organi zation
75 I NI TDATA EXI TDATA \
76 FAR_CONST ENDFAR_CONST \
77 ROVDATA ENDROVDATA \
78 ROVFARDATA ENDROVFARDATA
79

Paradigm C++ Locate Reference Manual

80 out put CODE \ /1 Classes in the
/1 output file(s)

81 | NI TDATA EXI TDATA \
82 FAR_CONST ENDFAR CONST \
83 ROVDATA ENDROVDATA \
84 ROVFARDATA ENDROMFARDATA

Let's take a detailed look at each line of the configuration file and see
just what is going on here:

Lines 1-10 These are comments, so you can document what your configuration
fileis doing and why it needs to be done. Comments may be used
freely throughout the configuration file.

Line 12 The CPUTY PE directive identifies the target microprocessor as an
AmI186ES. Thiswill permit the Am186ES peripheral registers to be
referenced in the INITCODE directive.

Line 14 The #if directive can be used to conditionally locate the application,
depending upon what defineis passed. ~ PDREMOTE___ is one of
the macros automatically defined when PDREMOTE/ROM s used to
debug your application. This section of the LOCATE configuration
file will be active when usng PDREMOTE/ROM or JTAG to debug
the application.

Lines 16-19 The MAP directive partitions the target system memory address space
into four mutually exclusive regions. The Paradigm C++ Locator uses
thisinformation to warn if any code or data accidentally ends up in
undefined regions of the memory address space, or overlaps multiple
regions. Seethe MAP directive in Chapter 4, Configuration file
directives for more details.

Line 21-22 These lines define the start address of data and code, which are used
by the CLASS directive. Thisvalue is a segment address. Notice that
the address used for code is located at alow address, where RAM is
normally found. Thisis needed when debugging an application with
PDREMOTE/ROM.

Lines 25 The #else directive is used with the #if directive to conditionally locate
the applications. In this case, it marks the beginning of the

Chapter 1, Using the Locator 19

Lines 27-29

Lines 31-33

Lines 35-39

The Paradigm C++ Locator

20

places this code in the
class ??LOCATE. See

‘INITCODE,” page 60 for

more information.

Line 40

Line 42

Line 44

Line 51

configuration file section normally used to generate afinal .HEX or
.BIN file after debugging the application. Using no Target/ROM as
your target connection would activate this section.

The MAP directives are used here to show the actual target memory
configuration, where the previous set of MAP directives were set up
differently for debugging purposes.

CODE_START reflects an address of an application to be placed into
flash or EPROM. DATA_START reflects the address that follows the
interrupt vector table. Finally, BOOT_START isthe address for a
specia class generated by the Paradigm C++ Locator with the
INITCODE directive is used.

The reset parameter instructs the Paradigm C++ Locator to create a
reset vector at address FFFFOH so control will be transferred to the
application entry point when reset is asserted. Lines 36 and 37 are
used to create initialization code for the Am186ES upper and lower
memory chip selects so the target system memory can be completely
accessed. The BOOT_START addressis placed at FFCOOH, which is
well within the 64K B block of addresses that the Am186ES upper
memory chip select can address following reset.

The OUTPUT directive identifies which classes should be placed in
the output file. Note that classes containing code or copies of
initialized data must be named in the OUTPUT directive. Other
classes, containing uninitialized data and the state, can be left out since
they are initialized by the application.

The HEXFILE directive is used to create DEMO.HEX, an Intel
extended hex file containing a Paradigm C++ sample application. This
file can be downloaded to an EPROM programmer for preparing a set
of EPROMs for the Paradigm C++ target system.

The #endif directive must be paired with the #if directive to
conditionally locate the applications.

The ABSFILE directiveis used to create the file DEMO.AXE, an
absolute load module that includes debugging information. Thisfileis

Paradigm C++ Locate Reference Manual

used by the integrated debugger of Paradigm C++ while debugging the
application.

Lines 52 The LISTFILE directive causes an absolute segment map in the
Other information like =~ DEMO.LOC listing file. These are the addresses where the
public symbols, can also application will appear in the memory address space of the target
be placed in this file. See system.
"LISTFILE", page 63.
Line 54-55 The DUPLICATE directive makes a copy of the segments in the class
DATA, which contain the initialized data. The compiler startup code
then copies the contents of the EPROM-based ROMDATA classto
the RAM-based DATA class. Thisistrue of for the FAR_DATA
classaswell, which isinitialized far data in your application.

Lines 57-60 This section of the configuration file is active if far data compression is
enabled in the Paradigm C++ TargetExpert.

Lines 62-63 The CLASS directive is used to bind physical segmentsto an
application. The first CLASS directive places the program code at the
base of the EPROM indicated by CODE_START, while the second
CLASS directive puts the application read/write data immediately
following the interrupt vector table at the address indicated by
DATA_START.

Line 65-72 Using DATA as the anchor class, this ORDER directive binds
addresses to the other classes that are part of the RAM address space.

Lines 74-78 Using CODE as the anchor class, this ORDER directive binds
addresses to the other classes that are in the EPROM address space.
Notice that the copy of the initialized datain class ROMDATA is
placed in the EPROM address space where it will be copied to RAM
by the startup code.

Lines 80-84 The OUTPUT directive identifies which classes should be placed in
the output file. Note that classes containing code or copies of
initialized data must be named in the OUTPUT directive. Other
classes, containing uninitialized data and the state, can be left out since
they are initialized by the application.

Chapter 1, Using the Locator 21

22

Paradigm C++ Locate Reference Manual

N

Relocation primer

This section contains optional information provided for those
interested in the segment relocation process, handling of initialized
data, and other topics of interest to embedded system programmers.
The Paradigm C++ Locator can be used quite well without
understanding these underlying agorithms, so this section may be
skipped at the discretion of the user.

Relocation basics

A segment is the basic unit \When a linker processes a set of object files, it combines all segments
of organization. 1 ing the same segment name into a single physical segment which
must fit within a 64K B region of the memory address space.

Aclass is a collection of Compilers typically assign each segment to a class, and assembly
related segments. | quiage users can do the same. Assignment to a class permits the

linker to combine together similar segments, such as al segments
containing code or initialized data, so they can be manipulated together
asasingle entity. Although a member of the class, each segment
remains independently addressable and can vary in length to a
maximum of 64KB bytes. Since any number of segments can form a
class, there is no restriction on the size of a class.

We will cover how groups Compilers and assemblers also define a different relationship between

p?ggg;;hgnr?gg:“zosn segments known as agroup. The segments within a group do not

Chapter 2, Relocation primer 23

have to be contiguous but are all addressed using the same segment
base; they must fit into a single 64KB physical segment. When the
linker encounters a group, it replaces the offsets from the segment
base with offsets from the group base, adjusting them upward as
necessary.

The linker output files

The .ROM and .EXE files
are really the same - we
just want to distinguish
them.

The linker has the responsibility of resolving al external references and
creating the relocation table containing the list of segment fixups.
Although al externa references have been resolved, the segment
fixups are till relocatable and can be moved anywhere within the
1MB address space, which is where the Paradigm C++ Locator
becomes involved.

This information, along with other loading instructions and optional
debugging information, is written out in the .ROM and .MAP files.
The .ROM fileis the relocatable load module. By default, linker
names in thisfile have an .EXE extension. The .MAPfileisthe
segment map file. Both .ROM and .MAP files are required by the
Paradigm C++ Locator. Being arelocatable load module has certain
advantages and is a necessary requirement for DOS, since the final
physical addresses of a program are unknown until the program is
loaded.

Of course, for designers of embedded systems, this is unacceptable
since al segments must be at fixed addresses before the code is
committed to EPROM or downloaded to an in-circuit emulator. A
utility like the Paradigm C++ Locator solves this problem by extracting
the segments and relocation information from the linker files and
converting the relocatable segment references to absolute addresses in
the target system address space, as directed by the configuration file.

Segment aliases

The Paradigm C++ Locator
will automatically warn of
alias conditions.

24

The virtual segment, or frame number, is used as a handle by the
Paradigm C++ Locator to identify the target segment referred to by a
fixup record.

Paradigm C++ Locate Reference Manual

It turns out that it is possible for two segments to share the same
virtual segment number, a situation known as aliasing. Since the fixup
records for aliased segments are indistinguishable, some restrictions are
placed on the developer to prevent aliases from being created.

Segment aliases occur when a segment fails to cross a paragraph
boundary, and the start of the second segment shares the same virtual
fixup asthe first. Whether or not a segment alias presents a problem
depends on whether the segments are members of the same class. If
both segments are members of the same class there is never a problem
since these segments will be located contiguously and the fixup is
unambiguous. If the offending segments are organized as a group,
there is again no problem since all segments in a group share a
common virtual segment number and the segment fixup will also be
unambiguous.

The segment alias problem arises when the segments are members of
different classes and an attempt is being made to relocate the segments
to different regions of the memory address space by splitting them. |f
a segment fixup is requested for an aliased virtual segment, the fixup is
ambiguous and the Paradigm C++ Locator cannot determine the
correct address trangation.

The startup code supplied Fixing a segment alias is generally easy since a segment aias condition
with the Paradigm C++ o o1y gcour when the length of the first segment and the alignment
Locator will always prevent y . g $g g)
an alias, unless you modify ~ Of the next segment in the load module result in both segments having
it. segment bases in the same paragraph. Since the alias is a function of
segment length and alignment, adjusting either of these two parameters

can eliminate the possibility of a segment alias occurring.

Segment ordering and alignment

The solution to the segment alias problem involves specifying the
alignment characteristics for the first segment of each class such that
the start of the segment will be forced to the new paragraph.

Thisis easily accomplished by using the assembly language startup
code to declare the segment alignment of the first segment in a class to
be on a paragraph boundary. Thiswill alow the startup code to take

Chapter 2, Relocation primer 25

This is the rationale behind

the declaration of the first
segment in each class
before any code or data
declarations.

These are only an example
- use the DefSeg macros

supplied with the startup
code whenever possible.

advantage of the way the linker organizes segments and classes within
the load module.

The ahility to control the segment length is limited, especially when
high leve languages or pre-compiled library modules are involved. We
have seen that the DOS linkers order and align the segments in the
load module in the order they are encountered in the object modules.
By making sure that the first object file input to the linker specifies the
desired segment order and alignment for all the classesin the
application, the user has complete control over the final ordering and
alignment of the segmentsin the load module.

The following are sample declarations which demonstrate the
technique. Notice that the first segment in each class has been
declared to be paragraph aligned using the assembler keyword ‘paral.
So long as the previous class is not empty, this will guarantee a unique
segment address for the class. Also note that the subsequent segments
in aclass can use any alignment since they are always manipulated
together and never split apart:

_TEXT segnment para public ' CODE'
_TEXT ends
_DATA segnment para public ' DATA
_DATA ends

The case where a segment will have zero length, yet must be
manipulated independently, will be examined in the next topic, where it
arises naturally.

Segment checking

26

After converting from virtual to physical segment addresses, the
Paradigm C++ Locator checks for overlapping segments and outputs a
warning if any are detected.

A segment overlap warning is generally the result of the class length
increasing to the point where it overlaps with one or more of the
following classes. This problem is easily corrected by changing the
starting addresses in the configuration file CLASS directives to match
the physical memory requirements of each class.

Paradigm C++ Locate Reference Manual

Any attempt to use the
reserved address is
flagged by the Locator.

Also checked by the Paradigm C++ Locator is data exceeding the
upper limit of the CPU memory address space. This condition would
occur if the sum of the segment base address and the length of the
segment exceeds the 20-bit addressing capability of the
microprocessor. Thisis not an uncommon problem, asit is quite easy
for the application code to grow past the IMB boundary.

Another possibility that the Paradigm C++ Locator will check for is an
application completely filling the RAM or ROM address space
assigned to it. To check for code or data spilling into non-existent
regions of the address space, The Locator permits the user to define
regions of the memory address space which are reserved and cannot
be used.

Absolute segments

If necessary, the warning
messages for absolute
symbols can be disabled
with the -w- command line
option.

Absolute segments are
also very limited in that
they can only be used to
define addresses.

A potential problem with the use of DOS linkers is that segments
declared at an absolute address do not appear in the output link map.
Since any symbols defined in an absolute segment will appear as part
of the debugging record, an attempt by the Paradigm C++ Locator to
convert the virtual segment to a physical segment address will most
likely fail. When the virtual to physical segment trandation fails, the
Locator assumes that the symbol is a member of an absolute segment
and does not fixup the segment component of the code or data and
issues awarning.

The use of absolute segments is not recommended since the Paradigm
C++ Locator allows the user to delay the binding of the physical
segment address until the locate phase rather than when the fileis
assembled. Besides leading to more portable code, error checking is
enhanced since the Locator can confirm that no other segments will
overlap the absolute segment.

There is also the possihility that one of the other segmentsin the
application will have a logical segment index identical to the absolute
segment. Since the Paradigm C++ Locator has no way to verify the
symbol being absolute, the trandation would take place and the
address of the symbol in the debugging records would be incorrect.
While a problem for the debugging information, this event would not
affect the correctness of the code.

Chapter 2, Relocation primer 27

Fixing absolute
segments

Groups

The two steps needed when converting an application from using
absolute segment addressing to using the Paradigm C++ Locator to fix
the segment address are shown below. The first step is to change the
segment declaration in the assembly language source from the absolute
format to the relocatable format with a unique class name.

ASEG segnent at 0f 000h ; Absol ute
; your code
ASEG ends

ASEG segnent para public ' MYSEG ; Rel ocatabl e
; your code
ASEG ends

The second step involves adding a directive to the LOCATE
configuration file to set the base address of the segment to the original
segment address.

cl ass MYSEG = 0xf 000 /1 Fix the address

Languages such as
Microsoft C/C++ and
Borland C++ use the group
DGROUP.

The order of classes in a
group must follow the
ordering the .MAP file.

28

Currently there is no explicit support for groups in the Paradigm C++
Locator due to DOS linkers lacking sufficient information on the
segments that make up a group.

If you are programming in assembly language, this should not cause
any problems since the groups and classes used are controlled
completely by the programmer. C and C++ application programmers
should pay careful attention to make sure that the rules for
manipulating groups are not violated.

The Paradigm C++ Locator provides support for groups through the
use of the configuration file ORDER directive. After processing the
object modules, the linker adjusts the offsets within each segment in a
group relative to the start of the group. If the user supplies the class
name of the first classin a group, the other classes in the group can be
relocated relative to the base segment of the group. The location of a
group is handled by assigning the first class in the group a physica
segment with the CLASS directive and ordering the remaining classes
in the group located with the ORDER directive.

Paradigm C++ Locate Reference Manual

Duplicating classes

Some programs define initial values for read/write data structures that
are assumed to be correct when a program begins execution. Since
this is not the default case for a system just powered up, the Paradigm
C++ Locator must provide a mechanism for initiaizing this memory to
itsinitial values.

You can't compute the size The gtartup code is responsible for the initialization of RAM-based
ofa d%?';ﬁzti?i Cilsglsagrs'lg data from an EPROM-based copy. This technique involves the
? " creation of aplaceholder class which has a segment address but has no
length since the actual segments in the class will befilled in by the
Paradigm C++ Locator DUPLICATE directive. Since the placeholder
class will have zero length, any class that follows is guaranteed to be
aliased.

See your compiler startup The solution to this problem is to define a pair of classes, the first
code for an example of this oy /iy a5 the placehol der and the second serving to mark the end of

technique. .
the first.

_rd segnment para public ' ROVDATA'

ridata | abel byte

_rd ends

erd segnent para public ' ENDROVDATA'
db 16 dup (?)

_erd ends

The above segment declarations define both classes to be paragraph
aligned with the second class following the first. While we cannot
avoid the aias condition, we can make it harmless by making sure that
the second class is aways located contiguoudly to the first. The
Paradigm C++ Locator ORDER directive can now be used to fix the
relationship of the classes, relative to an anchoring class.

order CODE ROVDATA ENDROVDATA

Finding the start of the class ROMDATA is as simple as taking the
address of thelabel r i dat a or referencing the segment name. The
end of the class is marked by the class ENDROMDATA, which aso
guarantees that the following class will not be dliased. Thisis
determined by the length of the class being 16 bytes, guaranteeing the
following class will have a unique fixup.

Chapter 2, Relocation primer 29

30

Paradigm C++ Locate Reference Manual

Using configuration files

The process of converting the relocatable output of the linker to a
format suitable for downloading to a remote debugger, an in-circuit
emulator, or an EPROM programmer begins with the instructions
contained in a LOCATE configuration file. A configuration file
contains any number of directives which allow you to control where
your application will reside within the target system memory address
space, the number and type of the output files, and any other the
Paradigm C++ Locator options of your choosing. Each directive may
also accept options which provide more specific results for the
directive.

Because LOCATE configuration files use a C preprocessor, you have
full control over the application with macros, conditional processing
using standard C syntax.

Configuration file format

The default LOCATE configuration file is the filename of the load
module with the .CFG extension. For example, assuming you just
linked your application and have the newly created files DEM O.ROM
and DEMO.MAP, the following the Paradigm C++ Locator command
line would use the default configuration file DEM O.CFG for the

Chapter 3, Using configuration files 31

Later on, we will see how

the preprocessor can help

32

manage multiple
configurations.

Directive format

directives to process the DEMO.ROM input file and create the
requested output files.

| ocate denp

Often it is more convenient to use different configuration files as you
proceed through the phases of the software development cycle or to
have multiple projects share a common configuration file. Using the
Paradigm C++ Locator -c command line option, the default
configuration filename can be overridden and a configuration file of
your choosing substituted. The Paradigm C++ Locator aso offers full
control over the default file extensions. If you prefer to use a different
configuration file extension on a project basis, the Paradigm C++
Locator command line option -Xc can be placed in the
LOCATE.OPT file to substitute your own default configuration file
extension when the Paradigm C++ Laocator is run.

The Paradigm C++ Locator gives you considerable leeway in the
layout of your configuration file. With the exception of the few
directives that depend on options specified in a previous directive, the
Locator directives can be declared in any order in the configuration
file.

Here isthe format of atypical configuration file directive processed by
the Paradigm C++ Locator:

directive option [option ...]

Each configuration file directive accepts one or more options which
customize the actions of the directive to meet specific requirements.
Some directives accept a single option while others accept an unlimited
number of options. When a directive accepts multiple options, the
options can appear in any order unless otherwise specified.

For example, the LISTFILE directive is used to create an absolute
listing file containing segments, publics, line numbers and loca
symbols. In the following example, both LISTFILE directives are
equivaent.

listfile segnents publics lines
listfile publics |lines segnents

Paradigm C++ Locate Reference Manual

Line continuation The Paradigm C++ Locator processes each configuration file directive
up to the end of theline. For readability, and to permit an arbitrary
number of optionsin a directive, multiple physical lines can be
combined into asingle logical line using a line continuation character,
the backdash (\). The following is a simple example of using line
continuation in the WARNINGS directive, used to enable and disable
specific warnings.

war ni ngs -w1000 \ /1 Turn off warning 1000
-w1001 \ [/ Turn off warning 1001
+w1002 /1 Turn on warning 1002

Note that in the previous example, al text following the line
continuation character up to the end of thelineisignored. This
permits comments to be added to the source line, or alows the
formatting of the directive optionsin a vertical line. While the
WARNINGS directive is just as happy having all the options listed on
asingle line, the line continuation feature of the Paradigm C++
Locator permits a clear view of the directive options without
destroying the layout or readability of the configuration file.

Directive processing priority

The Paradigm C++ Locator options can be specified in the
LOCATE.OPT; file, on the DOS command line or in the
configuration file. In the event of conflicting options, the following
processing order (lowest to highest) is used to determine which the
Locator options will be enabled.

m LOCATE.OPT options
m configuration file directives
= command line options

With the exception of the -c command line option which is processed
immediately, al other command line options are processed after the
configuration file directives have been processed. This permits the
command line to be used to override any default actions specified in
the configuration file or in the LOCATE.OPT file.

Chapter 3, Using configuration files 33

In the event of multiple directives within the configuration file,
subsequent directives will override the effect of the previous
directives, except for instances of the HEXFILE and LISTFILE
directives which always specify multiple, independent actions.
Command line options which enable an action can be disabled later by
the complementary command line option just as a later configuration
file directive can enable or disable a previous directive.

The preprocessor

Preprocessor directives

can appear anywhere in the

34

configuration file.

The #define
directive

The #undef
directive

In order to accommodate a diverse range of options, afull C
preprocessor is used to prepare configuration files for parsing by the
Paradigm C++ Locator. The preprocessor gives you great power and
flexibility in the following aress:

m Defining macros to reduce the development effort and improve the
readability of your configuration files

m Including directives from other files, such peripheral device
definitions

m Setting up conditional processing for improved portability and for
managing multiple builds

Any line with aleading # is taken as preprocessing directive. The
initial # can be preceded or followed by white space if desired.

The #define directive defines a macro, with or without parameters, as
shown in the following example:

#define macro_indentifier <token_sequence>

Each occurrence of macro_identifier in your configuration file will be
replaced with the token_sequence, which may be empty.

Y ou can undefine a previoudy defined macro by using the #undef
directive:

#undef macro_identifier

Paradigm C++ Locate Reference Manual

Once undefined, it can be redefined with #define, using the same or a
different token sequence.

The -D option The -D option can be used on the Paradigm C++ Locator command
line to define identifiers before the start of the configuration file
processing.

The Paradigm C++ Locator command line
| ocate - DDEBUG=1 -DLI ST test
is equivalent to placing

#def i ne DEBUG 1
#def i ne LI ST

at the start of the TEST.CFG configuration file.

File inclusion with The #include directive is used to pull in other filesinto the original
#include configuration file. It uses one of the following forms, which are
treated the same by the Paradigm C++ Locator:

#i ncl ude <fil enanme>
#include "fil enane"

The action of the preprocessor is to remove the #include line from the
configuration file and replace it with the entire contents of the file
filename.

The #if, #elif, The Paradigm C++ Locator supports conditional processing using the
#else, and #endif #f, #elif, #else, and #endif directives. Using these directives you can
directives conditionaly include configuration file source lines, based on the result

of an expression:

#i f expression
<section>

#el i f expression
<section>

#el se

<section>

#endi f

Chapter 3, Using configuration files 35

The #ifdef and

#ifndef directives

36

The operator
defined

If an expression evaluates to hon-zero (after any macro expansion),
the source lines represented by the corresponding section are
preprocessed and passed on to the Paradigm C++ Locator. When an
expression evaluates to zero, the corresponding section is ignored.

The #ifdef and #ifndef conditional directives let you test whether an
identifier is defined, that is, whether a previous #define is ill in force
for the identifier. Theline

#ifdef identifier
has exactly the same result as
#if 1
if identifier is defined, and the same effect as
#f 0
if identifier is undefined.
#ifndef is used to test for the not defined condition.

The defined operator offers a more flexible method of testing whether
one or more identifiers are defined. It isvalid only in #if and #elif
expressions.

The expression defined(identifier) evaluatesto 1 (true) if the
identifier has been previously defined and has not been undefined,
otherwise it evaluates to zero. The directive

#i f defi ned(aSynbol)

is the same as

#i f def aSynbol

The advantage of using the defined operator is that it can be used
repeatedly in a complex expression, such as

#i f defined(thisSynbol) && !defined(thatSynbol)

Paradigm C++ Locate Reference Manual

The #error
directive

The #message
directive

Predefined macros

Comments

The #error directive is used to terminate processing and output an
error diagnostic of your choosing. The #error directive istypicaly
used in a conditional clause to catch an unexpected condition, as
shown in the following example:

#if !defined(A_MACRO
#error Failed to define nmacro A _MACRO
#endi f

The #message directive can be used to emit diagnostic information to
the console or Paradigm C++ when the locate tool is run:

#ifdef __ PDREMOTE__
#message Building for PDREMOTE/ ROM t ar get
#endi f

The following macros are predefined by the Paradigm C++ Locator
for usein configuration files:

__PARADIGM 1
__LOCATE__ Paradi gm C++ Locator version nunber

Old-style C comments
may also be used.

Chapter 3, Using configuration files

Configuration files do more than instruct the Paradigm C++ Locator
how to process the relocatable load module; they are also a key
component of the design documentation. To help you in properly
documenting your design, comments can be added fredly to the
configuration file.

The start of a comment field is defined using the C++ syntax, which is
apair of dashes (/') with the comment continuing to the end of the
line. Blank lines and comments can appear anywhere within the
configuration file, improving the readability while providing complete
flexibility.

37

Finding errors

These diagnostics are
designed to pinpoint errors
or warn of hazardous
conditions.

Check both the reported
line and the previous line
for the error.

38

Any time the Paradigm C++ Locator finds a discrepancy parsing a
configuration file directive, it issues a diagnostic indicating the
configuration file source line in error. A complete list of diagnostics
produced by the Locator, together with a description of the probable
cause and possible corrective actions, can be found in Appendix A for
warning diagnostics, and in Appendix B for error diagnostics.

In the event of an error in adirective spanning multiple lines, the
source line number reported in an error diagnostic may be inaccurate.
Because the reported position may be the line following the actual
error, it isimportant to examine the entire directive for the error, not
just the reported line.

Paradigm C++ Locate Reference Manual

All user input is shown in
lowercase

N

Configuration file directives

This chapter offers a detailed description of the LOCATE
configuration file directives, the commands that build an absolute
load module in a file format of your choosing. Before introducing
each directive, a short review of the layout used to document the
directivesisin order.

The LOCATE configuration file directives contain a detailed
description of the directive, the syntax and a list of options accepted
by the directive. Any command line equivalent options are also listed
to round out the detailed description. To place each directive in the
context of an application, each entry concludes with a list of examples
showing the directive as it might be used in a LOCATE configuration
file for atypica embedded system.

All configuration file directives are shown with the directive and any
options shown in uppercase. A valid directive or option must have at
least the significant characters although it may have more. The
Paradigm C++ Locator keywords are case-insensitive so you can use
either upper or lowercase in your configuration files. Options to
directives are also case-insensitive, with the exception of segment and
class names which are case-sensitive and must match the names from
the link map.

Any optional arguments for a directive are shown enclosed by sgquare
brackets ([and]) with an dllipsis (...) used to indicate repeated

Chapter 4, Configuration file directives 39

40

arguments. The following mnemonics are used throughout to identify
the type of argument expected by the Locator.

data
data8
datal6
addr16
addr20
addr24
addr

file

list

name

8- or 16-bit data

8-bit data

16-bit data

16-hit segment (paragraph) address
20-hit physical address

24-hit physical address

A addr 20 or addr 24 address (depending on the
input file)

A filename with optional path. A valid Paradigm
C++ Locator filename must begin with a letter
and be followed by any combination of letters or
numbers.

One or more class names

A segment or class name

Paradigm C++ Locate Reference Manual

ABSFILE

Description The ABSFILE directive is used to select the file type and optionally
supply afilename for the absolute output file. The ABSFILE directive
is used when you will be working with the integrated debugger, or a
development tool accepting Intel OMF86 files.

Syntax ABSFI LE [AXE86 | OVF86 | NONE] \
[FORVAT=t ype] \
[FILENAMVE=file]

Options Thefollowing are valid options for the ABSFILE directive:

AXES86 Selects the the integrated debugger format for the
absolute output file. The default file extension is
AXE and may be changed with the -Xa option.

OMF86 Selects the Intel OMF86 format for the absolute
output file. The default file extension is .ABS
and may be changed with the -Xo option.

NONE Disables the creation of an absolute output file.

FILENAME This argument permits you to change the name
of the absolute output file to file. The default
filename is the same as the input file with the
extension determined by the output file type.

Use dashes (/) instead of backslashes (\) for path name
separators. For example,
file = c:/output/test. axe

All current versions of the FORMAT The FORMAT option is used to specify different
" ;%‘Z?;ﬁfiggbfﬁg%g:n‘izﬁ AXE file formats, for use with older versions of
the integrated debugger. This option accepts a
single argument, depending on the version of the
debugger being used. All versions of Paradigm
C++ use PD60 formats.

PD60O Paradigm DEBUG 6.0
PD50 Paradigm DEBUG 5.0
PD40 Paradigm DEBUG 4.0

Chapter 4, Configuration file directives 41

ABSFILE

42

Command line
options

Examples

The following ABSFILE directives can be specified from the Paradigm
C++ Locator command line as well as in the configuration file.

- Apd60 AXE86 FORMAT=PD60
- Apd50 AXE86 FORMAT=PD50
- Apd40 AXE86 FORMAT=PD40
- Aonf OMF86

- Ad NONE

- Anfile FILENAME=file

absfile onf86 fil ename=nyprog. abs
absfile axe86 fornmat=pd40

Paradigm C++ Locate Reference Manual

CHECKSUM

Description The CHECKSUM directive is used to define aregion of the memory
address space and calculate the CRC or checksum of that region. At
run-time, the target system can then compare the computed CRC or
checksum with the stored value to determine if any changes have been
made to the program or data.

Syntax CHECKSUM addr TO addr \
[ADDRESS=addr] \
[FILL=fill] \

[ROMBIOS | CRC16 | CRC32]

Options Thefollowing are valid options for the CHECK SUM directive.

ADDRESS The ADDRESS option is used to set the
physical address of the checksum. If not
specified, the computed checksum will default
to the address immediately following the end of
the checksum region. The address can aso be
the name of a class, as well as a 20-hit physical
address.

FILL The FILL option is used to inform the Paradigm
C++ Locator of the background pattern of
unused bytes within the checksum region. The
value used for the fill and background contents
of the EPROM must agree for checksum
calculation to occur. If not specified, the fill
pattern defaults to OXFF.

ROMBIOS This option selects the IBM PC ROM BIOS
extension checksum for the defined region,
which writes a one byte checksum at the
specified address.

CRC16 The CRC16 option selects the CRC-16
checksum for the defined region, which writes a
two byte checksum at the specified address.

Chapter 4, Configuration file directives 43

CHECKSUM

CRC32 This option selects the CRC-32 checksum for
the defined region, which writes a four byte
checksum at the specified address.

Command line None
options

Examples checksum 0xc0000 to OxcO7fe fill=0xff ronbios
checksum 0xf 8000 to Oxffffd address=0xffffe crcl6
checksum CODE t o ROVDATA crc32

44 Paradigm C++ Locate Reference Manual

Description

Syntax

Options

Command line
options

Examples

CLASS

The CLASS directive is used to assign a physical address to each of
the segmentsin aclass.

CLASS cl assnane = addr 16

The 16-hit segment address in the argument addr 16 is bound to the
first segment in the class classname. Each of the remaining segments
in the class are then assigned physical addresses that are relative to
preceding segments in the class.

None
class CODE = 0xfc00
class DATA = 0x0040

Chapter 4, Configuration file directives 45

COMPRESS

46

Description

A sample application
demonstrating
compression is included
with each compiler.

Syntax
Options
Command line
options

Examples

The COMPRESS directive is used to compress a duplicated class,
reducing the size of the class to save space. The Paradigm C++
Locator will write out a compressed version of the named class in the
output file.

Each Paradigm C++ Locator compiler support package includes a
decompression module that decompresses the result during the startup
code. This module is automatically inserted into the ROMable run-
time libraries.

The Paradigm C++ Locator runs atwo step compression algorithm to
compress aclass. During the first phase, the Locator estimates the
compressed size of the class, a requirement for the binding of
addresses to the segments and classes that follow the compressed
class. Inthe second phase, the class is compressed after any segment
fixups have been applied.

COVPRESS cl assnane

classname is the name of the class to be compressed. This class must
appear in aDUP directive as it is not possible to decompress in place.

None

dup FARDATA ROVFARDATA
conpr ess ROMFARDATA

Paradigm C++ Locate Reference Manual

CPUTYPE

Description The CPUTY PE directive informs the Paradigm C++ Locator of the
target system microprocessor. The Locator uses the CPUTY PE
directive to select the set of peripheral registers permitted in the
INITCODE directive.

Syntax CPUTYPE cpu_id

Options Thefollowing isalist of microprocessor |1Ds supported by the cpu_id

argument.
| 8088 D70108 (V20)
| 8086 D70116 (V30)
1 80188 D70208 (V40)
| 80186 D70216 (V50)
| 80C188 D70320 (V25)
| 80C186 D70330 (V35)
| B0C188EA D70325 (V25+)
| BOC186EA D70335 (V35+)
| BOL188EA D70136 (V33)
| BOL186EA D70236 (V53)
| 80C188EB D70423 (V55S0C)
| 80C186EB D70433 (V55PI)
| 80L188EB D70208H (V40H)
| 8OL186EB D70216H (V50H)
| B0C188EC
| B0C186EC AML86CC
| 80C188XL AML86EM
| 80C186XL AML8SEM
| 80286 AML86GES
| 80386 AML88ES
| 80386CX AML86ER
| 80386EX AML88ER
| 80486 AML86ED
Tur bo186

Command line None
options

Chapter 4, Configuration file directives 47

CPUTYPE

Examples

48

cput ype
cput ype
cpu

i 80c186eb
i 80c188x
D70325

Paradigm C++ Locate Reference Manual

Description

Syntax

Options

The default for this option is
NOIC86.

This is the default for the
DEBUG directive.

DEBUG

The DEBUG directive is used by the Paradigm C++ Locator to
determine which debug information data structures will be included in
the Intel OMF86 output file. By eiminating unnecessary debugging
information such as types, the Locator can run significantly faster
while producing smaller output files.

This directive is also used to enable the integrated debugger OM F86
extensions or force compatibility with the Intel iC86 C compiler.
These extensions add support for enumerations and C++ objects and
are used by third-party debugging tools that accept OMF86 files.

DEBUG option [option ...]

The following are valid options for the DEBUG directive.

1C86 These options enable/disable compatibility

NOIC86 with the Intel iC86 compiler. When
enabled, the 1C86 option restricts the debug
information output and folds al symbols to
uppercase to match the output of the Intel

compiler.
TYPES These options enable/disable the inclusion of
NOTYPES type records in the output OMF86 file.
PUBLICS These options enable/disable the inclusion of
NOPUBLICS public symbol records in the output OMF86
file.
SYMBOLS These options enable/disable the inclusion of
NOSYMBOLS local symbol records in the output OMF86
file.
LINES These options enable/disable the inclusion of
NOLINES line number records in the output OMF86
file.
ALL This option enables al debug information in

the output OMF86 file and is the same as
specifying the TY PES, PUBLICS,

Chapter 4, Configuration file directives 49

DEBUG

50

NONE

EXTENS ONS
NOEXTENSIONS

CLASSES
NOCLASSES

ENUMS
NOENUMS

BIGTYPES
NOBIGTYPES

MEMBER-
FUNCTION
NOMEMBER-
FUNCTION

DESTRUCTORS
NODESTRUCTORS

OPERATORS

SYMBOLS and LINES options.

This option disables all debug information in
the output OMF86 file and is the same as
specifying the NOTY PES, NOPUBLICS,
NOSYMBOLS and NOLINES options.

This option enables or disables the Paradigm
OMF86 extensions, which include extended
enumerations and C++ support.

The default for these options is NOEXT, as
extensions may not be compatible with third-
party debuggers.

This option enables or disables the output of
C++ class type information in the OMF86
output file.

This option enables or disables the output of
extended enumeration debug information in
the OMF86 output file.

This option enables or disables the output of
extended types in the OMF86 outpt file.
Only enable this option if your debugger
supports 64K type records.

This option enables or disables the output of
C++ member function in the OMF86 output
file.

This option enables or disables the output of
C++ destructors in the OMF86 output file.
Some tools may not be able to handle C++
destructor syntax so enable this option only if
it is supported by your tools.

This option enables or disables the output of
C++ operators in the OMF86 output file.

Paradigm C++ Locate Reference Manual

NOOPERATORS

CLASSTEMPLATES
NOCLASS
TEMPLATES

SPACES
NOSPACES

PARAMETERS
NOPARAMETERS
SPECIALS
NOSPECIALS

ALLEXTENSONS
NOEXTENSIONS

=

Command line

DEBUG

Some tools may not be able to handle C++
operator syntax so enable this option only if it
is supported by your tools.

This option enables or disables the output
of C++ templates in the OMF86 output
file.

This option enables or disables the removal
of spaces from symbols.

This option enables or disables the
inclusion of function parametersin C++
function names.

This option enables or disables the output
of special C++ charactersin names.

This option enables all C++ extensions,
except BIGTYPES or disables all
extensions.

Because of limited support for C++ types and symbols, C++
developers may wish to enable additional C++ OMF output.

Each of the DEBUG arguments can be specified using the Paradigm

options C++ Locator command line options, as shown below.
-d NONE
- (d- ALL
-Ce EXTENSI ONS
- Ce- NCEXT
-a | C86
-0 - NG C86
-a LI NES
-a - NCLI NES
-p PUBLI CS
- Op- NOPUBLI CS
-Q TYPES
-Q- NOTYPES
- X SYMBOLS

Chapter 4, Configuration file directives

51

DEBUG

52

Notes

Examples

e
-Cea[-]
-Cec[-]
- Ced[-]
- Cee[-]
- Cenf -]
-Ceo[-]
- Cep[-]
- Ces[-]
-Cet[-]
- Cex[-]
-Cez[-]

NOSYMBOLS

Enabl e/ di sabl e al | C++ extensions
Enabl e/ di sabl e C++ class transl ation
Enabl e/ di sabl e C++ destructor support
Enabl e/ di sabl e enunerati on extensi ons
Enabl e C++ nenber function extensions
Enabl e C++ operat or extensions

Enabl e C++ paraneter extensions
Enabl e space renoval from C++ nanes
Enabl e/ di sabl e OVF | arge types
Enabl e/ di sabl e C++ tenpl ate support
Enabl e C++ special synbol extensions

This directive only affects the output of the Paradigm C++ Locator
when the ABSFILE OMF86 directive or -Aomf command line option

isin effect.

debug notypes nosynbol s \
nopubl i cs nol i nes

debug none

/1l Sane as above

Paradigm C++ Locate Reference Manual

DISPLAY

Description The DISPLAY directive controls the level of diagnostic information

output emitted by the Paradigm C++ Locator during the processing of

input and output files.

The Locator can display the names of each output file asit is being

written, display compression statistics, or track module names as they

are processed to indicate the progress towards completion.
Syntax DI SPLAY option [option ...]

Options The opt i on argument can be sdlected from one of the following

options

NONE Disables dl display diagnostics.

FILES Displays the filenames of the output files as
they are processed.

MODULES Displays the modules names found in the

input files as they are processed.

COMPRESSION Enables the display of compression statistics
for compressed classes.

ALL Enables the display of all the Paradigm C++
Locator diagnogtics.

Command line TheDISPLAY directive options can also be specified from the
options command line as follows

-do NONE

-dl FI LES

-d2 MODULES

-d3 COVPRESSI ON
-d4 ALL

Examples display files conpression
di splay all
di splay none

Chapter 4, Configuration file directives

53

DUPLICATE

Description

Syntax

Options

Command line
options

Notes

Example

54

The DUPLICATE directive is used to make a copy of aclass.
Typically, the copy of the classis located in the EPROM address
space to be used to initialize RAM by the startup code.

DUPLI CATE src_class dest_class

DUPLICATE makes a copy of the class src_class and appends it to
the class dest_class, creating the dest_class classif it does not already
exist.

None

If the duplicated class already exists, the newly made copy will be
concatenated to the existing class; otherwise, the new class is smply
created. The segments in the duplicated class keep the same segment
names and offsets, but pick up the name of the new class. The same
offsets are kept to permit multiple classes to be concatenated together
into a single duplicated class while preserving the address relationships
between the classes.

This is the method used to make copies of initialized data for
placement in EPROM. Since the first segment in the duplicated class
has been defined in the startup code and has a physical address, and
the length of the original class is known, it is a smple matter for the
compiler startup code to copy the class from EPROM to RAM.

dup DATA ROVDATA /'l Copy class DATA
cl ass DATA = 0x0040 /| DATA at 00400H
class CODE = 0xfc00 /1 CODE at FCOOOH
order CODE ROVDATA /' ROVDATA after CODE

Paradigm C++ Locate Reference Manual

HEXFILE

Description = The HEXFILE directive is used to create hex and bhinary files suitable
for download to an EPROM programmer. Y ou can use as many
HEXFILE directives as desired in a configuration file to create any
number of different output files.

If you choose to create multiple output files in a single pass of the
Paradigm C++ Locator, be sure to use the FILENAME option to
name the output file for each HEXFILE directive so that the Locator
will not overwrite any of thefiles.

Syntax HEXFI LE [| NTEL8O| | NTEL86| Bl NARY| TEKHEX] \
[OFFSET=addr] \
[SIZE=size] \
[SPLIT=split] \
[FILL=fill] \
[LENGTH=Il en] \
[TRUNCATE] \
[EOFRECORD | NOEOFRECORD] \
[ENTRYPO NT | NOCENTRYPO NT] \
[

FI LENAVE=fil e]

Options Thefollowing is a description of the HEXFILE options.

INTEL80 These mutually exclusive arguments select one of
INTEL86 the following output file types. The number in
INTEL 386 parentheses indicates the maximum size of the
BINARY address space supported by each file type.
TEKHEX INTEL8O Intel hex (64KB)

INTEL86 Intel extended hex (IMB)

INTEL386 Intel 386 extended hex (1IMB or
16MB)

BINARY Binary (IMB)

TEKHEX Tektronix hex (64KB)

INTELS86 is the default output file type for the
HEXFILE directive.

If left unspecified, the QFFSET The OFFSET option is used to select a subset of
a(ﬁ;s; éﬁi gheefaou:ig tSOEOT the IMB address space. The address defined in
' addr is used as the base for any subsequent file

Chapter 4, Configuration file directives 55

HEXFILE

If you are creating multiple
EPROM images using the
SPLIT option, each image

will be the selected size.

Intel extended hex files
cannot be split due to the
presence of segment
records.

This option used to be
called PAD in previous
versions of the Paradigm
C++ Locator.

56

SIZE

SPLIT

FILL

LENGTH

operations.

For example, to burn a 32KB EPROM using the
Intel hex format that starts at address F80O00H, the
offset field should be set to FBO00H, which makes
offset 0000H within the EPROM correspond to
offset FBOOOH of the address space.

The SIZE option is used to set an upper limit on
the image size (in KB), up to the upper limit
imposed by the output file type. The size field can
be any value from 1 (a 1KB EPROM image) up to
1024 (afull IMB EPROM image).

The default image size is the maximum size of the
sdlected output file type, except for binary files
which default to 32K bytes.

The SPLIT option is used to extract a set of 1to 4
EPROM files from the specified region, where
each file corresponds to a memory bank. Splitting
the EPROM image is normally required when
working with 16- and 32-hit buses implemented
using 8-bit wide EPROMSs. The split field can take
on the values 1, 2 or 4 with 1 being the default
value.

The FILL option is used to inform the Paradigm
C++ Locator of the value of the background fill
character for use in binary output. Thefill
character defines the background pattern for binary
files; al other file types require that the EPROM
programmer be used to set the fill prior to
downloading the file. If not specified, the fill
character defaults to OFFH.

The LENGTH options lets you change the record
length for hex output files. The default hex record
contains a maximum of 16 bytes per record. Using
this option, you can change the record length from

Paradigm C++ Locate Reference Manual

TRUNCATE

EOFRECORD
NOEOF-
RECORD

ENTRY-
POINT
NOENTRY-
POINT

FILENAME

HEXFILE

8to 64 bytesin size.

This option is used to create binary files having
only the data contained in the load module. When
this option is not in effect, the size of the binary
output files will be determined by the SIZE option.
When TRUNCATE is used, the file size will be the
minimum of the SIZE option and the offset of the
last data written into the file.

Enables or disables the placement of the hex file
end of file record in the hex file. This option is used
if multiple hex files will be produced and merged
into asingle hex file. Thisis enabled by default.

This option will add or remove the hex file entry
point record and is enabled by defauilt.

The FILENAME option sets the output filename
for an EPROM image. If |eft unspecified, the
output filename defaults to the same filename as
the input file.

Use dashes (/) instead of backslashes (\) for path name
separators. For example,
file = c:/output/test. hex

Command line The Paradigm C++ Locator command line can be used to set the
options optionsfor a single EPROM image using the following switches:

Chapter 4, Configuration file directives

57

HEXFILE

58

Notes

-Ho Bl NARY

- Hdsi ze Sl ZE=si ze

- He | NTEL86
-HEfill FI LL=fill

- Hi | NTEL8O

-H len LENGTH=I en
-Hnfile FI LENAMVE=f i | €
- Hoaddr OFFSET=addr
-Hssplit SPLI T=spl it

- Ht TEKHEX

-H options work independent of the configuration file HEXFILE
directive. If you have a HEXFILE directive(s) and -H options in one
single pass of the Locator, LOCATE will first create al EPROM
output based upon the HEXFILE directive, then create an additional
EPROM output based solely upon -H command options.

The following are the file extensions used by the HEXFILE directive.
File extensions are determined by the file type and cannot be changed.

Paradigm C++ Locate Reference Manual

HEXFILE

Filetype/Split 1 2 4
INTEL86 .HEX

INTEL 386 .HEX
INTEL80 .HEX HX? HX?
BINARY .BIN .BN? .BN?
TEKHEX .TEK TK? TK?

Examples hexfile intel 86

This example creates an Intel extended output file containing al classes
identified in OUTPUT directives.

hexfile intel 80 of fset =0xe0000 fil e=nol
hexfile intel 80 of fset=0xf0000 fil e=no2

This example is for an 8-bit system having a pair of 64KB EPROMs
in the upper 128KB of the address space. Because the Intel hex file
format can hold at most 64KB of code/data, two HEXFILE directives
are used to create separate EPROM images. The OFFSET option is
used with each HEXFILE directive to specify which 64KB of the
address space we wish to be extracted and placed in the output file.

hexfile intel 80 of fset =0xf 0000 size=32 fil e=nol
hexfile intel 80 of fset =0xf 8000 size=32 fil e=no2

This example is similar to the preceding example except that only
64K B of address space is available and the SIZE option is used to limit
each output file to the 32K B regions of the address space occupied by
each EPROM.

hexfile intel 80 of fset=0xc0000 split=2 file=nol
hexfile intel 80 of fset=0xe0000 split=2 fil e=no2

Thisfina exampleisfor a 16-bit system having atotal of 256KB of
EPROM divided into two 128KB banks. In this case the output files
would be NO1.HX0, NO1.HX1, NO2.HXO0, and NO2.HX1,
containing the even and odd addresses for each pair of EPROMSs,

Chapter 4, Configuration file directives 59

INITCODE

60

Description

Syntax

Options

The INITCODE directive is used to automatically generate reset
vectors, stack initialization and peripheral register initialization code.
The INITCODE directive accepts a list of peripheral register
assignments that depend on the microprocessor type. This permits
chip select, DRAM refresh and wait state initialization code to be
handled independently of the application and startup code. This
makes it a simple task to ensure the physicall ROM and RAM in the
system are addressable before the application is handed control of the
target microprocessor.

If stack or 1/O port initialization code is created using this directive, the
Paradigm C++ Locator will automatically change the entry point to
ensure that the initialization code, if present, is executed in the
following order: reset code, stack initialization, peripheral register
initialization code, and the startup code.

I NI TCODE BOOT386 |

RESET | NORESET]

NOTHI NG]

STACK | NOSTACK]

i oport = data]

QUTBYTE addr 16 = val ue8]
QUTWORD addr 16 = val uel6]
CQUTDWORD addr 16 = val ue32]

| NBYTE addr 16]

I NWORD addr 16]

| NDWORD addr 16]

WRI TEBYTE addr 32 = val ue8]
WRI TEMORD addr 32 = val uel6]
WRI TEDWORD addr 32 = val ue32]
READBYTE addr 32]

READWORD addr 32]

READDWORD addr 32]
filename=file.ext CLASS = cl ass_nane]

— e s e - - -

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

The INITCODE directive supports the following options.

BOOT386 Generates a bootstrap instruction compatible

Paradigm C++ Locate Reference Manual

RESET
NORESET

NOTHING

STACK
NOSTACK

ioport

OUTBYTE
OUTWORD
OUTDWORD
INBYTE
INWORD

Chapter 4, Configuration file directives

INITCODE

with 386 and later processors.

The RESET option enables the generation of a
far jJump instruction at address FFFFOH to the
application entry point. The option NORESET
disables the creation of the far jump.

This option is used to force the creation of the
class 72LOCATE, even if there is nothing else
to be added to it. It is useful to allow exact
positioning of the INITCODE jump
instruction.

The STACK option generates code to initialize
the SS:SP registers with the default stack (the
segment having the stack attribute). If
enabled, the stack initidization code will be
placed in the segment ??STACKINIT in class
??LOCATE.

The ioport option accepts processor peripheral
registers to be initialized from the configuration
file. The order of the I/O or specia function
register operations is the order of the port
arguments in the configuration file INITCODE
directive. Any port initialization code created
using the INITCODE directive will be placed
in the segment ??CPUINIT in the class
??LOCATE.

See appendix D on page 121 for alist of
supported microprocessors and peripheral
registers.

General purpose |/O can aso be performed
using the generic forms for input and output.
Note that the input functions discard the input
value and are used only for any side effects.

61

INITCODE

62

Command line
options

Notes

Examples

INDWORD

WRITEBYTE Memory and memory-mapped 1/0 locations
WRITEWORD can be written and read with the INITCODE
WRITEDWORD command. Note that the read functions
READBYTE discard the input value and are used only for
READWORD any side effects.

READDWORD

INITCODE Use this option to create a segment with a far
NOTHING jump to the application entry point but no other

initializations.

INITCODE filename=file.ext CLASS = class hame assigns the
contents of the binary file file.ext to class class_name and places
the code in the startup code execution list by jumping to the start
and appending a far jump to the next code block in the startup code
sequence at the end of the file.

The following INITCODE arguments can be specified on the
command line:

-b RESET
- b- NORESET
-S STACK
-S- NOSTACK

Peripheralsin the Intel 80C186-family are accessed using word-aligned
byte writes. This allows updating a 16-bit chip select register with a
single external bus cycle, even when 8-hit processors are used.

cput ype i 80186

initcode reset \
uncs = 0xf038 \ // UMS val ue
Inmcs = Ox0ff8 /1l LMCS val ue

initcode outbyte Oxfffe = Ox11

Paradigm C++ Locate Reference Manual

LISTFILE

Description The LISTFILE directive is used to create listing files containing
information such as a segment map, lists of public and local symbols
and source line numbers. Thereis no limit on the number of
LISTFILE directives used in a configuration file, permitting multiple
output files with different reports to be created in a single pass.

If you choose to create multiple output files in a single pass of the
Paradigm C++ Locator, be sure to use the FILENAME option to
name the output file of each LISTFILE directive so that the L ocator
will not overwrite any of thefiles.

The Paradigm C++ Locator can only output listings for information to
which it has access. If there is no debugging information in the input
file, the Locator will be restricted to creating the segment and region

maps.

Syntax LI STFILE[SEGMVENTS]
[PUBLICS [(BY ADDRESS| BY NAVE)]
[COLUWMNS=(1 | 2)]

[WDTH=(80 | 132)]

[SYMBOLS]

[LINES]

[REG ONS]

[CHECKSUMS]

[FILENAME=file]

— - - -

Options Thefollowing options control the different fields in the Paradigm C++
Locator map file:

SEGMENTS The SEGMENTS option is used to create an
absolute segment map showing the starting
address, ending address and length for each
segment in the application.

REGIONS The REGIONS option is used to include a copy of
the memory address space assignments specified
in the MAP directives and their usage.

CHECKSUMS The CHECKSUMS option is used to include the

Chapter 4, Configuration file directives 63

LISTFILE

The default for COLUMNS
is 1 and the default for
WIDTH is 80.

Be careful - large
applications can create
very large local symbol list
files.

Command line
options

64

PUBLICS
COLUMNS
WIDTH

SYMBOLS

LINES

FILENAME

details of any checksums or CRCs used by the
application, including the starting addr, ending
addr and checksum value.

The three PUBLICS options are used to control
the output of public symbols in the Paradigm C++
Locator map file. Used alone, PUBLICS will
output the public symbol table sorted first by
name and then by address. Y ou may also qualify
the output to get one or the other by using the
PUBLICSBY NAME or PUBLICS BY
ADDRESS arguments.

Y ou can use the COLUMNS and WIDTH options
to adjust the number of symbol columns (1 or 2)
or the output width (80 or 132 columns) to create
an optimally-sized public symbol table.

The SYMBOLS option controls whether the
extended debugging information, such as loca
symbols, appears in the output file organized by
source module.

The LINES option controls whether or not line
number records appear in the output file organized
by source module.

This option permits you to change the name of the
Paradigm C++ Locator liging filetofile. The
default filename is the same as the input file but
with the .LOC extension.

Use dashes (/) instead of backslashes (\) for path name
separators. For example,
file = c:/output/test.loc

The following Paradigm C++ Locator command line switches can be
used to select the options for asingle LISTFILE directive:

Paradigm C++ Locate Reference Manual

LISTFILE

-Lc COLUWNS=2

-Ld CHECKSUNMS

- LI LI NES

-Lnfile FI LENAMVE=f i | €
-Lp PUBLI CS

-Lr REGQ ONS

-Ls SEGQVENTS

-Lw W DTH=132

- Lx SYMBOLS

-L options work independent of the configuration file LISTFILE
directive. If you have a LISTFILE directive(s) and -L options in one
single pass of the Locator, LOCATE will first create adl listing output
based upon the LISTFILE directive, then create an additional listing
output based solely upon -L command options.

Examples listfile segnents file=test.|oc
listfile publics |lines synbols segnents

Chapter 4, Configuration file directives 65

MAP

66

Description

Syntax

Options

Command line
options

Examples

The MAP directive is used to assign an access attribute to a region of
the memory address space. These attributes are then used by the
Paradigm C++ Locator to verify that reserved regions of the memory
address space are vacant. The Locator will report the use of reserved
regions, or a segment spanning regions with different attributes.
Warnings will also be generated if the Locator detects segments
mapped in read-only regions are not being output, or segments
mapped in non-read-only regions are being output.

Please note that the MAP directive does not assign physical addresses
to segments. The purpose of the MAP directive is to describe the
target address space partitions so that the Paradigm C++ Locator can
check for overlaps and errors.

MAP [name] addr TO addr AS nentype

The following fields must be defined in each MAP directive.

name An optiona name to be associated with the region.
addr The first argument defines the start of the region of
addr the memory address space to be mapped while the

second argument defines the end of the region,
where the first address must be less than or equal to
the second.

memtype The memtype field is used to assign one of the
following access attributes to the region.

RDONLY Read only address space

RDVR Read/write address space
RESERVED No access

MM O Memory-mapped 1/0

| RAM Internal RAM

SFR Specid function registers

None

map ny_data 0x00000 to OxOffff as rdw
nmap 0x10000 to OxXEFFFF as reserved
nmap OxF0000 to OxFFFFF as rdonly

Paradigm C++ Locate Reference Manual

Description

Syntax

Options

Command line
options

Examples

ORDER

The ORDER directive is used to concatenate one or more classes
relative to the anchoring class. The ORDER directive is important
since it alows unrelated classes to be grouped together in the memory
address space, independent of the lengths of the individual classes.

ORDER anchor_class class_list

The first argument anchor_class is the anchor class and must appear
in a CLASS directive or in a previous ORDER directive. The classes
defined in the argument class list are then located contiguous to the
anchor class, subject to the class alignment requirements.

None

order DATA BSS STACK // RAM cl asses

order DATA BSS /1l Sane as above
order BSS STACK

order DATA \ /1l Still the sanme
BSS \
STACK

Chapter 4, Configuration file directives 67

OUTPUT

Description

Syntax

Options

Command line
options

Examples

68

The OUTPUT directive is used to specify the classes containing code
or data destined for any of the output files created with the ABSFILE
or HEXFILE directives.

QUTPUT class_list

The argument class list isalist of one or more class names that are to
be placed in the output file.

Classes containing program code and constant data must be named in
an OUTPUT directive to be available when the system is powered up
and initialized. Other classes, such as those containing uninitialized
data or the program stack, require only to be assigned a physical
address. While these classes are assigned a position within the
memory address space, they do not need to appear in the output file
since they contain only uninitialized data.

Warnings will be generated if the Paradigm C++ Locator detects that
segments mapped in read-only regions are not in output or segments
mapped in non-read-only regions are in output.

None

out put CODE ROVDATA // One style

out put CODE /1 Anot her style
out put ROVDATA

Paradigm C++ Locate Reference Manual

SEGMENT

Description = The SEGMENT directive is used to assign a physical addressto a
segment, independently of the segment's membership in a class.
While supported in the Paradigm C++ Locator, it is strongly
recommended that segments be placed in unique classes to place them
anywhere in the address space.

Syntax SEGMENT segname=addr 16

Options The segment segname is assigned the 16-hit physical segment
specified by the addr16 argument.

SEGMENT directives are always processed before CLASS directives
to alow the removal of the segment from the class before physical
addresses are assigned to the class.

Thereis arestriction on the use of the SEGMENT directive in that it

= cannot be used to set the address of any segment that is a member of
agroup. Segments within a group have segment fixups relative to the
group base and al offsets are from the group base, not the start of the
segment.

Command line None
options

Examples segment My_CODE=0xf c00
segnent TEST_TEXT=0x0800

Chapter 4, Configuration file directives 69

WARNINGS

Description

Syntax

Options

The default state for all

warning diagnostics is
enabled.

Command line
options

Examples

70

The WARNINGS directive is used to enable or disable the warning
diagnostics output by the Paradigm C++ Locator. Either individual
warnings or all warnings can be enabled or disabled.

WARNI NGS ALL \
NONE \
EXI TCODE=n \
warn_|ist

The options ALL or NONE enable or disable al warnings.

The EXITCODE option can be used to have the Paradigm C++
Locator return a non-zero exit code should any warnings be detected
during the processing of the input files.

The option warn_list is one or more warning diagnostics identifiers,
prefixed with a'+' to enable the warning or a'-' to prevent the warning
from being displayed. A list of warnings organized by number can be
found in Appendix A of this manual.

The WARNINGS directive is useful to eiminate certain warnings that
occur each time the Paradigm C++ Locator is used - such as the
register variable warning for OMF86 output. To disable awarning
permanently, you should add the appropriate command line version of
this directive to your LOCATE.OPT file.

The following command line switches can also be used to enable or
disable warning diagnostics.

-wWd WARNI NGS +W d
-wWd WARNI NGS - W d
- W WARNI NGS ALL
- W WARNI NGS NONE
- W WARNI NGS EXI TCCDE=0
-W WARNI NGS EXI TCCODE=1

war ni ngs -wl001 -wl1002 \
+w1004
war ni ngs exitcode=1

Paradigm C++ Locate Reference Manual

Command line options

In addition to the configuration file directives described in the previous
section, the Paradigm C++ Locator can process options from the
command line or a specia file that the Locator searches for each time
it isrun. These options enable the Locator user to define the default
behavior of the Locator and provide a convenient means to override
the default when circumstances dictate a different response. Whether
defined on the command line or in an option file, the syntax used for
the command line options is the same.

Command line options

When defined on the command line, all the Paradigm C++ Locator
options are preceded by the hyphen ('A") character and are separated
from the Paradigm C++ Locator program name, any other command
line options, and the application filename by one or more spaces or
tabs.

locate [option [option ...]] filenane

where the filename defaults to the extension .ROM. The Paradigm
C++ Locator will then look for the files filename.MAP and
filename.CFG, unless overridden by command line options.

The following are some typical examples of the Paradigm C++
Locator command line options:

Chapter 5, Command line options 71

LOCATE.OPT file

Option priorities

locate -b nyfile
| ocate -Aonf -Anherfile.onf herfile

In addition to the options specified on the command line, additional
options can be placed in the LOCATE.OPT; option file.
LOCATE.OPT options can be listed on the same line separated by
spaces or tabs or can be placed on multiple lines as shown below.

- Xoonf - Xl np2

- Aonf
When you run the Paradigm C++ Locator, it looks for LOCATE.OPT
in the current directory. If it is not found and you are running DOS
3.3 or higher, the directory containing the Locator will be searched for
thisfile.

We have seen that the Paradigm C++ Locator can receive option input
from three different sources; the command line, the LOCATE.OPT
file, and the configuration file. Should conflicting options be specified,
the processing order (from lowest to highest priority) of optionsis:

m LOCATE.OPT options
m configuration file directives
= command line options

This processing order permits options defined in either the
configuration file or on the DOS command line to override the default
optionsin the LOCATE.OPT file, while command line options can
also be used to override any options specified in the configuration file.

Summary of options

72

Table 5.1 isasummary of the command line options accepted by the
Paradigm C++ Locator. Each of the options is described in further
detail later in this section, where the different options are organized
into related groups.

Paradigm C++ Locate Reference Manual

Table 5.1

. Option Page Function

Command line summary
-Apdxx 84 Sdect AXE86 absolute file output
-Ad 84 Disable absolute output file
-Anfile 84 Supply afilename for the absolute output file
-Aomf 84 Sdect OMF86 absolute file output
-b 74 Enable reset vector generation
-b- 75 Disable reset vector generation
-cfile 79 Specify adifferent configuration file name
-Dmacro 74 Define macro
-Dmacro=text 74 Define macro to text
-do 75 Disable processing diagnostics
-d1 75 Enable filename processing diagnostics
-d2 75 Enable filename and module processing diagnostics
-d3 76 Enable compression diagnostics
-d4 76 Enable al processing diagnostics
-Ee 76 Enable the error/warning log
-Enfile 76 Supply afilename for the error/warning log
-Hb 80 Sdlect abinary EPROM output file
-Hdsize 80 Specify the EPROM sizein KB
-He 80 Select Intel extended hex EPROM output
-Hffill 80 Specify the EPROM fill character
-Hi 81 Seect Intel hex EPROM output
-Hllen 81 Select hex record length
-Hnfile 81 Supply afilename for the EPROM output file
-Hoaddr 81 Specify the EPROM file offset
-Hssplit 81 Specify the EPROM split size
-Ht 81 Select Tektronix hex EPROM output
-Lc 82 Set public symbol display columnsto 2
-Ld 82 Write checksum statigtics to ligting file
-LI 82 Writeline numbersto liging file
-Lnfile 83 Supply afilenamefor ligting file
-Lp 83 Write public symbolsto liging file
-Lr 83 Write the region map to ligting file
-Ls 83 Write the segment map to ligting file
-Lw 83 Set public symbol output width to 132 columns
-Lx 83 Write extended debug information to ligting file
-Od[-] 77 Endble/disable dl OMF86 debug information
-Oe€l[-] 78 Enable/disable Paradigm OMF86 extensions

Chapter 5, Command line options

74

Defining macros

Initialization

333D

FRERRIIIIS G G

Enable/disable output line number records
Enable/disable public records in OMF86 output
Enable/disable type records in OMF86 output
Enable/disable symbol records in OMF86 output
Disable sign on displays

Enable stack initidization code

Disable stack initialization code

Enable a hon-zero exit code on warnings
Enable the display of al warnings

Disable the display of dl warnings

Disable the display of warning Wxxxx

Enable the display of warning Wxxxx

Set the default AXE86 outpuit file extension
Set default configuration file extension

Set the default listing file extension

Set the default linker map file extension

Set the default OMF86 output file extension

Macros for the LOCATE configuration file can be defined on the
command line with the -D command line option.

-Dname

-Dname=text

Defines the macro identifier name and sets its value
to 1.

Defines the macro identifier name and sets its value
to text.

The following options permit the Paradigm C++ Locator to
automatically generate the reset vector and stack initialization code:

-b

Enables the automatic creation of a reset vector
pointing to the program entry point and places the
code at the absolute address FFFFOH.

Directive: INITCODE RESET

Paradigm C++ Locate Reference Manual

-b- Disables any reset vector code generation (the

default).
Directive: INITCODE NORESET

-S Enables the automatic creation of initialization code
for the SS:SP register pair and places it in the class
??LOCATE.
Directive: INITCODE STACK

-S Disables any stack initialization code (the default).
Directive: INITCODE NOSTACK

Diagnostics The following set of options control the display of diagnostic
messages. The Paradigm C++ Locator gives you complete control
over the display of output diagnostics and log files, plus the ability to
customize the display of individual warning messages.

Startup display = These options control the display of the Paradigm C++ Locator
copyright and version information when the Locator isfirst started.

-q Disables the output of the Paradigm C++ Locator
copyright and version displays.

Processing Processing diagnostics enable the Paradigm C++ Locator to keep you
diagnostics informed of which files and modules are being processed and where
errors and warnings are being generated.

-do Disables the output of all processing diagnostics
(the default).

Directive: DISPLAY NONE

-dl Enables the display of the filename of each file asiit
is processed by the Paradigm C++ Locator.

Directive: DISPLAY FILES

-d2 Enables the display of the filename of each file asiit
is processed by the Paradigm C++ Locator, along

Chapter 5, Command line options 75

Error/warning log

Use
-Ee- to disable the error log.

Exit code control

76

with the module names from the input files. This
mode is especialy useful to help identify which of
the input modules is generating errors or warnings.

Directive: DISPLAY MODULES
Enables the display of compression diagnostics.
Use this display mode to see how much the

Paradigm C++ Locator is compressing your
classes.

Directive: DISPLAY COMPRESSION

Enables the display of al diagnostics.
Directive: DISPLAY ALL

The Paradigm C++ Locator can keep alog file containing all errors,
warnings and output diagnostics. These options allow you to enable,
disable and name the error log managed by the Paradigm C++

Locator.
-Ee

-Enfile

Enables the creation of an error/warning log file.
Unless overridden with the -En option, the log will
have the same filename as the input file with the
.ERR extension.

Specifies a filename to be used for the
error/warning log and enables logging diagnostic
output to thefile. If no filename is specified in the
file fidd, the Paradigm C++ Locator will use the
default filename for log files.

By default, the Paradigm C++ Locator returns a zero exit code if
processing is successfully completed without any errors. If itis
desirable to have the Locator return a non-zero exit code when
warnings have been issued, such asto stop a build by a MAKE utility,
the -W command line option can be used.

-W

Enables the Paradigm C++ Locator to return a non-

Paradigm C++ Locate Reference Manual

zero exit code when warnings have been issued.

-W- Disables the Locator from returning a non-zero exit
code when warnings have been issued.

Warning diagnostic The warning control options permit individual warnings to be enabled
control or disabled, making it easy to filter out any warnings which are
harmless but distracting.

-W- Disables the display of al warning diagnostics.
Directive: WARNINGS NONE
-w+ Enables the display of al warning diagnostics (the
default).
Directive: WARNINGS ALL
-W-WXXXX Disables the display of warning Wxxxx.
Directive: WARNINGS -Wxxxx
-WHWXXXX Enables the display of warning Wxxxx.
Directive: WARNINGS +HWxxxx

OMF86 debug The following group of command line options control how debug
contro| information is treated as the input files are processed into OMF86
output files. By eiminating unnecessary debugging information, the
output file size is reduced and processing speeded up.

-Od Places all debugging records in the OMF86 output
file (the default).
Directive: DEBUG ALL

-Od- Disables all debugging records from appearing in
the OMF86 output file.
Directive: DEBUG NONE

Chapter 5, Command line options 77

78

-Qi-

-Ol-

-Op-

Enables the use of the Paradigm OMF86 debug
extensions. See the description on page 51 for the
list of supported OMF86 extensions.

Disables the use of Paradigm OMF86 debug
extensions (the default).

Directive: DEBUG NOEXT

Enables the output of an Intel iC86-compatible
OMF86 file. Intel iC86 supports only one scope
per function, folds all symbols to uppercase and
does not use leading underscores on public
symbols. With this option enabled, the Paradigm
C++ Locator will output an OMF86 file that closdly
matches the output from the Intel compiler.

Directive: DEBUG I1C86

Disables the output Intel iC86-compatible OMF86
(the default).

Directive: DEBUG NOIC86

Enables the output of line numbers in the OMF86
output file.

Directive: DEBUG LINES

Disables the output line numbers in the OMF86
output file. Use this option to strip out line

numbers if they are not needed by your debugger
or in-circuit emulator.

Directive: DEBUG NOLINES

Enables the output of public symbolsin the
OMF86 output file.

Directive: DEBUG PUBLICS

Disables the output of public symbolsin the

Paradigm C++ Locate Reference Manual

-Ot-

-Ox-

OMF86 output file. Use this option to strip out
public symbols if they are not needed by your
debugger or in-circuit emulator.

Directive: DEBUG NOPUBLICS

Enables type information in OMF86 output.
Directive: DEBUG TYPES

Disables the output of type information in the
OMF86 output file. Use of this option to eiminate
type information if not needed by your debugger or
in-circuit emulator.

Directive: DEBUG NOTYPES

Enables the output of extended debug information
(local symbols and scopes) in the OMF86 output
file.

Directive: DEBUG SYMBOLS
Disables extended debug information in OMF86
output.

Directive: DEBUG NOSYMBOLS

File management Theremaining options have to do with managing the files created and
used by the Paradigm C++ Locator.

Configuration files This option permits any file to be used in place of the default
configuration file for the Paradigm C++ Locator.

-cfile

Chapter 5, Command line options

Use the filename file as the LOCATE configuration
file. If not specified in this option, the Paradigm
C++ Locator will use the filename from the load
module with the .CFG extension (unless changed
with the -Xc option).

79

80

EPROM files

This group of options control the creation of files suitable for
download to an EPROM programmer. The output file(s) will have the
same filename as the input file with the extension determined by the
file type and number of splits.

These options can process at most one EPROM image from the
command line. Using the configuration file HEXFILE directive, as
many EPROM images as desired can be created in a single pass of the
Paradigm C++ Locator.

-H options work independent of the configuration file HEXFILE
directive. If you have a HEXFILE directive(s) and -H options in one
single pass of the Locator, LOCATE will first create al EPROM
output based upon the HEXFILE directive, then create an additional
EPROM output based solely upon -H command options.

-Hb Selects the binary EPROM format for the output
file. Thisfileformat can hold up to IMB of data.
Directive: HEXFILE BINARY

-Hdsize Allows the EPROM size to be selected. The unit

of measurement for the size argument isin KB and
can be value from 1 (1KB EPROM image) to 1024
(a1MB EPROM image).

Directive: HEXFILE SIZE=size

-He Selects the Intel extended hex EPROM format for
the output file. Thisfile format can hold up to
1MB of data.

Directive: HEXFILE INTEL86

-Hffill Permits the specification of the fill character for the
unused locations in the EPROM image. Only
binary output files will contain the fill character; all
other formats use it only in checksum/CRC
calculations and it must be set by the EPROM
programmer before loading the EPROM image.
The default fill character is OXFF.

Paradigm C++ Locate Reference Manual

Hi

-Hllen

-Hnfile

-Hoaddr

-Hssplit

-Ht

Chapter 5, Command line options

Directive: HEXFILE FILL=fill

Selects the Intel hex EPROM format for the output
file. Thisformat can hold up to 64KB of data.

Directive: HEXFILE INTEL80

This options allows the size of the hex file data
records to be adjusted between 8 and 64 bytes per
record.

Directive: HEXFILE LENGTH=len

Specifies a filename to be used for the output
file(s). Note that the file extension is determined
by output file type and split (see the HEXFILE
directive for atable of file extensions). If no
filename is specified in the file fidd, the Paradigm
C++ Locator will use the default filename.

Directive: HEXFILE FILENAME=file

Allows the specification of an address space offset
to permit Intel hex, binary and Tektronix hex files
to select the subset of the IMB address to be
included in the output file. The argument addr isa
20-hit physical address and defaults to zero if not
specified.

Directive: HEXFILE OFFSET=addr

Specifies the EPROM split count (1, 2 or 4) in the
split argument. Splitting Intel extended hex filesis
not allowed as they contain segment information.
The default splitis 1.

Directive: HEXFILE SPLIT=split
Selects the Tektronix hex EPROM format for the

output file. Thisformat can hold up to 64KB of
data.

81

Listing files

Directive: HEXFILE TEKHEX

This group of options control the creation of alisting file containing
design documentation using the target system addresses. The output
file will have the same filename as the input file with the .LOC
extension (unless changed with the -XI option).

This option can process at most one listing file from the command
line. Using the configuration file LISTFILE directive, as many listing
files as desired can be created in a single pass of the Paradigm C++
Locator.

-L options work independent of the configuration file LISTFILE
directive. If you have a LISTFILE directive(s) and -L options in one
single pass of the Locator, LOCATE will first create adl listing output
based upon the LISTFILE directive, then create an additional listing
output based solely upon -L command options.

-Lc Sets the number of symbol columns for the public
symbol tables to use two columns. This option
results in a more compact display when many
public symbols are part of the application.

Directive: LISTFILE COLUMNS=2
-Lc Sets the number of symbol columns for the public

symbol tables to use a single column.

Directive: LISTFILE COLUMNS=1
-Ld[-] This option enables the output of the checksum

map to the listing file. If no CHECKSUM
directives are present in the configuration file, no
output will be generated.

Directive: LISTFILE CHECKSUMS
-LI[-] Writes the source module name and line numbers

to the listing file. If no line numbers are present in
the input file, no output will be generated.

Use the -L |- option to disable the inclusion of line
number in the listing file.

Paradigm C++ Locate Reference Manual

-Lnfile

-Lp[-]

-Lr

-Ls

-Lw

-Lw-

-Lx

Chapter 5, Command line options

Directive: LISTFILE LINES

Supplies a filename for the listing file. If no
filename is specified in the file fidd, the Paradigm
C++ Locator will use the default filename.

Directive: LISTFILE FILENAME=file

Writes the public symbols sorted by name and by
address to the ligting file. If no public symbols are
present in the input file, no output will be
generated.

Directive: LISTFILE PUBLICS

Writes the memory address space attribute map to
theligting file.

Directive: LISTFILE REGIONS

Writes the absolute segment map to the listing file.
Directive: LISTFILE SEGMENTS

Sets the width of the output for the public symbol
table to 132 columns. Using this option can
prevent the clipping of public symbols when the
two column format is used.

Directive: LISTFILE WIDTH=132

Sets the width of the output for the public symbol
table to 80 columns.

Directive: LISTFILE WIDTH=80

Writes the local symbols and other debugging
information to the listing file. If the extended
debug information is not available in the input file,
no output will be generated.

Directive: LISTFILE SYMBOLS

83

84

Absolute files

Filename
extensions

These options control the type of absolute output file created by the
Paradigm C++ Locator. Unless you plan to use a debugger (like the
integrated debugger) or an in-circuit emulator, there is no need to
create an absolute output file with debug information. These options
can be set from the configuration file using the ABSFILE directive.

-Ad

-Anfile

-Aomf

-Apd60
-Apd50
-Apd40
-Apd31
-Apd30
-Apd20
-Apd10

Disables the creation of any absolute output file
(the default).

Directive: ABSFILE NONE

Supplies afilename to be used for the absolute
output file. If no filename is specified in the file
field, the Paradigm C++ Locator will use the
default filename.

Directive: ABSFILE FILENAME=file

Selects an Intel OMF86 output file. The output file
will have the same filename as the input file with
the .ABS extension (unless changed with the -Xo
option). The format and debug information
content of the OMF86 file are controlled by the
-D? options.

Directive: ABSFILE OMF86

Selects the Paradigm AXEB86 output file format for
a specific version of the integrated debugger. The
output file will have the same filename as the input
file with the .AXE extension (unless changed with
the -Xa option).

Directive: ABSFILE AXES86

The Paradigm C++ Locator comes with a set of default file extensions
for input and output files but you can choose your own if you don't
care for the default extensions. While these options can be used on
the command line, they are much better suited for inclusion in the
LOCATE.OPT; file.

Paradigm C++ Locate Reference Manual

None of these options can The argument ext in the -X? options must be three characters or less;

be set with configuration file
directives.

otherwise an error will be reported. If no file extension is specified,

the -X? switch will restore the defaullt file extension used by the
Paradigm C++ Locator.

-Xaext

-Xcext

-Xlext

-Xmext

-Xoext

Chapter 5, Command line options

Sets the default file extension for files using the
Paradigm AXE86 format.

Defauilt: AXE

Sets the defaullt file extension for the LOCATE
configuration file.

Defauilt: .CFG

Sets the defaullt file extension used by listing files

created with the -L ? options or the LISTFILE
directive.

Default: .LOC

Sets the default file extension used to open the
segment map produced by the linker.

Default: MAP

Sets the default file extension used for output files
in the Intel OMF86 format.

Default: ABS

85

86

Paradigm C++ Locate Reference Manual

Checksums and CRCs

Adding checksums or CRCs (cyclic redundancy checks) to an
application can provide a higher degree of protection against the failure
of adevicein the field, or the ahility to detect an incorrect update of a
system employing technology such as flash EPROMs.

The Paradigm C++ Locator offers a number of checksum and CRC
options, each designed to address the needs of applications using
embedded PCs, or those that need the greatest degree of fault
protection in the target system. The CHECKSUM directive is used to
define aregion of the target system address space to be included in a
checksum or CRC calculation, the background fill to be used by any
undefined addresses within the region, and optionally specify the exact
position to place the calculated checksum or CRC.

'-Ofg?f(ggé‘?vl %(é}th;]'e Here we introduce the general concept of a checksum or CRC but we
in the
EXAMPLES subdirectory don't go into too muF:h detalllasthere is nothing better -tha_n aworking
for your compiler. ~ €xample. For more information and for an actual application
employing checksums and CRCs, see the compiler examples available

on the Paradigm C++ distribution disk.

ROMBIOS checksums

The CHECK SUM directive uses the ROMBIOS option to select the
checksum technique used by the IBM PC ROM BIOS for ROM
BIOS extensions. This technique uses a simple sum of bytes, carries

Chapter 6, Checksums and CRCs 87

You can also set the
background fill that will be
used so the final checksum
calculation is correct.

ignored, which must sum to zero to be accepted as a legitimate ROM
BIOS extension. The PC ROM BIOS scans the ROM BIOS address
space looking for the signature bytes, 55H, AAH, followed by the
count of 512 byte blocks when performing the extension ROM BIOS
scan during the BIOS initialization phase.

If the ROM BIOS finds a valid signature during the expansion ROM
BIOS scan, the ROM BIOS will calculate the checksum of the region
using the block count field. If the checksum is zero, the ROM BIOS
will perform afar call to the ROM BIOS extension entry, which is
located immediately following the expansion ROM BIOS block count
fied.

Defining a PC ROM BIOS extension requires that the signature and
block size be added to the start of a segment that will be placed on a
2KB boundary. The CHECKSUM directive placed in the LOCATE
configuration file should look like:

CHECKSUM addr 1 TO addr2 ROVBI OS

where addr1 and addr2 define the size of the ROM BIOS extension,
minus one, since the default position for the calculated PC BIOS
extension checksum isimmediately following the end of the region.

Y ou can aso place the address el sawhere using the ADDRESS option,
but the checksum byte must be within the region of the memory
address space determined by the signature and block count in order to
be recognized as a legitimate ROM BIOS extension.

For example, the CHECKSUM directive for a ROM BIOS extension
occupying the region EOOOOH to OEFFFFH would be

CHECKSUM 0xe0000 TO Oxefffe ROVBI OS

If anon-zero fill value is used, the CHECK SUM directive FILL option
must be used as it will affect the calculated checksum.

CRC-16 checksums

88

The CRC-16 checksum is an improvement over the simple sum of
bytes used in the expansion ROM BIOS checksum. When an
application requires better odds in detecting an error condition, a CRC

Paradigm C++ Locate Reference Manual

check is much more capable of finding not only single errors, but also
multiple errors.

You can also specify the Defining a CRC-16 checksum is done in an identical fashion to that

background fillif it ii er;gt used in the PC ROM BIOS example:

CHECKSUM addr1 TO addr2 CRC16

where addr1 and addr2 define the size of the address to have the
CRC-16 caculated, minus two, since the default position for the
calculated CRC-16 is immediately following the end of the region.
(We need to leave the last two bytes free to hold the calculated CRC.)
If necessary, you can specify a different address to hold the calculated
CRC using the ADDRESS option. Unlike the PC ROM BIOS
extension, you could store the calculated CRC separately, as shown in
the following example:

CHECKSUM 0xEO000 TO OxFFFFF CRC16 ADDRESS=0x80000
FI LL=0Oxf f

If the checksum is included in the CRC calculation, the result should
be zero.

CRC-16 details The polynomia and initial value used by the Paradigm C++ Locator to
calculate the 16-bit CRC is

CRC-16 polynzlr%lijarl?asrié 0xAQ01U (po! ypom’ al)
initial value. 0x0000U (initial value)

0x0000U (final val ue)

The following C code can be used to calculate the 16-bit CRC in the
target system and is taken from the file CRC16.C, available in the
EXAMPLES\CRCDEMO directory on the Paradigm C++ distribution
disk. Thisisacomplete working example which defines a CRC-16
region and verifies that the checksum is correct. For more information
on the CRC-16 polynomia and the initial value, refer to the file
CHECKSUM .H in the same directory.

Figure 6.2 /* Pass thru the buffer and add the new data to the checksum */
CRC-16 checksum WCRC = CRCL6_INIT ;
algorithm. while (dwStart <= dwStop) {
/* Build a pointer to the start of the next calculation */
pByte = MK_FP((UINT) (dwStart >> 4), (U NT)(dwStart & O0xf)) ;

Chapter 6, Checksums and CRCs 89

/* Compute the size of the buffer */
WSi ze = (U NT) min(CRC BUFSIZE, dwStop - dwStart + 1) ;

/* Adjust the starting position by the buffer size */
dwStart += wSi ze ;

/* Calculate the CRC on the region */
while (wSize--) {
wl ndex = (U NT8) (*pByte++ * wCRC) ;
WCRC >>= 8 ;
WCRC "= wCRCTabl e[Wl ndex] ;
}
}

/* Return the conputed CRC */
return WCRC * CRC16_FI NAL ;

CRC-32 checksums

The CRC32 option works identically as the 16-bit CRC option, except
that a different polynomial and algorithm is used.

Defining a CRC32 checksum is done in an identical fashion:

CHECKSUM addr1 TO addr2 CRC32

where addr1 and addr2 define the size of the address to have the
CRC-32 calculated, minus four, since the default position for the
calculated CRC-32 is immediately following the end of the region.
(We need to leave the last four bytes free to hold the calculated CRC.)
If necessary, you can specify a different address to hold the calculated
CRC using the ADDRESS option.

CRC-32 details The polynomial and initial value used by the Paradigm C++ Locator to
calculate the 32-bit CRC is

Figure 6.3 .
: OxEDB88320UL (pol ynoni al)
CRC-32 polynomial and L
initial value. OxFFFFFFFFUL (initial val ue)

OxFFFFFFFFUL (final val ue)

The following C code is used to calculate the 32-bit CRC in the target
system and is taken from the file CRC32.C, available in the
EXAMPLES\CRCDEMO directory on the Paradigm C++ distribution
disk. Thisisacomplete working example which defines a CRC-32
region and verifies that the checksum is correct. For more information

90 Paradigm C++ Locate Reference Manual

Figure 6.4
CRC-32 checksum
algorithm.

Tech tips

=

on the CRC-32 polynomial and the initial value, refer to the file
CHECKSUM .H in the same directory.

/* Pass thru the buffer and add the new data to the checksum */
dwCRC = CRC32_INIT ;
while (dwStart <= dwsStop) {
/* Build a pointer to the start of the next calculation */
pByte = MK_FP((UINT) (dwStart >> 4), (U NT)(dwStart & 0xf)) ;
/* Compute the size of the buffer */
WSi ze = (U NT) min(0x8000, dwStop - dwStart + 1) ;

/* Adjust the starting position by the buffer size */
dwStart += wSi ze ;

/* Calculate the CRC on the region */
while (wSize--) {
wl ndex = (U NT8) (*pByte++ ~ dwCRC) ;
dwCRC >>= 8 ;
dwCRC "= dwCRCTabl e[Wl ndex] ;
}
}
/* Return the conputed CRC */
return dwCRC N CRC32_FI NAL ;

Note that the 32-bit CRC32 result will not be zero if the CRC is
included in the CRC calculation.

Here are some useful tips to help you get the most out the Paradigm
C++ Locator checksum options:

m Usethe CHECKSUM FILL option to set the default state for any
memory regions that are undefined (and do the same with the
debugger before loading the application)

m When debugging, avoid the use of software breakpointsin a
checksum region (they will change the checksum calculation)

m Make sure that all classes in the checksummed region are named in
OUTPUT directives

m LISTFILE CHECKSUMS option displays the details of any
checksums used including the checksum region address range and
checksum value.

Chapter 6, Checksums and CRCs 91

92

Paradigm C++ Locate Reference Manual

Using compression

The Paradigm C++ Locator offers a compressed data option for
applications that require a small EPROM footprint yet have modest
amounts of code or initialized data that must be copied from EPROM
to RAM at startup. By discussing the various tradeoffs associated
with compression, we hope to lend some insight into when it is
appropriate to use this advanced feature of the Paradigm C++ Locator
and when it should not be considered.

There are no concrete guidelines when an application should use and
when it is best to avoid compressed initialized data. While the impact
on the EPROM footprint can be significant, compression, (actually
decompression), will cost time as decompression can be from 20 to 50
times slower than straight copying of initialized data from EPROM.
Careful consideration of the different options available can make for
an optimally designed system if the tradeoffs are well understood.

Likewise, the selection of compiler will also prove to be an important
factor in whether compression/decompression will be part of your
embedded application. The supported compilers vary in their ability to
keep constant data and string literals in the EPROM address space,
where the need for copying or decompression can be completely
avoided. In extreme cases, it may be preferable to select the compiler
on the basis of its ability to control the placement of data, just as one
would select the fastest compiler if speed were the dominating factor.

Chapter 7, Using compression 93

Compression requirements

Check out the

COMPRESS example to

see the use of
compression on FAR
DATA class

Note on decompression
stack size.

Adding compressed data to an application requires that the Paradigm
C++ Locator compress the class and output it to an address within the
EPROM address space. |In the target system, the decompression
module must be given the source and destination addresses of the
compressed data, and sufficient stack space to perform the
decompression.

The interface code to the decompression routine lies in a compiler
helper file supplied as part of the Paradigm C++ Locator compiler
support package. When enabled, this code will pass the default source
and destination addresses to the decompression function. |f you wish
to add you own compressed classes, this code will need to be modified
to include support for the additional classes.

The final requirement is sufficient stack space for the decompression
code to do itswork. While no static datais required, the class
decompression code requires dightly more than 5KB of stack space
during the actual decompression phase. Once completed the stack size
can be set to accommodate the run-time needs of the application.

Compression algorithm

94

The compression algorithm used by the Paradigm C++ Locator isa
variant of the LZW algorithm. This algorithm was chosen over
competing algorithms for its ability to highly compress the most
commonly found initialized data types, an ability the other
compression algorithm candidates lack.

Most competing solutions use a variant of the run length encoding
(RLE) algorithm which compresses repeating sequences of 8- or 16-bit
data. While an RLE algorithm works well with segments or classes
initialized to a constant value, it fails to deliver acceptable compression
on gtring literals, arrays of data, or lookup tables. Since all classes
initialized to a constant value, such as the Borland or Microsoft BSS
class, have dternative initializations that are faster and occupy less
space, the RLE agorithm typicaly fails to deliver acceptable
performance on the most commonly encountered data types.

Paradigm C++ Locate Reference Manual

Chapter 7, Using compression

95

96

Paradigm C++ Locate Reference Manual

X
A
Warning diagnostics

The warnings listed in this appendix indicate potential problems or
relay diagnostic information to the user concerning the trandation
process. Each warning message is listed in numerical order and may
be disabled by a command line option or in the configuration file, if
you prefer to ignore the warning.

Paradigm C++ Locate warnings

Message
explanations

W1000

W1001

The following warning diagnostics are produced by the Paradigm C++
Locator while the processing the input files, command line arguments,
or configuration file.

No address assigned to segment 'seg/class’

The identified segment did not appear in a CLASS, SEGMENT or
ORDER directive and no physical address assignment has been made,
leaving the segment to start at address 0x00000.

Unable to translate debug info for 'module':'symbol’

The Paradigm C++ Locator does not support the trandation of the
type information for the symbol and the type information is lost from
the debug records.

Appendix A, Warning diagnostics 97

98

W1002

W1003

W1004

W1005

W1006

W1007

W1008

Assumed absolute symbol 'name'

The Paradigm C++ Locator failed to successfully trandate the segment
address for the specified symbol. While this can indicate a problem, it
isvery likely that the symbol is already an absolute address and no
address trandation is possible.

Segment constant is larger than 16-bits in 'file', line 'nnn’
The physical address assigned to a segment or class cannot be
represented as a 16-bit unsigned integer and has been truncated.
Segment fixups should have values between 0x0000 and OxFFFF.

Address 'addr' is large in 'file’, line 'nnn’
The specified address in the configuration file directive is too large to
be represented as a 20-bit unsigned integer and has been truncated.

Output data truncated in 'file', line 'nnn’
The output data used in the INITCODE 1/O port output argument is
larger than OXFFFF and has been truncated.

Linker output files have different creation times

The file dates and times for the linker output are different. This
warning may indicate that the rel ocatable load module (.ROM) and the
corresponding map file (MAP) were not produced at the same time.
This warning can also occur when a post-processing utility is used to
process the relocatable load module before running the Paradigm C++
Locator.

Segment 'seg’ lacks a class hame

The segment seg has been declared without a class name. This
segment can only have a physical address assigned using the
SEGMENT directive.

Multiple address assignments made to class 'name’

The class name appears in two or more CLASS or ORDER directives.
The Paradigm C++ Locator only recognizes the first address
assignment made to a class.

Paradigm C++ Locate Reference Manual

W1009

W1010

W1011

W1012

In the event of an alias, the
Paradigm C++ Locator will
use the address of the first
non-zero length segment.

W1013

W1014

W1015

Appendix A, Warning diagnostics

Multiple address assignments made to segment 'seg’

The identified segment appears in two or more SEGMENT directives.
The Paradigm C++ Locator only recognizes the first address
assignment made to a segment.

‘class' in multiple DUP directives in 'file', line 'nnn’
The Paradigm C++ Locator has found a class named in multiple DUP
directives, perhaps indicating a configuration file problem.

‘class' in multiple COMPRESS directives in *file', line 'nnn’
The named class has turned up in multiple COMPRESS directives,
where only the first directive is effective.

Alias between segments 'seg/class' and 'seg/class'

Two or more segments in different classes share a common segment
fixup and the configuration file directives have assigned unique
physical addresses. This makes the segment trandation process for
these segments ambiguous and it is possible for afixup to be
incorrectly computed. Thiswarning is usually the result of a zero
length segment ending a class.

Overlap between segments 'seg/class' and 'seg/class’
The memory address spaces for the two named segments intersect,
causing one segment to overlap the other. Thiswarning is most likely
due to a segment growing into another segment or an error in the
configuration file address assignments.

Segment 'seg/class’' exceeds the 1MB address space
The length of the segment seg in class 'class extends it beyond the
end of the IMB address space, preventing al or part of the segment
from being addressed.

Reserved region violation by segment 'seg/class'

All or part of the specified segment is located in a region of the
memory address space that has been marked as reserved using the
MAP directive.

99

W1016

W1017

W1018

Many compilers can
disable the use of register
variables.

W1019

W1020

Pass parameters on the
stack when using Intel
OMF86 files.

w1021

W1022

Disable inline functions
while debugging.

W1023

w1024

100

Overlap between regions at 'addr' and 'addr’

Two regions defined in configuration file MAP directives share a
common portion of the memory address space yet have different
memory access attributes.

Segment 'seg/class' is mapped to multiple address spaces
The segment ‘seg’ in class 'class’ spans two separate regions of the
memory address space having different memory access attributes.

Intel OMF86 does not support register variables

Intel OMF86 debug information does not support the use of register
variables and the debug information was lost. If you are using a
debugger or in-circuit emulator and wish to see the variables assigned
to registers as part of the debug record, you must disable the use of
register variables by your compiler or assembler.

Intel OMF86 does not support object languages
Intel OMF86 does not support languages like C++ or Object Pascal
and object-related debugging information may have been lost.

Intel OMF86 does not support register parameters
Intel OMF86 does not support parameters to functions and procedures
to be passed in registers and the debug information was lost.

Intel OMF86 does not support based pointers
Intel OMF86 debug information does not support the use of based
pointers and the debug information was lost.

Intel OMF86 does not support inline functions
Intel OMF86 does not support inline functions and the debug
information was logt.

Unsigned 32-bit value truncated to 24-bits
Intel OMF86 does not have support for 32-bit unsigned integers and
the corresponding debug information was truncated to 24-hits.

Ambiguous structure detected - type information lost

The Paradigm C++ Locator is unable to determine the size of a
structure and the debug information for the structure has been lost.

Paradigm C++ Locate Reference Manual

W1025

W1026

w1027

W1028

W1030
You probably need to add

HEXFILE directive.

W1031

Thiswarning is caused by insufficient debugging information being
available, often when unnamed structure members are used.

Ambiguous type reference in function 'name'

Due to alack of debug information output by the compiler, the
parameter names and types for the function name have been lost.
There isn't anything you can do but disable this warning should it
occur.

Type index too large (‘index’) - type info lost

A type index greater than 07FFFH has been detected in the output and
has been eliminated. Thiswarning is most likely due to an error in the
debugging information or more type records than are supported by
Intel OMF86.

lllegal type index detected for 'symbol’

The named symbol has a type index larger than the maximum defined
for the module and has been eliminated from the debug information.
Thiswarning is caused by an error in the debug information.

Too many line number records in module 'name’

The number of line number records in the module exceed the
capahilities of the Paradigm C++ Locator and have been lost. To
correct this problem, split the offending source module into two or
more parts and rebuild the application.

No 'type' output was written to ‘file'

This warning diagnostic occurs when an EPROM output file was
requested but no data was found in the region defined by the base
address and size of the EPROM. Thiswarning is most likely due to
the failure to include the segments in the address space of the EPROM
image in an OUTPUT directive or the failure to define a suitable offset
and size for extracting the EPROM image.

Requested 'type' output exceeds 1MB address space

You are creating afile that exceeds the 1M B address space boundary.
Adjust the SIZE, OFFSET, and/or SPLIT parameters to stay within
the 1IMB address space.

Appendix A, Warning diagnostics 101

102

W1032

W1033

W1034

W1035

W1036

Segment 'seg/class' is output to a memtype region

The Paradigm C++ Locator expects that the segments identified in an
OUTPUT directive are destined for read-only memory yet the
segment seg in class 'class' is assigned to a region mapped as
memtype. While this condition is inappropriate for ROM-based
execution (the segment won't be available if not in EPROM), it is
permitted for downloading a segment to RAM and the warning can be
ignored.

Class 'class' not named in an OUTPUT directive

The named class isin aregion of the memory address space defined
with the read-only attribute but the class was not named in a
configuration file OUTPUT directive. Thiswarning may indicate a
potentia problem since the class would not be in an EPROM if the
classis not part of an OUTPUT directive.

All segments have been removed from class 'class'

All of the segments in the named class have been assigned addresses
using the SEGMENT directive. Including the classin an ORDER
directive has no effect on the address assignments and can be
eliminated.

Debug information nesting error, fixup applied

The Paradigm C++ Locator has detected a scoping error in the input
debug information and has attempted to fix the error by supplying the
missing scopes. Thiswarning is usually accompanied by a warning
from the compiler that debug information was lost due to the
complexity of the input source file. Fix the problem in the source
module to get rid of this warning.

Lack of debug information prevents structure padding
This warning occurs when the debug information is insufficient or
does not accurately indicate the size of a structure member. You can
use the -d2 option to identify which module is responsible for the
faulty debug information.

Paradigm C++ Locate Reference Manual

W1037

Assembly language
modules with absolute
segments are usually the
culprit.

W1038

W1039

W1040

W1041

W1042

W1043

W1044

Ambiguous debug information, translation not possible
The input debug information is incomplete and the Paradigm C++
Locator is unable to completdly trandate it.

Can't translate register variable using two registers
The input debug information contains register variable pairs not
supported by the integrated debugger and the debug information is
lost.

Segment 'seg/class' has been truncated in file 'file'
Thiswarning is output by the evaluation version of the Paradigm C++
Locator when a segment exceeds the internally set limits. Because the
segment has been arbitrarily truncated, the application may no longer
work correctly although the debugging information attached is till
intact.

TRUNCATE option ignored in 'file', line 'nnn’
The TRUNCATE option can only be used with binary files.

'‘option’ option in 'file’, line 'nnn' is obsolete
The named option is no longer supported by the Paradigm C++
Locator and has been replaced with improved capabilities.

Listing file can't process case insensitive links
The Paradigm C++ Locator requires that case-insensitive symbols be
used in order to demangle C++ namesin the listing file.

‘option’ option in 'file', line 'nnn' is not supported
The named option is not supported by this version of the Paradigm
C++ Locator.

Bad CodeView debug information, fixup applied - 'nnn’
The CodeView debugging information on the input load module (the
.ROM or .EXE file created by the linker) was found to be corrupt.
The Paradigm C++ Locator has done its best to work around the
problem but some debugging information may be lost.

Appendix A, Warning diagnostics 103

104

W1045

W1046

W1047

W1048

W1049

W1050

Bad Borland debug information, fixup applied - 'nnn’
The Borland debugging information on the input load module (the
.ROM or .EXE file created by the linker) was found to be corrupt.
The Paradigm C++ Locator has done its best to work around the
problem but some debugging information may be lost.

'type' checksum skipped for 'segment'/'class’

The named segment is not declared in an OUTPUT directive yet
appears in a checksum calculation. The Paradigm C++ Locator will
only calculate checksums on segments identified in OUTPUT
directives.

Unable to fixup virtual segment 'seg' at 'seg:off’

The specified segment fixup in the relocation table could not be
trandated. This error usually indicates the load module and segment
map were not created on the same linker run, or the input files are
corrupt.

Mismatch in load module size and segment map size

The size of the load module and the segment map don't agree in size.
This may or may not be a problem but you can get rid of this warning
by completely defining all segments in the load module by avoiding the
use of DUP 'nnn' (?) constructs in your code.

C++ namespaces present - Paradigm DEBUG 6.0 or
version of Paradigm C++ recommended

The debug information contains namespace information but the output
isfor an earlier version of the integrated debugger that lacks
namespace support.

Class 'class' not in link map - 'name’ directive ignored

A class name was used in the LOCATE configuration file which was
not included in the link map, or class ?72LOCATE was specified, and
no corresponding INITCODE register values are defined in the .CFG
file.

Paradigm C++ Locate Reference Manual

W1051

Segment exceeds 64KB, application may not operate as
intended

Thiswarning is displayed when the length of a segment in the map file
exceeds 64KB. Non-protected mode applications may not run
properly when this occurs.

Preprocessor warnings

Message
explanations

W2000

W2001

W2002

W2003

The following warning diagnostics are produced by configuration file
preprocessor during the parsing of the configuration file.

Macro 'macro' needs argument in 'file’, line 'nnn’
An argument was expected with the macro.

Wrong number of arguments 'args' in 'file’, line 'nnn’
The wrong number of macro arguments was detected during macro
expansion.

Expected formal parameter in 'file', line 'nnn’
A formal parameter was expected by the Paradigm C++ Locator.

Undefined symbol 'symbol' in expression in 'file’, line 'nnn’
A symbol that has not been defined in a configuration or on the
command line was used in an expression.

Appendix A, Warning diagnostics 105

106 Paradigm C++ Locate Reference Manual

Error diagnostics

The errors listed in this appendix indicate the existence of a serious
problem that prevents the Paradigm C++ Locator from producing
useful output. Each of the error messages are listed in numerical order
for easy lookup.

Paradigm C++ Locate errors

Message
explanations

E1000

E1001

The following error diagnostics are produced by the Paradigm C++
Locator while the processing the input files, command line arguments,
or configuration file.

Internal error 'id' - contact Paradigm Systems

A seriousinternal error has been detected by the Paradigm C++
Locator. Please contact Paradigm Systems with the internal error ID
for assistance in resolving the error.

Error opening 'file' - 'err_info'
The Paradigm C++ Locator was unable to open the specified file for
the reason given in err_info.

Appendix B, Error diagnostics 107

E1002

E1003

E1004

E1005

E1006

E1008

This is usually caused by
absolute segments.

108

Error reading 'file' - 'err_info'

The Paradigm C++ Locator was unable to satisfy aread of the named
file for the displayed reason. This error usually indicates an
incomplete load module or some other serious error.

Error writing 'file' - 'err_info'

The Paradigm C++ Locator was unable to complete a write to file for
the reason err_info. The most likely cause of this error is adevice
with no space - afull disk.

Insufficient memory available for the Locator

The dynamic memory requirements needed by the Paradigm C++
Locator are unavailable to complete the processing. Attempt to free
up some memory and retry the operation or reduce the amount of
debug information in the load module if this error is encountered.

Unable to find configuration file 'file'

The LOCATE configuration file 'file' could not be found. Check that
the configuration file exists in the directory with the relocatable load
module or in the directory specified by the -c command line option. If
the -c command line option is not used, the Paradigm C++ Locator
assumes that the configuration file has the same name as the
relocatable load module with a .CFG extension and that it is located in
the same directory as the relocatable load module (.ROM file), for
example, | ocat e -cdenp. cfg denp. rom

The Paradigm C++ Locator input/output filenames must be
unique

To avoid confusion and preserve al files, the Paradigm C++ Locator
does not permit the input and output filenames to be the same. This
error will most likely occur when the output file extension is .EXE and
the input file aso has the .EXE file extension. The workaround is to
have the linker name the output file .ROM (rel ocatable load module)
or some other extension of your choosing.

Unable to fixup virtual segment 'seg’

The specified segment fixup in the debug information could not be
converted to an absolute segment address.

Paradigm C++ Locate Reference Manual

E1009

E1010

E1011

E1012

E1013

E1014

E1015

Unable to fixup program entry point - 'seg:off'

The program entry point failed segment trandlation. Since the entry
point must be in a defined segment, this error is likely to be
accompanied by a more serious error. Often this error is caused by
trying to process an input file that was packed by the Microsoft linker.

Unable to fixup initial stack - 'seg:off'

The program stack failed segment trandation. Since the stack
initialization is picked up from the segment with the stack attribute,
this error islikely due to the lack of a stack segment in the application.
Often this error is caused by trying to process an input file that was
packed by the Microsoft linker.

New executable file 'file' is not supported

The Paradigm C++ Locator does not support new style (Microsoft
Windows or 0S/2) executable files. Check your linker options and
sdlect the origina DOS .EXE file format.

Corrupted relocatable load module in file *file'

The Paradigm C++ Locator has determined the header on the load
module is corrupt or the file is not in the EXE format. Check you're
the Locator command line options. Be sure that you pass the .ROM
or .EXE asan input file, for example, | ocat e deno. rom
-cdeno. cfg.

Input file 'file' is already an AXE file
The named file is already in AXE format, most likely because the file
has been processed by the Paradigm C++ Locator.

Multiple segment fixup records detected in 'file’
Only one segment fixup for asingle location is dlowed. Should this
error occur, contact Paradigm Systems for assistance.

Size must be between 1 and 1024 in file', line 'nnn’

The EPROM size specified in the HEXFILE SIZE option must be an
integer between 1 and 1024. Note that the size valueisin KB, for
example, size=8 means 8096 bytes.

Appendix B, Error diagnostics 109

110

E1016

E1017

E1018

E1019

E1020

E1021

E1022

E1023

Fill argument must be between 0 and 255 in 'file', line 'nnn’
The EPROM fill character specified in the HEXFILE FILL option
must be in the range 0x00 to OxFF.

Offset must be in 1MB address space in 'file', line 'nnn’
The EPROM offset specified in the HEXFILE OFFSET option must
be in the range 0x00000 to OxFFFFF.

Split argument must be 1, 2 or 4 in 'file', line 'nnn’

The EPROM split specified in the HEXFILE SPLIT option must be
either 1 for no split, 2 for a pair of EPROMs or 4 if a 32-bit wide split
is required.

Unable to split Intel extended hex in *file', line 'nnn’

The Paradigm C++ Locator does not split Intel extended hex files. If
your design requires a set of EPROMSs, the Intel hex, binary or
Tektronix hex output formats must be used.

Length must be between 8 and 64 bytes in 'file', line 'nnn’
The HEXFILE LENGTH option accepts a hex file record length of 8
to 64 bytesin length.

Unable to find segment map in 'file’

The Paradigm C++ Locator is unable to find the segment map in the
linker map file. The segment map is needed by the Locator to find
and extract the individual segments from the relocatable load module.

Syntax error at or near 'this' in 'file', line 'nnn’

The syntax of the specified configuration file directive isin error and
must be corrected. Note that the line number used to identify the
error may be after the point of the error if the line has been continued
one or more times.

Unknown class 'class' in 'file', line 'nnn'

The Paradigm C++ Locator is unable to find the class named classin
the list of classes. Make sure that the class name is spelled exactly as
it appears in the linker map (MAP) since the Locator uses case-
sendgitive class names.

Paradigm C++ Locate Reference Manual

E1024

E1025

E1026

E1027

E1028

E1029

E1030

E1031

E1032

It is not possible for a class
to decompress on to itself.

Unknown segment 'seg' in 'file’, line 'nnn’

The Paradigm C++ Locator is unable to find the segment named seg
in the list of segments. Make sure that the segment name is spelled
exactly asit appears in the linker map (.MAP) since the Locator uses
case-sensitive segment names.

Missing or unsupported CPU type in 'file', line 'nnn’
The target microprocessor field in the CPUTY PE directive is either
unsupported, missing or multiply defined.

CPU does not support the initialization in 'file', line 'nnn’
The target microprocessor specified in the CPUTY PE directive cannot
perform the identified periphera register initialization. Either change
the target microprocessor defined in the CPUTY PE directive or use
the generic port 1/O options of the INITCODE directive.

I/O port address too large in 'file', line 'nnn’
The /O port address must be in the range of 0x0000 to OxFFFF.

One or more classes required in 'file', line 'nnn’
The specified directive requires at least one class to be named in the
list of classes.

Two or more classes required in 'file', line 'nnn’
The specified directive requires two or more classes to be named in
the list of classes.

Illegal warning control option in 'file', line 'nnn’
One or more of the warnings specified in the WARNINGS directive
do not correspond to a valid warning ID.

MAP directive address range error in 'file’, line 'nnn’
A valid region requires that the first address in a MAP directive be less
than or equal to the second address.

Class 'class' must be DUPLICATEd before compression
Y ou are attempting to compress a class that has not been duplicated or
does not have a zero-length segment as the first segment in the class.

Appendix B, Error diagnostics 111

112

E1033

E1034

E1035

E1036

E1037

E1038

E1039

E1040

Compressed class 'class' too large during pass 2

The Paradigm C++ Locator runs a two pass compression agorithm,
the first pass to estimate the size of the compressed class, which is
needed to apply segment fixups. A second pass is then performed,
after segment fixups have been applied, to compress the class. On
pass 2, the class compressed |ess than expected, generating this error.

Unknown or illegal command line option 'option’
The specified command line option is incorrect and requires fixing
before the Paradigm C++ Locator will continue.

SPLIT option incompatible with Intel extended hex

The command line option to split the EPROM files is incompatible
with Intel extended hex output. If your design requires a set of
EPROMS, the Intel hex, binary or Tektronix hex output formats must
be used.

SIZE argument out of range in option 'option’

The EPROM size specified in the -Hd command line option must be a
power of 2. Valid EPROM sizes (in KB) are 1, 2, 4, 8, 16, 32, 64,
128, 256, 512 and 1024.

OFFSET argument out of range in option 'option’
The offset field in the -Ho command line option must be a 20-bit
unsigned integer.

FILL argument out of range in option 'option’
The EPROM fill character specified in the -Hf option must be in the
range 0x00 to OxFF.

SPLIT argument out of range in option 'option’

The EPROM split specified in the -Hs command line option must be
either 1 for no split, 2 for a pair of EPROMs or 4 if afour EPROM
set is required.

LENGTH argument out of range in option 'option’

The hex record length specified in the -HI command line option must
be between 8 and 64.

Paradigm C++ Locate Reference Manual

E1041

E1042

E1043

E1044

E1045

CVPACK usually fails to
run when there is a linker
error.

E1046

E1047

Diagnostics level out of range in option 'option’

The diagnostics output level specified in the -d command line option
must be either O for no diagnostics, 1 for filename diagnostics, 2 for
filename and module diagnostics, 3 for compression statistics, or 4 to
enable all diagnogtics.

lllegal or out of range warning argument in option 'option’
The warning ID in the -w command line option is not a valid warning
ID.

Debug information version is not supported

The debug information supplied to the Paradigm C++ Locator is
beyond the currently supported version. This error is most likely due
to a compiler or linker update by the compiler vendor.

Packed CodeView debugging information not supported
The Microsoft CVPACK utility was used to pack the debugging
information, preventing the Paradigm C++ Locator from processing
the file.

Unpacked CodeView debugging information not
supported

The Paradigm C++ Locator expects to see packed debug information,
so something prevented CVPACK from successfully completing.

Bad or missing CV2 debug information - 'code'

An error occurred trandating the Microsoft CodeView debug
information. Indication of corrupted debug information found in the
.ROM or .EXE file that was created by the linker. Please contact
Paradigm Systems with the details of this error. Uploading your
application ((ROM, .MAP and configuration file) will help our
technical support group resolve this problem more quickly.

Bad or missing CV4 debug information - 'code'

An error occurred trandating the Microsoft CodeView debug
information. Indication of corrupted debug information found in the
.ROM or .EXE file that was created by the linker. Please contact
Paradigm Systems with the details of this error. Uploading your

Appendix B, Error diagnostics 113

114

E1048

E1049

E1050

E1051

E1052

application ((ROM, .MAP and configuration file) will help our
technical support group resolve this problem more quickly.

Bad or missing Borland TD2 debug information - ‘code’

An error occurred trandating the Borland debug information.
Indication of corrupted debug information found in the .ROM or .EXE
file that was created by the linker. Please contact Paradigm Systems
with the details of this error. Uploading your application (.ROM,
.MAP and configuration file) will help our technical support group
resolve this problem more quickly.

Bad or missing Borland TD3 debug information - ‘code’

An error occurred trandating the Borland debug information.
Indication of corrupted debug information found in the .ROM or .EXE
file that was created by the linker. Please contact Paradigm Systems
with the details of this error. Uploading your application (.ROM,
.MAP and configuration file) will help our technical support group
resolve this problem more quickly.

Bad or missing Borland TD4 debug information - ‘code’

An error occurred trandating the Borland debug information.
Indication of corrupted debug information found in the .ROM or .EXE
file that was created by the linker. Please contact Paradigm Systems
with the details of this error. Uploading your application (.ROM,
.MAP and configuration file) will help our technical support group
resolve this problem more quickly.

'name' debug information exceeds translation limits
The named debug records exceeds the capacity of the output file
format. The only solution is to eiminate some modules with debug
information and re-run the Paradigm C++ Locator.

CHECKSUM directive address range error in 'file', line
'nnn’

A valid checksum region requires that the first addressin a
CHECKSUM directive be less than or equal to the second address.

Paradigm C++ Locate Reference Manual

E1053 CHECKSUM FILL option out of range error in 'file’, line

'nnn’
The fill character specified in the CHECKSUM directive must bein
the range 0x00 to OxFF.

E1054 CHECKSUM type option not specified in 'file’, line 'nnn’
The CHECK SUM record type isincorrectly specified. Please select
one of following CHECKSUM type options. ROMBIOS, CRC16, or
CRC32.

E1055 ADDRESS option out of range error in ‘file', line 'nnn’
The ADDRESS option in the CHECKSUM directive is outside the
target system memory address space.

E1056 ADDRESS cannot be part of checksum in 'file', line 'nnn’
Y ou can not specify an address to place the checksum that isinside
the range of the checksum calculation.

E1057 Include file size cannot be greater than 64KB in 'file’, line
'nnn’
The binary include file size has exceeded the 64K B limit.

E1058 DUP must copy class 'class' to a unique class in 'file’, line

'nnn’
Y ou cannot duplicate a class to itsalf.

Preprocessor errors

Message Thefollowing error diagnostics are produced by configuration file
explanations Preprocessor during the parsing of the configuration file.

E2000 Internal error 'num' - contact Paradigm Systems
Thisisissued by al preprocessor internal errors. Please contact
Paradigm Systems should you encounter an internal error.

Appendix B, Error diagnostics 115

116

E2001

E2002

E2003

E2004

E2005

E2006

E2007

E2008

E2009

E2010

Conditional block nesting error in 'file'
Your configuration file has incorrectly nested #if/#el sef#endif
directives.

Conditional without an argument in 'file’, line 'nnn’
You used a conditional directive but failed to provide an expression to
evaluate.

#include syntax error in 'file', line 'nnn’
#include requires the name of the include file enclosed in either
double quotes (") or left ("<") and right angle (">") brackets.

#else may not follow #else in 'file', line 'nnn’
An #else clause can only follow an #if or #elif directive.

#endif must be in an #if block in 'file’, line 'nnn'
The Paradigm C++ Locator found an #endif with a corresponding #if
directive.

Unsupported #control definition in 'file’, line 'nnn’
An unsupported preprocessor control was found. Valid controls are
#if, #else, #endif, #elif, #define, #undef, and #include.

Include file 'incfile' not found in 'file', line 'nnn'
The named include file could not be found. Check that the path
specifies the correct location of the file.

Too many nested 'token' statements in 'file’, line 'nnn’
Y ou broke the preprocessor with a configuration file beyond
comprehension. You are going to have to simplify the file before
continuing.

Macro expansion error in 'file', line 'nnn’
An error occurred when expanding a macro. ldentify the macro in
error and correct the problem.

Redefining defining variable 'var' in 'file', line 'nnn’

Another #define for the same variable has been found. Use the
#undef directive before redefining the variable.

Paradigm C++ Locate Reference Manual

E2011

E2012

E2013

E2014

E2015

E2016

E2017

E2018

E2019

E2020

#define syntax error in 'file’, line 'nnn’
Y ou must specify a variable name for the macro you wish to define.

lllegal #undef argument in 'file', line 'nnn’
#undef requires that a macro name be supplied.

End of file in macro argument in 'file’, line 'nnn’

An end of file condition was found while processing the macro
argument list. Check the macro and correct before continuing. This
error can also occur if the end of thefile is reached while processing a
C comment.

Recursive macro definition 'macro' in 'file', line 'nnn’
Recursive macros are not permitted. Correct the error before
continuing.

Empty character constant in 'file', line 'nnn’
A character constant was expected but not found.

Unterminated string or character constant in 'file’, line
'nnn’
An improperly terminated string literal or character constant was
found.

Can't use string in #if in 'file', line 'nnn’
String literals are not valid in conditional expressions.

Bad #if defined in 'file’, line 'nnn'
An expression that could not be evaluated was found.

Assignment not allowed in #if in 'file’, line 'nnn’
Use of the assignment operator is not permitted in conditional
expressions.

Error in multiline #if in 'file’, line 'nnn’
The multiline #if directive needs work before it can be accepted by the
Paradigm C++ Locator.

Appendix B, Error diagnostics 117

118

E2021

E2022

E2023

E2024

E2025

E2026

E2027

Divide by zero error in 'file', line 'nnn’
The result of an expression evaluation resulted in division by zero.

#if stack overflow in 'file', line 'nnn'
Too many nested #if directives has been found, you will have to
simplify the configuration file.

Operator 'op' context fault in 'file’, line 'nnn’
Thisis an inappropriate use of the named operator.

Expression error in 'file’, line 'nnn’
The Paradigm C++ Locator was unable to evaluate the expression.
Correct or simplify before continuing.

#define syntax error in command line option 'opt'
A macro defined with the -D command line option is incorrectly
formed.

#error in 'file', line 'nnn": 'errmsg’
A #error directive in your configuration was processed.

Macro exceeds preprocessor limit in 'file’, line 'nnn’

A macro definition may have been too long and needs to be simplified
and shortened.

Paradigm C++ Locate Reference Manual

X
C
Exit codes

The exit code returned by the Paradigm C++ Locator can be used by
MAKE utilities or batch files to determine the success or failure of the
processing. The following table indicates the meaning assigned to each

error code.
LOCATE ezibéié:ég Exit Code Meaning
0 No errors, possibly warnings
1 Error(s)
2 Serious error
3 Critical or fatal error

The severity of errors depends on the action which caused the error.
Regular errors are unexpected conditions detected with the conversion
of relocatable input file to an absolute output file, including the
conversion of type information. Some errors terminate processing
immediately while others continue until other exceptional conditions
have been checked.

Serious or critical errors are associated with the operating system of
1/O operations and cause the Paradigm C++ Locator to immediately
finish, clean up and exit.

Appendix C, Exit codes 119

The WARNINGS The Paradigm C++ Locator has the -W option to generate a non-zero
EXITCODE option can also

be used to set the exit code exiF code should any warnings be dgtected duri ng proc ng. This
for warning conditions. Option should be used when an environment might not display any
messages and an indication of warning is required.

120 Paradigm C++ Locate Reference Manual

X
D
INITCODE port definitions

The Paradigm C++ Locator INITCODE directive can be used to
initialize peripheral registers found in the Intel 80C186 and NEC
V-Series microprocessors. This capability is especialy attractive since
it permits memory and peripheral chip selects, wait states, and DRAM
refresh devices to be initialized before the application startup code
takes control of the CPU, without the need to modify the startup code.
By avoiding the need to customize the startup code with complex
segmentation and initialization code, the user can focus on more
interesting applications.

Onlg. pﬁtipherat“ devices Table D.1 usesthe standard peripheral register names as defined by

which impact memory . Aec : : e

initialization are supported. eagh-mlcrop_rocr vendor. The ta}ble is ordereq py microprocessor,
asitisused in the CPUTY PE directive. If a specific microprocessor
does not appear in the following table, it does not support any port

initidizations.
INITCODE port (;I(-E‘afit?'llﬁicl)?‘].i CPUTYPE Register Port address
180186 UMCS FFAOH
180188 LMCS FFA2H
PACS FFA4H
MMCS FFAGH
MPCS FFASH

Appendix D, INITCODE port definitions 121

CPUTYPE Register Port address

180C186 UMCS FFAQOH

180C186XL LMCS FFA2H

180C188 PACS FFA4H

180C188XL MMCS FFA6H
MPCS FFA8H
MDRAM FFEOH
CDRAM FFE2H
EDRAM FFE4H

| B0C186EA UMCS FFAQOH

|80C188EA LMCS FFA2H

| 80L 186EA PACS FFA4H

| 80L 188EA MMCS FFA6H
MPCS FFA8H
RFBASE FFEOH
RFTIME FFE2H
RFCON FFE4H

|80C186EB GCS?ST FF80H-FF9EH

I80C188EB GCS?sP FF80H-FF9EH

| 80L 186EB LCSST FFAQOH

| 80L 188EB LCSSP FFA2H
uCssT FFA4H
UCSSP FFA6H
RFBASE FFBOH
RFTIME FFB2H
RFCON FFB4H

|80C186EC GCS?ST FF80H-FF9EH

I80C188EC GCS?sP FF80H-FF9EH
LCSST FFAOH
LCSSP FFA2H
ucssT FFA4H
UCSSP FFABH

122 Paradigm C++ Locate Reference Manual

CPUTYPE Register Port address

I80C186EC/188EC RFBASE FFBOH
continued RFTIME FFB2H
RFCON FFB4H
MPICPO FFOOH
MPICP1 FFO2H
SPICPO FFO4H
SPICP1 FFO6H
186EC WDTRLDH FF20H
watchdog timer WDTRLDL FF22H
registers WDTCNTH FF24H
WDTCNTL FF26H
WDTCLR FF28H
WDTDIS FF2AH
AM186ED UMCS FFAOH
AM 186EM/188EM LMCS FFA2H
AM 186ER/188ER PACS FFA4H
AM 186ES/188ES MMCS FFAGH
MPCS FFA8SH
ARC International IMCS FFACH (ER only)
VT8086
VT80186 PDCON FFFOH (EM ER only)
VT80186EM PIOMODEO FF70H
VTB80186ES PIODIRO FF72H
PIOMODEL FF76H
PIODIR1 F~78H
PIOMODE2 FFD4H
PIODIR2 FFD6H

Appendix D, INITCODE port definitions 123

124

CPUTYPE Register Port address
AM186EX continued MDRAM FFEOH (EM ER ESonly)

CDRAM FFE2H

EDRAM FFE4H

SYSCON FFFOH (ES ED only)

AUXCON FFF2H (ES ED only)

WDTCON FFE6H (ES ED only)

WDCON FF42H (ES ED only)
AM186CC umMcs FFAOH

LMCS FFA2H

PACS FFA4H

MMCS FFAGH

MPCS FFABH

PIOMODEO FFCOH

PIODIRO FFC2H

PIOMODE1 FFCAH

PIODIR1 FFCCH

PIOMODE2 FFD4H

PIODIR2 FFD6EH

CDRAM FFAAH

EDRAM FFACH

WDTCON FFEOH

SYSCON FFFOH
RDC UMCS FFAOH
R1100/R8800/R8810 LMCS FFA2H (not in R16xx/R20xx)

PACS FFA4H (not in R2000/R2010/R2020)
R1120/R8820/R8830 MMCS FFABH (not in R16xx/R20xx)

MPCS FFA8H (not in R2000/R2010/R2020)
R1122/R8822

PDCON FFFOH (R1100/R8800/R8810 only)
R1610/R1620 PIOMODEO FF70H (not in R2000/R2010/R2020)

PIODIRO FF72H (not in R2000/R2010/R2020)
R2000/R2010/R2020 PIOMODE1 FF76H (not in R2000/R2010/R2020)

Paradigm C++ Locate Reference Manual

CPUTYPE Register Port address

RDC continued PIODIR1 FF78H (not in R2000/R2010/R2020)
R1100/R8800/R8810 MDRAM FFEOH (not in R1122/R8822/R20xX’
CDRAM FFE2H
R1120/R8820/R8830 EDRAM FFE4H
R1122/R8822 SYSCON FFFOH (not in R1100/R8800/R8810)
AUXCON FFF2H (not in R1100/R8800/R8810)
R1610/R1620 WDTCON FFE6H (not in R1100/R8800/R8810)
R2000/R2010/R2020 BUSCON FFEAH (R1610/R1620 only)
UMCS FFAOH (R1620)
LMCS FFA2H (R1620)
PCSO FFA4H (R1610/R1620 only)
PCS1 FFASH (R1610/R1620 only)

SDRAMACR FEFOH (R1620 only)

SDRAMMSR FEF2H (R1610/R1620 only)
SDRAMCR FEF4H (R1610/R1620 only)
SDRAMTPR FEF6H (R1610/R1620 only)

CCR FECOH (R1610 only)
1 80386EX CS?ADH F400H-F436H
CS?ADL F400H-F436H
CSMSKH F400H-F436H
CSMSKL F400H-F436H
UCSADH F43AH
UCSADL F438H
UCSMSKH F43EH
UCSMSKL F43CH
RFSBAD F4AOH
RFSCIR F4A2H
RFSCON FAA4H
RFSADD F4A6H

Appendix D, INITCODE port definitions 125

CPUTYPE Register Port address

180386EX continued ICW1M FO20H
ICW2M Fo21H
ICW1S FOAOH
ICW2S FOA1H
P1CFG F820
P2CFG F822H
P3CFG F824H
PINCFG F826H
MPICPO FO20H
MPICP1 FO21H
SPICPO FOAOH
SPICP1 FOA1H

REMAPCFG FO022H

WDTRLDH FACOH
386EX WDTRLDL FAC2H
watchdog timer WDTCNTH FACAH
registers WDTCNTL FACBH

WDTCLR FACSH

WDTSTATUS FACAH

D70208 V40 RFC FFF2H
D70216 V50 WMB FFF4H (V40/V50 only)
wcy1 FFF5H
WCY?2 FFF6H
D70208H V40H RFC FFF2H
D70216H V50H SCTL FFF7H
wcy1 FFF5H
WCY?2 FFF6H
WCY3 FFEAH
EXMB FFEDH
WSMB FFECH
WIOB FFEBH

126 Paradigm C++ Locate Reference Manual

CPUTYPE Register Port address
D70320 V25 IDB [IDB]00:0FFFH
D70325 V 25+ RFM [IDB]00:0FE1H
D70330V35 WTC [IDB]00:0FESH
D70335 V 35+ PRC [IDB]00:0FEBH

PMCO [IDB]00:0F02H

PMC1 [IDB]00:0FOA

PMC2 [IDB]00:0F12
D70236 V53 RFC FFF2H

WMBO FFEAH

WMB1 FFF3H

WCYO0 FFECH

WCY1 FFEBH

WCY?2 FFF4AH

WCY3 FFFSH

WCY4 FFFEH

WAC FFEDH

SBCR FFF1H
D70423 V55SC PRC FFFEFH
D70433 V55PI RFM FFFECH

MBC FFFEAH

PWCO FFFESH

PWC1 FFFESH
Turbol86 UMCS FFAOH

LMCS FFA2H

PACS FFA4H

MMCS FFAGH

MPCS FFA8H

Appendix D, INITCODE port definitions

127

CPUTYPE Register Port address

I nfinior PIOMODE2 FF6AH (IMS16C only)
IMS16B PIODIR2 FF6CH (IMS16C only)
IMS16C

WDCON FF42H

SDEN FFEAH (IMS16B only)

SDCR FFEAH (IMSI6C only)

SDDUTY FFECH

SDMODE FFEEH

SRCR FFESH (IMSI6C only)
Advantech EVA uMmcs FFAOH
X1610C LMCS FFA2H
X1630C

CDRAM FFE2H

EDRAM FFE4H

BUSCON FFEAH

PCSD FFA4H

PCS1 FFA8H

PIOMODEO FF70H

PIODIRO FF72H

PIOMODE1 FF76H

PIODIR1 FF78H

PIOMODE2 FFD4H

PIODIR2 FFD6H

AUXCON FFF2H

SYSCON FFFOH

WDTCON FFE6H

SDRAMACR FEFOH (X1610C only)
SRRAMMSR FEF2H

SDRAMCR FEF4H
SDRAMTPR FEF6H
CCR FECOH (X1630C only)

128 Paradigm C++ Locate Reference Manual

Figure E.1
AXE header information

Appendix E, AXE utility

m

AXE utility

The AXE utility is a program which displays various statistics about
AXESB6 files created by the Paradigm C++ Locator. The fields
displayed from the input AXE file are

m program entry point

AXE header size

region list

segment list

The AXE utility first looks for afile extension of .AXE before trying
to open afile with the .EXE extension. The format of the AXE
command lineis

axe filename[.ext]

The following figure contains sample output from the AXE tility,
together with a brief description of each section in the AXE file
header.

1) AXE Version 1.00
Entry Point: FFFF: 0000
AXE Header Size: 256 bytes

2) \ LOCATE\ DEMO\ SI EVE. AXE contains 3 regions
000000 O3FFFF Read/ Wite
040000 OF7FFF No access
0F8000 OFFFFF Read Only

3) \ LOCATE\ DEMO\ SI EVE. AXE contains 6 segnments

129

The load module size is the
sum of the sizes of each
segment in the AXE file.

130

0 F800: 0000 00133 O 000100
1 F813:0004 00010 O 000280
2 F815:0000 00004 O 000300
3 F816: 0000 00010 O 000380
4 FFFO0: 0000 00013 O 000400
5 FFFF: 0000 00005 O 000480

Load nodul e size: 367 bytes

Section 1 isthe AXE header information, containing the version of
AXE file, the program entry point, and the size of the AXE segment
descriptor buffer.

Section 2 is the region map, displaying the mapping instruction for the
target system memory from the Paradigm C++ Locator MAP
directives. Thefirst item is the starting address of the region, the
second address is the ending address of the region followed by the
access type of the region.

The segment map in section 3 lists the segment index, the segment
base address and segment length, segment attributes, and the offset of
the segment within the AXE file. The first segment attribute indicates
whether the segment is read-write (*-') or if it isread-only ('O"). The
second attribute indicates whether the segment is present in the AXE
file (") or if the segment descriptor is provided as a reference (‘'R') but
the segment doesn't actually exist.

Paradigm C++ Locate Reference Manual

T

Hex file formats

This appendix documents the Intel hex file formats used by the
Paradigm C++ Locator. Thisinformation is provided to those users
that need to read Intel hex or extended hex file formats created by the
Locator HEXFILE configuration file directive.

Intel extended hex

Intel extended hex is afile format designed to represent binary data
within the 80186-family address space using the standard ASCI|
character set. The hexadecimal representation of each binary byte is
encoded in a pair of ASCII charactersin the range '0' - '9' and 'A' to
'F.

There are four different record types which make up the Intel
extended hex file format:

Extended Address Record
Start Address Record
Data Record

End of File Record

Each Intel extended hex record begins with a colon (:') character as
the record mark. The record mark field is then followed by arecord

Appendix F, Hex file formats 131

Extended Address

132

Record

Data Record

Start Address
Record

length field which specifies the number of bytes of information that
follow the record type field.

Each record ends with a checksum field that contains the ASCII
representation of the two's complement of the binary data from the
record length field. If the record is correct, the sum of all fields,
including the checksum field, will be zero.

The Extended Address record is used to define a segment base
address (SBA) for the following Data records, which supply the
offsets for each data record from this base address.

The segment base address is zero until it is defined in an Extended
Address record. Once defined, the segment base address will remain
in effect until a subsequent Extended Address record is encountered.

| Mark Length Offset Type SBA Checksum
" '02' ‘0000 '02' XXX XX

Each Data record defines part of the memory address space of the
application. The absolute address of a Data record is determined by
the Offset field and the segment base address in the last Extended
Address record.

Mark Length Offset Type Data Checksum
" XX XXX ‘00" OO XX

The Length field is determined by the amount of data to be output and
the LENGTH option in the configuration file HEXFILE directive.

The Start Address record is used to specify the program entry point
for the application, as computed by the Paradigm C++ Locator.

| Mark | Length | Offset | Type | CS | IP |Checksum|
" ‘04’ ‘0000 '03' XXX XXX XX

The Paradigm C++ Locator will aways set this record to the program
entry point, enabling Intel extended hex file loaders to automatically set
CS.IP to the firgt instruction of the application.

Paradigm C++ Locate Reference Manual

End of File Record Thisrecord marksthe end of the Intel extended hex file and is aways
the last record output by the Paradigm C++ Locator.

| Mark Length Offset Type Checksum
N ‘00’ ‘0000 ‘01’ 'FF

Intel hex

Thisisthe origina Intel hex file format, dating back to the days of the
8080 microprocessor. Being the original hex file format for Intel
microprocessors having a 64K B address space, the Intel extended hex
file format added the Start Address and Extended Address record
types to expand the address space to the 1IMB used in the 8086/88 and
subsequent 16-bit microprocessors.

Intel hex file is often used with 16-bit data paths since Intel extended
hex can't be represented in a split format because of the Extended
Address records. Still, Intel hex has its limitations since it can never
support more than 64K B of data per file.

Tektronix hex

Tektronix hex, also referred to as Tekhex, is dso afile format
designed to represent of top 64K B of binary data using the standard
ASCII character set. The hexadecimal representation of each binary
byte is encoded in a pair of ASCII charactersin the range '0' - '9' and
'‘A'to 'F.

Each Tekhex record begins with a dlash (/') character as the record
mark. The record mark field is then followed by the load address and
arecord length fields which specify the offset and count of the data
that follow.

Both the header and data fields have a checksum field that contains
sum, modulo 256, of the data in the preceding records.

Data Record Each Datarecord defines part of the memory address space of the
application. The absolute address of a Data record is determined by
the Offset field.

Appendix F, Hex file formats 133

Mark Offset Length Chk1 Data Chk2
i XXX XX XX XXX XX

The Length field is determined by the amount of data to be output and
the LENGTH option in the configuration file HEXFILE directive.

134 Paradigm C++ Locate Reference Manual

#

??CPUINIT 61
?2LOCATE 20, 61, 75
??STACKINIT 61
80186/188
INITCODE support
80186CC
INITCODE support
80186ED
INITCODE support
80186EM/188EM
INITCODE support
80186ER/188ER
INITCODE support
80186ES/188ES
INITCODE support
80386EX
INITCODE support
80C186/188
INITCODE support
80C186EA/188EA
INITCODE support
80C186EB/188EB
INITCODE support
80C186EC/188EC
INITCODE support

Index

121

124

123

123

123

123

125

122

122

122

122

80C186-family support 47

80C186XL/188XL

INITCODE support 122

A

ABSfile extension 85
AXE file extension 85
ABSFILE

AXES86 option 41

configuration file directive 41
FILENAME option 41

FORMAT option 41

NONE option 41

OMF86 option 41
absolute files

AXES86 41, 84

AXESG6 fileformat 41

filenaming 41, 84
none 41, 84
OMF86 41, 84
absolute segments 27
-Ad 84
ADDRESS

CHECKSUM directive 43
Advantech EVA processor ports 128

aliases
segment 25

135

ALL
DEBUG directive 49
DISPLAY directive 53
WARNINGS directive 70
-An 84
-Aomf 84
Apdl10
Apd20
Apd30
Apd31
Apd40
Apd50
Apd60
AXE86
ABSFILE directive 41

B

-b 74
BIGTYPES

DEBUG directive 50
BINARY

HEXFILE directive 55
BOOT386

INITCODE directive 60
bootstrap vector 61

C

-c 79
.CFG file extension 85
??CPUINIT 61
CHECKSUM
configuration file directive 43
checksums
CRC-16 88
CRC-32 90
ROMBIOS 87
CHECKSUMS
LISTFILE directive 63

RERRRRRR

136

checksums, in ligting file 63
CLASS

configuration file directive 45
CLASSES

DEBUG directive 50
CLASSTEMPLATES

DEBUG directive 51
COLUMNS

LISTFILE directive 64
command line options

priority 72

summary 72
comments, configuration file 37
COMPRESS

configuration file directive 46
compressing data 93
compressing initialized data 46
COMPRESSION

DISPLAY directive 53
compression algorithm 94
compression requirements 94
configuration file 16

comments 37

diagnostics 38

file naming 79

format 31

line continuation 33

preprocessor 34

priority 33
configuration file directives

ABSFILE 41

CHECKSUM 43

CLASS 45

COMPRESS 46

CPUTYPE 47

DEBUG 49

DISPLAY 53

DUPLICATE 54

HEXFILE 55

Paradigm C++ Locate Reference Manual

INTICODE 60

LISTFILE 63

MAP 66

ORDER 67

OUTPUT 68

SEGMENT 69

WARNINGS 70
CPUTY PE

configuration file directive 47, 121
CRC16

CHECKSUM directive 43
CRC-16 checksum 88
CRC32

CHECKSUM directive 44
CRC-32 checksum 90
CRCs, in ligting files 63

D

#define directive 34

-D 74
command line option 35

-do 75

-dl 75

-d2 75

-d3 76

-d4 76

DEBUG
ALL option 49
BIGTYPES option 50
CLASSES option 50
CLASSTEMPLATES option 51
configuration file directive 49
DESTRUCTORS option 50
ENUMS option 50
EXTENSIONS option 50
IC86 option 49
LINES option 49
MEMBERFUNCTION option 50

Index

NOBIGTYPES option 50
NOCLASSES option 50
NOCLASSTEMPLATES option 51
NODESTRUCTORS option 50
NOENUMS option 50
NOEXTENSIONS option 50
NOIC86 option 49
NOLINES option 49
NOMEMBERFUNCTION option 50
NONE option 50
NOOPERATORS option 50
NOPARAMETERS option 51
NOPUBLICS option 49
NOSPACES option 51
NOSPECIALS option 51
NOSYMBOLS option 49
NOTY PES option 49
OPERATORS option 50
PARAMETERS option 51
PUBLICS option 49
SPACES option 51
SPECIALS option 51
SYMBOLS option 49
TYPES option 49
debug control 49
line numbers 78
local symbols 79
public symbols 78
types 79
debug control, OMF86 77
defined operator 36
DEMO project 12
DESTRUCTORS
DEBUG directive 50
diagnostics
al 53
compression 53
errors 107
file names 53, 75

137

log file 76 -Ee 76

module names 53, 75, 76 -En 76
none 53, 75 ENTRYPOINT
warnings 97 HEXFILE directive 57
directives ENUMS
ABSFILE 41 DEBUG directive 50
CHECKSUM 43 EOFRECORD
CLASS 45 HEXFILE directive 57
COMPRESS 46 EPROM
CPUTYPE 47 binary format 55, 80
DEBUG 49 file naming 57, 81
DISPLAY 53 fills 56, 80
DUPLICATE 54 hex record length 81
HEXFILE 55 Intel extended hex format 55, 80
INTICODE 60 Intel hex format 55, 80
LISTFILE 63 length 56
MAP 66 offsets 55, 81
ORDER 67 sizing 56, 80
OUTPUT 68 splitting 56, 81
SEGMENT 69 Tektronix hex format 55, 81
WARNINGS 70 error messages 107
DISPLAY exit codes 76, 119
ALL option 53 EXITCODE
COMPRESSION option 53 WARNINGS directive 70
configuration file directive 53 EXTENSIONS
FILES option 53 DEBUG directive 50
MODULES option 53 extensions, file 84
NONE option 53
DUPLICATE F
cqnfiguration file directive 54 file extensions 84
duplicating classes 29 ABS 85
E AXE 85
.CFG 85
#eif directive 35 .LOC 85
#else directive 35 .MAP 85
#endif directive 35 AXESG6 file 85
#error directive 37 configuration file 85
.EXE files 24 ligting files 85

138 Paradigm C++ Locate Reference Manual

map file 85

OMF8E6 files 85
FILENAME

ABSFILE directive 41

HEXFILE directive 57

LISTFILE directive 64
filenames

in configuration file directives 40
files

.EXE 24

MAP 24

.ROM 24

AXE.EXE 129

LOCATE.OPT 32, 33,72, 84
FILES

DISPLAY directive 53
FILL

CHECKSUM directive 43

HEXFILE directive 56
FORMAT

ABSFILE directive 41

G
groups 28

H

-Hb 80

-Hd 80

-He 80

hex file formats
Intel extended hex 131
Intel hex 133
Tektronix hex 133

HEXFILE
BINARY option 55
configuration file directive 55
ENTRYPOINT option 57
EOFRECORD 57

Index

FILENAME option 57
FILL option 56
INTEL386 option 55
INTEL8O option 55
INTEL86 option 55
LENGTH option 56
NOENTRYPOINT option 57
NOEOFRECORD 57
OFFSET option 55
SIZE option 56
SPLIT option 56
TEKHEX option 55
TRUNCATE option 57

-Hf 80

-Hi 80

-HI 81

-Hn 81

-Ho 81

-Hs 81

-Ht 81

#if directive 35
#ifdef directive 36
#ifndef directive 36
#include directive 35
1C86
DEBUG directive 49
IMS16B
INITCODE support 128
IMS16C
INITCODE support 128
INBYTE
INITCODE directive 61
peripheral register initialization 61
INDWORD
INITCODE directive 61
peripheral register initialization 61

139

Infinior processor ports 128
INITCODE

RDC R2000 registers 124
RDC R2010 registers 124

80186CC registers 124

80186ED registers 123

80186EM/188EM registers 123

80186ER/188ER registers 123

80186ES/188ES registers 123

80386EX registers 125

80C186/188 registers 122

80C186EA/188EA registers 122

80C186EB/188EB registers 122

80C186EC/188EC registers 122

80C186XL/188XL registers 122

Advantech EVA-X1610C registers 128

Advantech EVA-X1630C registers 128

ARC International VT80186 registers 123

ARC International VT80186EM registers
123

ARC International VT80186ES registers
123

ARC International VT8086 registers 123

BOOT386 option 60

INBYTE option 61

INDWORD option 61

Infinior IMS16B registers 128

Infinior IMS16C registers 128

INITCODE NOTHING option 62

INWORD option 61

NORESET option 61

NOSTACK option 61

NOTHING option 61

OUTBYTE option 61

OUTDWORD option 61

OUTWORD option 61

RDC R1100 registers 124

RDC R1120 registers 124

RDC R1122 registers 124

RDC R1610 registers 124

RDC R1620 registers 124

140

RDC R2020 registers 124
RDC R8800 registers 124
RDC R8810 registers 124
RDC R8820 registers 124
RDC R8822 registers 124
RDC R8830 registers 124
READBYTE option 62
READDWORD option 62
READWORD option 62
RESET option 61

STACK option 61
V25/V35 registers 127
V25+/V/ 35+ registers 127
VA40/V50 registers 126
V40H/V50H registers 126
V53 registers 127
V55SC/V55PI registers 127
WRITEBYTE option 62
WRITEDWORD option 62
WRITEWORD option 62

INITCODE directive 121
INITCODE NOTHING

INITCODE directive 62

INITCODE support

80186/188 registers 121
Turbol86 registers 127

initidization

boot386 option 60
nothing option 61
peripheral registers 61
reset vector 61, 74
stack 61, 75

Intel iC86 compatibility 49
INTEL 386

HEXFILE directive 55

INTEL8O

HEXFILE directive 55

Paradigm C++ Locate Reference Manual

INTEL86

HEXFILE directive 55
INTICODE

configuration file directive 60
introduction 5
INWORD

INITCODE directive 61

peripheral register initialization 61

L

.LOC file extension 85
?7?LOCATE 20, 61, 75
-Lc 82
-Ld 82
LENGTH
HEXFILE directive 56
line numbers, in listing file 64
LINES
DEBUG directive 49
LISTFILE directive 64
linker map 24
LISTFILE
CHECKSUMS option 63
COLUMNS option 64
configuration file directive 63
FILENAME option 64
LINES option 64
PUBLICS option 64
REGIONS option 63
SEGMENTS option 63
SYMBOLS option 64
WIDTH option 64
listing files 82
checksums 63, 82
file names 64, 83
line numbers 64, 82
local symbols 64, 83
public columns 82

Index

public symbols 64
public width 83
publics 83
regions 63, 83
segments 63, 83
-LI 82
-Ln 83
load module 24
local symbals, in ligting file 64
LOCATE.OPT 33, 72
log file
enable 76
file naming 76
-Lp 83
-Lr 83
-Ls 83
-Lw 83
-Lx 83

M

#imessage directive 37
.MAP file extension 85
.MAPfiles 24
macros
command line definition 74
defining 34
MAP
configuration file directive 66
MEMBERFUNCTION
DEBUG directive 50
MODULES
DISPLAY directive 53

N

NOBIGTYPES
DEBUG directive 50
NOCLASSES
DEBUG directive 50

141

NOCLASSTEMPLATES

DEBUG directive 51
NODESTRUCTORS

DEBUG directive 50
NOENTRYPOINT

HEXFILE directive 57
NOENUMS

DEBUG directive 50
NOEOFRECORD

HEXFILE directive 57
NOEXTENSIONS

DEBUG directive 50
NOIC86

DEBUG directive 49
NOLINES

DEBUG directive 49
NOMEMBERFUNCTION

DEBUG directive 50
NONE

ABSFILE directive 41

DEBUG directive 50

DISPLAY directive 53

WARNINGS directive 70
NOOPERATORS

DEBUG directive 50
NOPARAMETERS

DEBUG directive 51
NOPUBLICS

DEBUG directive 49
NORESET

INITCODE directive 61
NOSPACES

DEBUG directive 51
NOSPECIALS

DEBUG directive 51
NOSTACK

INITCODE directive 61
NOSYMBOLS

DEBUG directive 49

142

NOTHING

INITCODE directive 61
NOTYPES

DEBUG directive 49

O

-Od 77
-Oe 77
OFFSET
HEXFILE directive 55
-Oi 78
-0l 78
OMF86
ABSFILE directive 41
-Op 78
OPERATORS
DEBUG directive 50
options
command line 71
LOCATE.OPT 72
priority 72
summary 72
ORDER
configuration file directive 67
-Ot 79
OUTBYTE
INITCODE directive 61
peripheral register initialization 61
OUTDWORD
INITCODE directive 61
peripheral register initialization 61
OUTPUT
configuration file directive 68
OUTWORD
INITCODE directive 61
peripheral register initialization 61
-Ox 79

Paradigm C++ Locate Reference Manual

P

PARAMETERS

DEBUG directive 51
periphera register initidization 61
predefined macros 37
preprocessor

configuration file 34
projects 12

files 12

TargetExpert dialog box 14

window 12
public symboals, in listing file 64
PUBLICS

DEBUG directive 49

LISTFILE directive 64

Q

-q 75
quiet mode 75

R

.ROM files 24
R1100

INITCODE support 124
R1120

INITCODE support 124
R1122

INITCODE support 124
R1610

INITCODE support 124
R1620

INITCODE support 124
R2000

INITCODE support 124
R2010

INITCODE support 124
R2020

Index

INITCODE support 124
R8800

INITCODE support 124
R8810

INITCODE support 124
R8820

INITCODE support 124
R8822

INITCODE support 124
R8830

INITCODE support 124
RDC processor ports 124
READBYTE

INITCODE directive 62

peripheral register initialization 62
READDWORD

INITCODE directive 62

peripheral register initialization 62
READWORD

INITCODE directive 62

peripheral register initialization 62
REGIONS

LISTFILE directive 63
regions, in listing file 63
relocatable load module 24
RESET

INITCODE directive 61
reset vector initialization 61
ROMBIOS

CHECKSUM directive 43
ROMBIOS checksum 87

S

-s 75
??STACKINIT 61
segment
1MB boundary 27
absolute 27

143

aliases 25

aignment 26

fixups 23

ordering 26

overlap 27
SEGMENT

configuration file directive 69
SEGMENTS

LISTFILE directive 63
segments, in listing file 63
SIZE

HEXFILE directive 56
Software Problem Reports 9
SPACES

DEBUG directive 51
SPECIALS

DEBUG directive 51
SPLIT

HEXFILE directive 56
STACK

INITCODE directive 61
stack initialization 61
suggestions 9
SYMBOLS

DEBUG directive 49

LISTFILE directive 64

T

TargetExpat 14
technical support 8

E-mail 8

FAX 9

FTP 9

internet 9
TEKHEX

HEXFILE directive 55
TRUNCATE

HEXFILE directive 57

144

truncating binary files 57
Turbo186

INITCODE support 127
tutorial 12
TYPES

DEBUG directive 49

U

#undef directive 34
utilities
AXE file contents 129

Vv

V25/V35

INITCODE support 127
V25+/V 35+

INITCODE support 127
V40/V50

INITCODE support 126
V40H/V50H

INITCODE support 126
V53

INITCODE support 127
VV55SC/V55PI

INITCODE support 127
V-Series support 47
VT80186

INITCODE support 123
VT80186EM

INITCODE support 123
VT80186ES

INITCODE support 123
VT8086

INITCODE support 123

W
-w- 77

Paradigm C++ Locate Reference Manual

-W 76
-w+ 77
warning diagnostics 97
warnings
disable 70
dissbleal 77
disable warning 77
enable 70
enableal 77
enable warning 77
exit code control 76
WARNINGS
configuration file directive 70
WARNINGS directive
ALL option 70
EXITCODE option 70
NONE option 70
WIDTH
LISTFILE directive 64
WRITEBYTE

Index

INITCODE directive 62
peripheral register initialization 62

WRITEDWORD

INITCODE directive 62
peripheral register initialization 62

WRITEWORD

X

INITCODE directive 62
peripheral register initialization 62

X1610C

INITCODE support 128

X1630C

INITCODE support 128

-Xa 85
-Xc 85
-XI 85
-Xm 85
-Xo 85

145

146 Paradigm C++ Locate Reference Manual

	Table of Contents
	Introduction
	Chapter 1, Using the Locator
	Chapter 2, Relocation primer
	Chapter 3, Using configuration files
	Chapter 4, Configuration file directives
	Chapter 5, Command line options
	Chapter 6, Checksums and CRCs
	Chapter 7, Using compression
	Appendix A, Warning diagnostics
	Appendix B, Error diagnostics
	Appendix C, Exit codes
	Appendix D, INITCODE port definitions
	Appendix E, AXE utility
	Appendix F, Hex file formats
	Index

