
Programmer's Guide CoBox Rijndael Encryption Advanced Encryption Standard (AES)  1

Rijndael Encryption
Advanced Encryption Standard (AES)

Library Functions

aes_block_decrypt_CBC
Description: Decrypt one or more blocks of cipher data according to the CBC

encryption mode.

Location: crypt.lib

Prototype: rijndael.h

Syntax: void aes_block_decrypt_CBC (cr_keyStruct *keyStr, cr_block
initVec, cr_block *cipherText, int nBlocks, cr_block
*plainText)

Parameter: keyStr = pointer to a static cr_keyStruct filled by aes_key_init
initVec = pointer to one cr_block containing the initial vector
cipherText = pointer to one or more cr_block’s with data to be
decrypted
nBlocks = number of cr_block’s to be encrypted
plainText = pointer to one or more cr_block’s that will receive
the decrypted data

Return value: None

aes_block_encrypt_CBC
Description: Encrypt one or more blocks of plain data according to the CBC

encryption mode

Location: crypt.lib

Prototype: rijndael.h

Syntax: void aes_block_encrypt_CBC(cr_keyStruct *keyStr, cr_block
initVec, cr_block *plainText, int nBlocks, cr_block
*cipherText)

Parameter: keyStr = pointer to a static cr_keyStruct filled by aes_key_init
initVec = pointer to one cr_block containing the initial vector
plainText = pointer to one or more cr_block’s with data to be
encrypted
nBlocks = number of cr_block’s to be encrypted
cipherText = pointer to one or more cr_block’s that will receive
the encrypted data.

Return value: None

2  Rijndael Encryption Advanced Encryption Standard (AES) Programmer's Guide CoBox

aes_byte_encrypt
Description: Encrypt or decrypt one or more bytes of data according to the

CFB mode.

Location: crypt.lib

Prototype: rijndael.h

Syntax: void aes_byte_encrypt(cr_keyStruct *keyStr, cr_block
*initVec, cr_block *input, int nBytes, cr_block *output, BYTE
*left, enum cr_mode mode)

Parameter: keyStr = pointer to a static cr_keyStruct filled by aes_key_init
initVec = pointer to one cr_block containing the initial vector
input = pointer to one or more bytes of data to be encrypted or
decrypted
nBytes = number of bytes to be encrypted or decrypted
output = pointer to one or more cr_block’s that will receive the
calculated data.
left = pointer to a global variable holding the amount of bytes
left over from last time a cipher block was not completely used
for encryption. The first ever call to this function *left needs to
be 0.
mode = encryption (1) or decryption (2) selection.

Return value: None

aes_cipher_init
Description: Initializes the data tables used by the encryption module. Called

only once after boot.

Location: crypt.lib

Prototype: rijndael.h

Syntax: void aes_cipher_init ()

Parameter: None

Return value: None

aes_key_init
Description: Calculate roundkeys from encryption key. Called once for every

stream with a separate encryption key.

Location: crypt.lib

Prototype: rijndael.h

Syntax: void aes_key_init(cr_keyStruct *keyStr, BYTE *key, int
keyLen)

Parameter: keyStr = pointer to a static cr_keyStruct. Will be filled with
roundkeys and other encryption info.
key = pointer to a byte array containing the encryption key.
keyLen = length of encryption key in bits. Only 128, 192 and
256 are allowed.

Return value: None

Programmer's Guide CoBox Rijndael Encryption Advanced Encryption Standard (AES)  3

Macros

CR_ BLOCK_DECRYPT_CBC
Description: Decrypt one or more blocks of cipher data according to the CBC

encryption mode.

Location: crypt.lib

Prototype: security.h

Syntax: void CR_BLOCK_DECRYPT_CBC(cr_keyStruct *keyStr,
cr_block initVec, cr_block *cipherText, int nBlocks, cr_block
*plainText)

Parameter: keyStr = pointer to a static cr_keyStruct filled by
CR_KEY_PREP
initVec = pointer to one cr_block containing the initial vector
cipherText = pointer to one or more cr_block’s with data to be
decrypted
nBlocks = number of cr_block’s to be encrypted
plainText = pointer to one or more cr_block’s that will receive
the decrypted data

Return value: None

CR_BLOCK_ENCRYPT_CBC
Description: Encrypt one or more blocks of plain data according to the CBC

encryption mode

Location: crypt.lib

Prototype: security.h

Syntax: void CR_BLOCK_ENCRYPT_CBC(cr_keyStruct *keyStr,
cr_block initVec, cr_block *plainText, int nBlocks, cr_block
*cipherText)

Parameter: keyStr = pointer to a static cr_keyStruct filled by
CR_KEY_PREP
initVec = pointer to one cr_block containing the initial vector
plainText = pointer to one or more cr_block’s with data to be
encrypted
nBlocks = number of cr_block’s to be encrypted
cipherText = pointer to one or more cr_block’s that will receive
the encrypted data.

Return value: None

4  Rijndael Encryption Advanced Encryption Standard (AES) Programmer's Guide CoBox

CR_ BYTE_DECRYPT_CFB
Description: Decrypt one or more bytes of plain data according to the CFB

encryption mode.

Location: crypt.lib

Prototype: security.h

Syntax: void CR_BYTE_DECRYPT_CFB(cr_keyStruct *keyStr,
cr_block *initVec, cr_block *cipherText, int nBytes, cr_block
*plainText, BYTE *left)

Parameter: keyStr = pointer to a static cr_keyStruct filled by
CR_KEY_PREP
initVec = pointer to one cr_block containing the initial vector
cipherText = pointer to one or more bytes of data to be
decrypted
nBytes = number of bytes to be encrypted
plainText = pointer to one or more cr_block’s that will receive
the decrypted data.
left = pointer to a global variable holding the amount of bytes
left over from last time a cipher block was not completely used
for encryption. The first ever call to this function *left needs to
be 0.

Return value: None

CR_ BYTE_ENCRYPT_CFB
Description: Encrypt one or more bytes of plain data according to the CFB

encryption mode.

Location: crypt.lib

Prototype: security.h

Syntax: void CR_BYTE_ENCRYPT_CFB(cr_keyStruct *keyStr,
cr_block *initVec, cr_block *plainText, int nBytes, cr_block
*cipherText, BYTE *left)

Parameter: keyStr = pointer to a static cr_keyStruct filled by
CR_KEY_PREP
initVec = pointer to one cr_block containing the initial vector
plainText = pointer to one or more bytes of data to be encrypted
nBytes = number of bytes to be encrypted
cipherText = pointer to one or more cr_block’s that will receive
the encrypted data.
left = pointer to a global variable holding the amount of bytes
left over from last time a cipher block was not completely used
for encryption. The first ever call to this function *left needs to
be 0.

Return value: None

Programmer's Guide CoBox Rijndael Encryption Advanced Encryption Standard (AES)  5

CR_CIPHER_INIT
Description: Initializes the data tables used by the encryption module. Called

only once after boot.

Location: crypt.lib

Prototype: security.h

Syntax: void CR_CIPHER_INIT ()

Parameter: None

Return value: None

CR_KEY_INIT
Description: Calculate roundkeys from encryption key. Called once for every

stream with a separate encryption key.

Location: crypt.lib

Prototype: security.h

Syntax: void CR_KEY_INIT(cr_keyStruct *keyStr, BYTE *key, int
keyLen)

Parameter: keyStr = pointer to a static cr_keyStruct. Will be filled with
roundkeys and other encryption info.
key = pointer to a byte array containing the encryption key.
keyLen = length of encryption key in bits. Only 128, 192 and
256 are allowed.

Return value: None

	Rijndael Encryption Advanced Encryption Standard (AES)
	Library Functions
	aes_block_decrypt_CBC
	aes_block_encrypt_CBC
	aes_byte_encrypt
	aes_cipher_init
	aes_key_init

	Macros
	CR_ BLOCK_DECRYPT_CBC
	CR_BLOCK_ENCRYPT_CBC
	CR_ BYTE_DECRYPT_CFB
	CR_ BYTE_ENCRYPT_CFB
	CR_CIPHER_INIT
	CR_KEY_INIT

