

Paradigm C++ Professional
User's Guide

Paradigm Systems

The authors of this software make no expressed or implied warranty of any kind with regard to this software
and in no event will be liable for incidental or consequential damages arising from the use of this product. The
software described in this document is furnished under a license and may only be used or copied in accordance
with the terms of the licensing agreement.

The information in this document is subject to change without notice.

Copyright © 2006 Paradigm Systems. All rights reserved.

Paradigm C++ Professional™ is a trademark of Paradigm Systems. Other brand and product names are
trademarks or registered trademarks of their respective holders.

December 8, 2005
Manual Version 6

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of Paradigm Systems.

Paradigm Systems
3301 Country Club Road

Suite 2214
Endwell, NY 13760

USA

(607)748-5966
(607)748-5968 (FAX)

Sales information: sales@devtools.com
Technical support: support@devtools.com

Web: http://www.devtools.com

For prompt attention to your technical questions, contact our technical support team via the Internet at
support@devtools.com. Please note that our 90 days of free technical support is only available to registered
users of Paradigm C++. If you haven't yet done so, take this time to register your products under the Paradigm
C++ Help menu or online at http://www.devtools.com.

You can call Paradigm at (607) 748-5966 to purchase a Paradigm SurvivalPak support agreement for an
additional 12 months of technical support.

Contents 3

Table of Contents

Chapter 1 Getting started
Starting Paradigm C++...11

Licensing and Registration11
Quick Start Guide ...11

Using Help in Paradigm C++...................................11
Online help organization.......................................11
Online manuals organization................................12
Help on Paradigm C++ ...12

Getting context-sensitive help...........................12
Accessing and using contents screens13
Using the index..13
Searching for keywords.....................................13
Help SpeedMenus..13
Contacting Paradigm...14

Chapter 2 Managing projects
What is project management?15

Project management tools.....................................15
Using the Project Manager.......................................16

Project Manager reference....................................17
Creating a project..18

Setting options with the New Target dialog box18
Specifying the source node types......................19
Opening existing projects20

Adding nodes..20
Deleting source nodes20

Adding files without relative path information.....20
Editing source node attributes21
Adding target nodes to your project21

Deleting target nodes...22
Editing target attributes using TargetExpert.........22
Moving nodes within a project22
Copying nodes in a project22
Converting project files into makefiles23
Customizing the Project window..........................23

Grouping sets of files with Source Pools24
Creating a Source Pool ...24

Translators, viewers, and tools.................................25
Adding translators and viewers26

Chapter 3 Project options
Setting project options..29

Using Style Sheets ..29
Predefined Style Sheets30
The default project options................................30
Managing Style Sheets30
Attaching Style Sheets to nodes........................31
Sharing style sheets between projects31
Project Description Language files32

Setting local overrides32
View project options ...33

Compiling projects ...34
Compiling part of a project................................35

Fixing compile-time errors.......................................35
Viewing errors ..36
Fixing errors..36

Project options reference ..36
16-bit compiler options...36

Calling convention..37
C option..37
Pascal...37
Register ..37

Memory model..37
Assume SS equals DS..38
Automatic far data ...38
Page alignment for far segments........................38
Borland C++-compatible far data39
Make all constant data far..................................39
Pack far segments ..39
Far data threshold ..39
Far virtual tables ..39
Fast huge pointers ..40
Model...40
Put constant strings in code segments41

Processor...41
16-bit instruction set ..41
Data alignment...42

Segment names code...43
Code...43

Segment name data ...43
Initialized data ...44
Uninitialized data...44

Segment names far data ..45
Far initialized data ...45
Far uninitialized data ...45
Far virtual tables ..46

Entry/Exit code..46
32-bit compiler options...46

Paradigm optimizing compiler..............................46
32-bit compiler options ...46

Calling conventions ...47
Processor ...48

Build attributes ...48
C++ options ..49

C++ compatibility ...49
'deep' virtual bases ...49
Calling convention mangling compatibility49

Paradigm C++ User's Guide4

Disable constructor displacements49
Do not treat 'char' as distinct type......................49
Don't restrict scope 'for' loop expression

variables ...50
Pass class values via reference to temporary.....50
Push 'this' first for Pascal member functions.....50
Treat 'far' classes as 'huge'51
Virtual base pointers..51
Vtable pointer follows data members................51

Exception handling/RTTI.....................................51
Enable exceptions..52
Enable run-time type information52

General..53
Zero-length empty base classes.........................53

Member pointers...53
Honor precision of member pointers.................53
Member pointer representation.........................53

Templates..54
Templates instance generation54

Virtual tables...55
Virtual tables linkage...55

Compiler options..56
Defines..56

Defining macros from the IDE..........................56
Defining macros on the command line..............56

Code generation..56
Allocate enums as ints56
Duplicate strings merged...................................57
fastthis ...57
Register variables..58
Unsigned characters ..58

Floating point..58
Correct Pentium FDIV flaw..............................58
No floating point ...59
Fast floating point..59

Compiler output..59
Autodependency information............................59
Generate COMDEFs ...60
Generate underscores ..60

Source ...60
Identifier length...61
Language compliance..61
Nested comments ..62

Debugging...62
Browser reference information in OBJs............62
Generate coverage information in OBJs62
Line numbers...62
Out-of-line inline functions63
Test stack overflow ...63

Precompiler headers ...64
Cache precompiled header64
Precompiled header name64
Precompiled headers ...64

Stop precompiling after header file65
Directories options ...65

Source directories ...65
Include ...65
Library ...65
Source ..65
Specifying multiple directories66

File search algorithms ...66
#include-file search algorithms..........................66
Library file search algorithms66

Output directories ...67
Intermediate ...67
Final ...67
Guidelines for entering directory names............67

$INHERIT and $ENV()68
$INHERIT ...68
$ENV()..68

Librarian options...68
Case-sensitive library..68
Create extended dictionary....................................68
Generate list file ..69
Library page size ...69
Purge/debug comment records..............................69

Lint options...69
Linker options...70

16-bit linker...70
Enable 32-bit processing....................................70
Initialize segments ...70

32-bit linker...70
Allow import by ordinal70
Committed stack size (in hexadecimal).............70
Committed heap size (in hexadecimal)71
File alignment (in hexadecimal)71
Image base address (in hexadecimal)71
Image is based ...72
Maximum linker errors......................................72
Object alignment (in hexadecimal)....................72
Reserved heap size (in hexadecimal72
Reserved stack size (in hexadecimal)72
Verbose..73

General ..73
Case-sensitive link...73
Default libraries ...73
Include debug information.................................73
Subsystem version (major.minor)......................74

Map file ...74
Include source line numbers74
Map file..74

Off...74
Segments ...74
Publics...75

Print mangled names in map file75
Warnings ...75

Contents 5

32-bit warnings..75
No stack" warning...76
Warn duplicate symbol in .LIB76

Make options..76
Autodependencies...76

None ..76
Use...76
Cache ...76
Cache and display..76

Break make on..77
Warnings ...77
Errors...77
Fatal errors ..77

New node path..77
Message options ...77

ANSI violations ..77
Display warnings ..78

All..78
Selected ...78
None ..78

General..78
User-defined warnings78

Inefficient C++ coding..79
Inefficient coding..79
Obsolete C++..79
Portability ...80
Potential C++ errors ...80
Potential errors ...80
Stop after ... errors ..81
Stop after ... warnings ...81

Optimization options..81
General settings ..81
16- and 32-bit..81

Common subexpression82
Induction variables..82
Inline intrinsic functions....................................83

16-bit only...83
Assume no pointer aliasing83
Copy propagation..84
Dead code elimination.......................................84
Global register allocation..................................84
Invariant code motion..84
Jump optimization...85
Loop optimization ...85
Suppress redundant loads..................................85

32-bit...86
General optimization settings86

Disable all optimizations86
Use selected optimizations87
Optimize for size ...87
Optimize for speed ..87

Command-line only options.....................................88
Object search paths ...88

16-bit command-line options88
Compile to .ASM, then assemble88
Compile to .OBJ, no link...................................89
Specify assembler ..89
Specify executable file name89
Pass option to linker...89
Create a MAP file ..89
Compiler .OBJ to filename89
C++ compile ..89
Compile to assembler ..89
Specify assembler option...................................90
Undefine symbol..90

Linker supported command-line options90
Generate 8087 instructions90
Compile to real-mode ..90
Enable backward compatibility options.............90
Link 20-bit address space..................................90
Link 24-bit address space..................................90
Enable 24-bit extended addressing90

32-bit command-line switches91
Generate a multi-threaded target........................91
Link using 32-bit Windows API........................91
Link 32-bit console application.........................91
Link 32-bit .DLL file ...91
Link 32-bit relocatable load module..................91

Compiler command-line options91
Command-line options by function..........................97
Command-line options ...103

Chapter 4 Browsing through your code
Using the browser...105

Starting the browser ..105
Browser views ...105

Browsing objects (class overview).........................106
Browsing global symbols....................................106

Search ..106
Browser SpeedMenu..106

Browsing symbols in your code..........................106
Symbol declaration window107
Browsing references ..107
Class inspection window107

Browser filters and letter symbols..........................107
To view all instances of a type of symbol...........108
To hide all instances of a type of symbol............108
To change several filter settings at once108

Customizing the browser..108

Chapter 5 Using the integrated debugger
Types of bugs..109

Run-time errors ...109
Logic errors...109

Planning a debugging strategy................................110
Starting a debugging session..................................110

Compiling with debug information.....................110

Paradigm C++ User's Guide6

Running your program in the IDE......................111
Specifying program arguments111

Controlling program execution..............................111
Running to the cursor location............................112
The execution point ..112

Finding the execution point113
Stepping through code ..113

Stepping into..113
Stepping over...114
Debugging member functions115

Running to a breakpoint......................................115
Pausing a program..115
Terminating the program....................................115

Using breakpoints...116
Debugging with breakpoints116
Setting breakpoints ...116

Setting an unconditional breakpoint................116
Setting a conditional breakpoint......................116
Setting other breakpoints117
Setting breakpoints after program execution

begins ...117
Creating conditional breakpoints117
Removing breakpoints ..119

From an Edit window......................................119
From an Edit window or the Disassembly pane of

the CPU window ..119
From the Breakpoints window119

Disabling and enabling breakpoints....................120
Viewing and editing code at a breakpoint120

Viewing code at a breakpoint120
Editing code at a breakpoint120

Resetting invalid breakpoints120
Using breakpoint groups.....................................121

Creating a breakpoint group121
Disabling or enabling a breakpoint group121

Using breakpoint option sets121
Creating a breakpoint option set......................121
Associating a breakpoint with an option set....121

Changing breakpoint options122
Changing the color of breakpoint lines...............122
Using the Breakpoints window...........................122

About the Breakpoints window.......................123
Integrated debugger features...............................123

Add breakpoint..123
Other..123
Source breakpoint..124
Address breakpoint..124
C++ exception breakpoint124
Breakpoint Condition/Action Options.............124

Names...124
Conditions...125
Expr. True...125
Pass Count ..125

Actions ..126
Break...126
Stop Log..126
Start Log..126
Log Expr ...126
Eval Expr ..126
Log Message ...127
Disabe Group ..127
Enable Group ..127
Add Conditions/Actions..............................127
Edit Breakpoint dialog box.........................127

Examining program data values127
Modifying program data values128
Understanding watch expressions128

Using Watches window128
Adding a watch...129

Add Watch dialog box.....................................129
Formatting watch expressions129

Changing watch properties..................................130
Edit Watch dialog box.....................................131

Disabling and enabling watches..........................131
Deleting a watch..131
Dynamic updates...132
Inspecting data elements132
Evaluating and modifying expressions133

Evaluating expressions133
Modifying the values of variables134

CPU window ..135
Resizing the CPU window panes........................136
The Disassembly pane...136

The Disassembly pane SpeedMenu.................136
Run to Current...137
Set PC to current ...137
Toggle Breakpoint.......................................137
Go to Address ...137
Go to current PC ...137
Follow jump into Disassembly pane...........138
Follow address into Dump pane138
Show previous address138
Go to source..138

Memory Dump pane ...138
The Dump pane SpeedMenu............................138

Display as..139
Follow address into Disassembly pane139
Follow address into Stack pane...................139

Machine Stack pane ..139
The Stack pane SpeedMenu.............................140

Go to top frame ...140
Go to top of stack..140

Registers pane ...140
The Registers pane SpeedMenu.......................140

Increment register141
Decrement register141

Contents 7

Zero register..141
Change register...141
Show old registers141

Flags pane ...141
The Flags pane SpeedMenu142

Toggle flag..142
Viewing function calls ...142

Navigating to function calls................................143
Emulator .EMU file commands143

Standard EMU file commands............................144
Custom [USER] EMU commands......................145

Chapter 6 Paradigm C++ compiler
Using the command-line compiler.........................147

Command-line compiler syntax..........................147
Default settings..147

Compiler configuration files...............................148
Compiler response files148

Compiler-option precedence rules148
Entering directories for command-line options ..149

Using PLINK and PLINK32..................................149
PLINK and PLINK32 command-line syntax......149
PLINK.CFG file ...150
Linker response files...151
Using PLINK with PCC.EXE.............................152

Module definition file reference153
Module definition file defaults153
CODE statement ...153
DATA statement...154
DESCRIPTION statement..................................154
EXETYPE statement ..154
EXPORTS statement ..155
HEAPSIZE statement ...155
IMPORTS statement...156
LIBRARY statement...157
NAME statement ..157
SECTIONS statement ...157
SEGMENTS statement158
STACKSIZE statement.......................................158
STUB statement..159
SUBSYSTEM statement.....................................159
Example module definition file160

Paradigm C++ tools overview161
Running the command-line tools162

Memory and MAKESWAP.EXE162
The run-time manager and tools162

Chapter 7 Using MAKE
MAKE basics ...163

BUILTINS.MAK..164
Using TOUCH.EXE ...164
MAKE options..165

Setting default MAKE options166
Compatibility with Microsoft's NMAKE........166

Using makefiles..167
Symbolic targets..167

Rules for symbolic targets167
Explicit and implicit rules168

Explicit rule syntax...168
Single targets with multiple rules169

Implicit rule syntax...169
Explicit rules with implicit commands............170

Command syntax...170
Command prefixes...170
Using @ ...170
Using -num and - ...171
Using &..171
Command operators...171
Debugging with temporary files171

Using MAKE macros ...172
Defining MAKE macros172
String substitutions in MAKE macros173
Default MAKE macros173
Modifying default MAKE macros174

Using MAKE directives ...174
.autodepend ...175
!error ...175
Error-checking controls.......................................176
!if and other conditional directives176
!include..177
!message..177
.path.ext...177
.precious ..177
.suffixes...178
!undef ..178
Using macros in directives..................................178
Null macros...178

Chapter 8 PLIB.EXE
PLIB basics...181

PLIB options ...181
Using PLIB response files183
PLIB operation list..183
PLIB examples..184

Chapter 9 Exception handling
C++ exception handling ...187

Exception declarations ..188
Throwing an exception..188
Handling an exception...189

Exception specifications190
Sample output when 'a' is the input..................192
Constructors and destructors............................193
Setting exception handling options..................193
Unhandled exceptions......................................193

C-based structured exceptions194
Using C-based exceptions in C++.......................194
Handling C-based exceptions..............................195

Paradigm C++ User's Guide8

Chapter 10 Using inline assembly
Inline assembly syntax and usage197

Inline assembly references to data and functions198
Inline assembly and register variables198
Inline assmebly, offsets,a and size overrides ..199

Using C structure members199
Using jump instructions and labels.....................200

Compiling with inline assembly.............................200
Using the built-in assembler201

Opcodes ..201
String instructions..202
Jump instructions...203
Assembly directives ..203

Chapter 11 Header files summary
Using precompiled headers....................................207

Setting file names ...207
Precompiled header file overview207
Precompiled header limits208
Precompiled header rules208
Optimizing precompiled headers209
alloc.h...210
assert.h..210
bcd.h...210
checks.h..211
complex.h...211
cstring.h..212
ctype.h..213
date.h..213
dir.h ..213
direct.h..214
dirent.h ...214
dos.h ...215
embedded.h ..215
errno.h ..216
except.h ..216
fcntl.h ...217
file.h ...217
float.h ...218
fstream.h...218
generic.h...218
io.h..219
iomanip.h..219
iostream.h...219
limits.h..220
malloc.h..220
math.h...220
mem.h...222
new.h..222
process.h...222
promice.h..223
rtk32.h ..223
rtkernel.h ..226

setjmp.h...228
share.h...228
signal.h..228
stdarg.h ...229
stddef.h ...229
stdio.h ...229
stdiostr.h ...230
stdlib.h ..230
string.h..231
strstrea.h..232
sys\types.h...232
thread.h...232
time.h..232
timer.h, itimer.h..233
typeinfo.h..234
values.h...234
_defs.h...234
excpt.h...235
_nfile.h..235
_null.h...235

Chapter 12 Math
Floating-point I/O...237
Floating-point options...237

Emulating the 80x87chip237
Using the 80x87 code..238
No floating-point code ..238
Fast floating-point option....................................238
The 87 environment variable238
Registers and the 80x87239
Disabling floating-point exceptions239

Using complex types ..240
Using bcd types ..240

Converting bcd numbers241
Number of decimal digits242

Chapter 13 16-bit memory management
Running out of memory..243
Memory models..243

The 8086 registers...243
General-purpose registers244
Segment registers...245
Special-purpose registers.................................245
The flags register ...245

Memory segmentation...246
Address calculation..247

Pointers..247
Near pointers..248
Far pointers ..248
Huge pointers...248

The five memory models249
Mixed-model programming:Addressing modifiers255

Segment pointers...255
Declaring far objects ...256

Contents 9

Declaring functions to be near or far256
Declaring pointers to be near, far, or huge257

Pointing to a given segment:offset address258
Using library files ...258
Linking mixed modules......................................258

Chapter 14 Using iostreams classes
What is a stream? ...261
The iostream library...261

The streambuf class ..261
The ios class ...262

Stream output ...263
Fundamental types..264
I/O formatting...264
Manipulators ...264
Filling and padding...265

Stream input ...266
I/O of user-defined types..267
Simple file I/O..267
String stream processing..268

Appendix A Paradigm C++ errors and
messages

Message categories...271
Fatal errors ..271
Errors ..272
Warnings ...272
Informational messages.......................................272

Message generators ..272
Compiler errors and warnings.............................272
Run-time errors and warnings.............................273
Linker errors and warnings273
Paradigm C++ debugger messages273
ObjectScripting error messages...........................274

Message formats ...274
Symbols in messages...274

Alphabetical list of messages275
Index...283

Paradigm C++ User's Guide10

Chapter 1, Getting started 11

C h a p t e r

1

Getting started

Starting Paradigm C++

The Paradigm C++ installation program will launch automatically from the Paradigm
C++ CD, when inserted. Follow the instructions given by the installation program. Once
the installation is complete, a new shortcut and program group will be added to the
Windows Start menu. Use the program item to launch Paradigm C++.

Licensing and Registration

Paradigm C++ is purchased with a single-user license agreement. This license entitles use
of the product by one programmer at any given time. Each copy of Paradigm C++ comes
with a licensing device intended to support the licensing agreement. See the enclosed
literature for instructions on maintaining your license.

Registration of your copy of Paradigm C++ is mandatory for you to receive technical
support and to be notified of changes to the software. To register your copy of Paradigm
C++, visit http://www.devtools.com and select the Register button.

Quick Start Guide

To get users up and running quickly with Paradigm C++, the Quick Start Guide is
available to provide a step-by-step tutorial on the use of the integrated development
environment. This hands-on approach to understanding the operation of the IDE is
designed for users who are wondering where to begin.

Using Help in Paradigm C++

Paradigm C++ provides complete online documentation through the Help system. Using
Help is a convenient way to get information about language features, compiler options,
and any tasks you need to perform while developing applications in Paradigm C++. Help
files can be accessed from the Help menu or from the Start menu under the Paradigm
C++ program group.

Online help organization

The following help files cover basics of the Paradigm C++ integrated development
environment.

Help file Description

Paradigm C++ User's Guide Guide to using projects and debugging (PCW.HLP)

Paradigm C++ Programmer's Guide Programming tips and language details (PCPP.HLP)

Error Messages and Warnings Paradigm C++ messages (PCERRMSG.HLP)

Paradigm C++ Tools Command-line tools (PCTOOLS.HLP)

Paradigm Assembler Help Assembler options and operators reference (PASM.HLP)

Or select
SETUP.EXE

from the
CD-ROM drive.

Table 1-1
Help files

http://www.devtools.com/

Paradigm C++ User's Guide12

ObjectScripting Guide Customizing scripts in Paradigm C++ (SCRIPT.HLP)

Paradigm C++ Class Libraries Guide Script class library reference (CLASSLIB.HLP)

Paradigm C++ Finder Help Source code search utility reference (FINDER.HLP)

Version Control Integration Source code control system reference (SCCS.HLP)

Other files may also be available if you have optional components installed in the
Paradigm C++ IDE.

Online manuals organization

A similar library of online help is available in Adobe .PDF format. The following manuals
can be easily accessed in Help | Reference or from the Start menu under the Paradigm
C++ program group.

Online manual Description

Quick Start Guide Tutorial for Paradigm C++ (QKSTART.PDF)

PASM Manual Paradigm Assembler user's guide (PASMUG.PDF)

User's Guide Explanation of Paradigm C++ tools (PCPPUG.HLP)

Object Scripting Guide Script customization features (CSCRIPT.PDF)

Other online manuals may also be available if you have optional components installed in
the Paradigm C++ IDE.

Help on Paradigm C++

In Paradigm C++, you can get Help in the following ways:

� Context-sensitive Help (F1)
� Contents screens
� Index
� Keyword Search (F1 or Ctrl+F1 in the Edit Window)
� SpeedMenus (in the Help window)
� Contacting Paradigm

Getting context-sensitive help
To access context-sensitive Help for items in Paradigm C++:

1. Select the element you want help on (menu, menu command, an item in a dialog
box).

2. Press F1 or Ctrl+F1.

Help buttons are available on many dialog boxes and for most error messages.

Click Help to view information about:

� The entire dialog box
� An error message
� The current group of topics in an Options settings dialog box

Table 1-2
Online manuals

Chapter 1, Getting started 13

Accessing and using contents screens
Each Help Contents offers an entry into a Help system installed with Paradigm C++.
From the Contents, select the category of information that best suits your needs, then
click on it.

� To display the Master Contents screen, choose Contents on the Help menu in
Paradigm C++.

� To access the Help Contents from within a topic in the active Help file, click the
Contents button.

� To access the Help Contents screen of a different Help file installed with Paradigm
C++, right-click and select the name of the Help file you want to view.

� To access the Contents of all available Help files, click the Book Shelf button from
within the topic of a Help file. Shortcuts to help files can be accessed from the Start
menu under the Paradigm C++ program group.

You can expand books that appear on the Contents, or jump directly to a topic. To view
a topic, click on it.

You can print several topics at once by clicking a book on the Contents and then clicking
Print.

Using the index
In Help, click the Index tab to view a list of index entries. Either type the word you are
looking for or scroll through the list.

Searching for keywords
Keyword Search gives you direct access to Help about a term in your program. To get
help on a term:

1. In the Edit window, place the insertion point on the term you want help on.
2. Use one of the following methods:

� Press F1 or Ctrl+F1.
� Choose Keyword Search on the Help menu.
� Choose Go To Help Topic on the Edit Window SpeedMenu.

3. One of these events occurs:
� The topic associated with the term you selected is displayed.
� If more than one topic is available on the term for which you requested Help, the

Topics Found dialog box is displayed listing topics associated with the term.
Double-click the topic you want to view.

� If no Help is available for the term nearest the insertion point, the index is
displayed. You can then select a different searching method to locate a topic
associated with that term. The term for which you requested Help appears
highlighted in the top box. Click the Display button or double-click the term to
view the list of topics associated with the term.

Help SpeedMenus
All the Paradigm C++ Help files have SpeedMenus that you access by right-clicking on
the mouse. These menus provide quick access to commands for copying or printing a
Help topic, or exiting Help.

To return to a
previous topic or

Help file, click
the Back button.

To return to a
previous topic or

Help file, click
the Back button.

Paradigm C++ User's Guide14

The SpeedMenu also lists additional Help files containing information related to the
current Help file. Right-click and select a Help file from the SpeedMenu. The Contents
screen for that Help file is displayed.

Contacting Paradigm
There are several ways to contact Paradigm Systems for technical assistance on
Paradigm C++.

Use the Help menu item to access the Paradigm C++ home page and service packs.
From this menu, you can also compose an email to technical support or register
Paradigm C++. If you use this convenient method to contact Paradigm, your serial and
version numbers will be included automatically.

You can contact Paradigm directly at:

Paradigm Systems
Suite 2214
3301 Country Club Road
Endwell, NY 13760
USA

Sales: 607-748-5966, sales@devtools.com
Fax: 607-748-5968
Technical Support: support@devtools.com

Ninety days of free technical support is only available to registered users of Paradigm
C++. If you haven’t yet done so, take this time to register your products under the
Paradigm C++ Help menu or online at http://www.devtools.com. Contact Paradigm to
purchase a Paradigm SurvivalPak support agreement for an additional 12 months of
technical support.

����

Chapter 2, Managing projects 15

C h a p t e r

2

Managing projects

The Paradigm C++ IDE contains a Project Manager that gives you a visual
representation of the files contained in your project. With the Project Manager, you can
see exactly what files you're building, the files you're using in the builds, and the options
that you've set for the builds.

This chapter covers the following topics, which describe how to use the Project Manager
to organize the files in your project:

� Project management
� Using the Project Manager
� Grouping sets of files with Source pools
� Translators, viewers, and tools

What is project management?

As an application grows in size and complexity, it becomes dependent on various
intermediate files. Often, source files need to be compiled with different compilers and
different sets of compiler options. Even a simple embedded application can have multiple
C or C++ source files, with each file type requiring different compilers and different
compiler settings.

As your project complexity increases, the need increases for a way to manage the
different components in the project. Looking at the files that make up a project, you can
see that a project combines one or more source files to produce a single target file.
While target files are usually absolute executable .AXE files for embedded development
or relocatable load module .EXE for DOS development, the source files cover a broader
range of file types, including .C, .CPP, and .ASM files. Additionally, many source files
have autodependent files (files that are automatically included by the source), such as C
header files. In larger projects, you are likely to find several targets with scores of
sources.

Project management is the organization and management of the source and target files
that make up your project. In addition, project management encompasses how and when
you employ different tools to translate the source files into your project target files.

Project management tools

Paradigm C++ provides several tools to help you manage your application projects.

Tools Description

Project Manager The Project Manager is the main tool for managing projects in Paradigm C++. Use
the View|Project command to access the Project Manager, a collapsible/expandable,
hierarchical display of the files in your project.

Project menu The Project menu provides commands to open and close projects, add a new target
to a project, and make, build, or compile targets.

Table 2-1
Project

management
tools

Paradigm C++ User's Guide16

Options Hierarchy The View Options Hierarchy command (located on the Project Tree window
SpeedMenu) opens a dialog box that lets you set options for individual project
nodes.

Node attributes The Edit Node Attributes command (located on the Project Tree window
SpeedMenu) lets you control how each node is handled by the Project Manager.

Tools Use the Options|Tools command to install, delete, or modify the tools that you use
in your projects.

TargetExpert TargetExpert opens when you create a new project or add a new target node to an
existing project. TargetExpert makes available the appropriate platform, model, and
library choices based on the type of target you select.

Using the Project Manager

The Project Manager visually organizes all the files in your project in a hierarchy diagram
known as the project tree. The Project Tree represents each file in your project as a node
on the tree. The Project Tree is divided into discrete levels where each level contains a
single target node. Indented below each target node are the target’s dependencies-the
files used to build the target. To expand and collapse the hierarchy tree, click nodes
containing the + and - symbols.

Project Tree for an embedded absolute executable (.AXE) application

The Project Manager uses the following types of nodes to distinguish the different types
of files in your project:

The project node, located at the top of the Project Tree, represents the entire project. All
the files used to build that project appear under the project node (similar to a symbolic
target in a makefile). By default, the project node is not displayed in the Project Tree. To
display the project node, choose Options|Environment and select Project View from the
list of topics, then check Show Project Node.

A target node represents a file that is created when its dependent nodes are built. A
target can be one of a variety of target types, depending on the IDE package being used.
A project can contain many target nodes. For example, in a single project, you might
build three separate .LIB files, with each library being a separate target.

Figure 2-1

Chapter 2, Managing projects 17

Source nodes refer to the files that are used to build a target. Files such as .C and .CPP
are typical source nodes.

A run-time node refers to files that the Project Manager uses during the linking stage of
your project, such as startup code and .LIB files. The Project Manager adds different
run-time nodes depending on the options you specify in TargetExpert. By default, run-
time nodes are not displayed by the Project Manager. To view run-time nodes, choose
Options|Environment|Project View, then check Show Runtime Nodes.

Autodependency nodes are the files that your program automatically references, such as
included header files. By viewing autodependency nodes, you can see the files that
source nodes are dependent upon, and you can easily navigate to these files (just double-
click the node). By default, the Project Manager does not display Autodependency
nodes; you must choose Options|Project|Make, then check Autodependencies: Cache &
Display. Note that you must build the project before the Project Manager can display
autodependency information).

The Project Manager uses the following color schemes for its nodes:

� Blue nodes represent those that were added by the programmer.
� White nodes indicate project targets.
� Yellow nodes are those that were added programmatically by the compiler (when it

posts dependencies and Autodependencies), or by TargetExpert (when it adds nodes
based on the target type).

The Project Manager uses special glyphs in the left margin to indicate the build attributes
of project nodes. To apply build attributes to a node (and for a reference on the different
Project Manager glyphs), choose Edit Local Options from the Project Manager
SpeedMenu, then select the Build Attributes topic.

In addition to helping you organize your project files, you can use the Project Manager
to access source files and build targets.

� To bring a source file into an Edit window, double-click the node in the Project Tree,
or highlight the node and either press Enter or choose View|Text Edit from the
Project Manager SpeedMenu.

� Using the Project Manager to make a project is very effective because you can use
the Project Manager to translate only the files that have changed since the last
project build; computer resources are not wasted on unnecessary file updates. (The
term "translate" refers to using one file type to create another. For example, the C++
compiler is a translator because it generates .OBJ files from .CPP files.)

There are several ways to customize the build options of the nodes in your project.
Maintaining project option and compiling project targets is described in detail in Chapter
3, Project options.

Project Manager reference

The Project Tree can be traversed with the mouse or the keyboard.

The Project Manager supports incremental searching, so you can quickly find a node by
typing the node name. Incremental searching finds the first node in the Project Manager
that matches the letters you type. Press Ctrl+S to find the next match.

Task Keyboard Mouse

Add Node Insert Right Click|Add Node

☞☞☞☞

Table 2-2
Project Manager

reference

Paradigm C++ User's Guide18

Collapse hierarchy Minus Click parent node

Collapse/Expand node Spacebar

Copy Node Ctrl+Left Click Drag

Default action for node Enter Double Click

Delete Node Delete

Demote a node Alt+RightArrow Left Click Drag

End node search Esc

Expand hierarchy + (Plus) Click parent node

Expand entire hierarchy * (asterisk)

Find a node Incremental search (start typing)

Move down in project DownArrow Scroll Bar

Move node down Alt+DownArrow Left Click Drag

Move node up Alt+UpArrow Left Click Drag

Move to bottom of hierarchy End Scroll Bar

Move to top of hierarchy Home Scroll Bar

Move up in project UpArrow Scroll Bar

Open SpeedMenu Alt+F10 Right Click

Page down PgDn Scroll Bar

Page up PgUp Scroll Bar

Promote a node Alt+LeftArrow

Reference Copy Node Alt+Left Click Drag

Scroll left LeftArrow Scroll Bar

Scroll right RightArrow Scroll Bar

Select a node Up/DownArrow Left Click

Select Contiguous nodes Shift UpArrow Shift Left Click

Select Non-Contiguous nodes Ctrl Left Click

Creating a project

When you begin to write a new application, the first step is to create a new project to
organize your application's files. The command File|New|Project opens the New Target
dialog box.

Setting options with the New Target dialog box
When you create a new project, the IDE automatically assigns default file names to the
nodes in your project. The following steps show how to change these default settings
and how to complete the initial project setup.

1. Type the path and name for the new project into the Project Path And Name input
box (the project name must contain eight characters or less). Note that you don't
have to type a file extension because the IDE automatically assigns the extension
.IDE to all project files.

2. In the Target Name input box, type the name for the first target in your project. This
is usually the name of the target file that you want to create.

The remaining fields in the New Target dialog box set the options for the first target
in the project. These fields are commonly referred to as the TargetExpert, since these
are the fields contained in the TargetExpert dialog box.

☞☞☞☞

Chapter 2, Managing projects 19

3. Choose the type of target you want to build using the Target Type list. For more
information, see "target types" in the online Help index.

4. Choose a platform for your target using the Platform drop-down list. For more
information on individual platform types see "target types" in the online Help index.

5. Select the memory model of the target from the Target Model options:

� Small uses different code and data segments, giving you near code and near data.
� Medium gives you near data and far code.
� Compact is the inverse of the Medium model, giving you near code and far data.
� Large gives you far code and far data.
� Huge is the same as Large model, but allows more than 64K of static data.

32-bit targets

� Win32 Emulation - If Protected address mode is chosen under Platform,
selecting Win 32 Emulation will allow you to generate an application to be
executed locally on your PC.

� Win 32 Embedded - If Protected address mode is chosen under Platform,
selecting Win32 Embedded will allow you to generate an application to be
executed on an embedded target.

6. If needed, click the Advanced button to specify the types of source nodes created
with your new target (this procedure is described in the following section.

7. Click OK to accept the settings and close the New Target dialog box. The Project
Manager creates the project file, which is denoted with an .IDE extension

When you close the New Target dialog box, the Project Manager draws a graphical
representation of your project in the Project window. The Project Manager creates a
target node with one or more source nodes below with the project node. After creating
the initial target for a project, you can add, delete, or modify the nodes in your project,
as described in the following sections.

Specifying the source node types
The Advanced button in the New Target dialog box opens the Advanced Options dialog
box. Use this dialog box to set the types of source nodes that the Paradigm C++ IDE
creates with a new target node.

Extension File Type

.CPP node Creates a C++ language source node.

.C node Creates C language source node.

No source node Creates a Target node that doesn't use a source node. Use this option
when you want to create a Source node that uses the same file name as
the name of the project. When you create a new target with this option,
you must specifically add the source node.

For 32-bit applications

.DEF Creates a source node that is associated with a Windows module
definition file, which is used by the linker.

Table 2-3
Source node

types

Paradigm C++ User's Guide20

Opening existing projects
To open an existing project, choose Project|Open Project, then use the file browser to
select an existing .IDE or .PDL project file. If the project opens, but the Project window
is not visible, choose View|Project to access the Project window.

Adding nodes

To add a source node to a project:

1. Select any node in the Project Tree under which you want the new node to appear.
For example, if you want the new node to appear under the target, select the target
node.

2. Press Ins, click the button on the SpeedBar, or right-click the node to open the
Project window SpeedMenu and then choose Add node.

3. Using the file browser, choose the file or files you want associated with the new
node. Alternatively, you can type the name for the file you want to add.

4. Choose OK to confirm your settings.

You can use the Windows File Manager to add one or more source nodes:

1. Open the File Manager and arrange the windows so you can still view the Project
window in the Paradigm C++ IDE.

2. In the File Manager, press Ctrl and select the files you want to add as source nodes.
3. Drag the files from the File Manager and drop them on a node in the Project

window. The Project Manager automatically adds the source files under the selected
node.

Deleting source nodes
To delete a node in a project, select the node and press Del or choose Delete Node from
the SpeedMenu. To delete many nodes, select the ones you want to delete (press Ctrl or
Shift and click the left mouse button to select multiple nodes), then press Del. The Project
Manager asks if you want to delete the nodes before it proceeds. If you delete an original
node, all reference copies of that node are also deleted.

Adding files without relative path information

Because the Project Tree supports drag and drop, you can copy files right from the
desktop file manager. Relative path information is included when files are copied. If you
move sources or the Paradigm C++ IDE, the relative path information will be incorrect.
Here is how to add files to your project without the presence of relative path
information:

� Make sure that the Absolute (Options|Project|Make|New Node Path) is turned off
(this is the default setting).

� Right-click on the node under which the added files will become children once they
are dropped.

� Choose Add Node from the Project Tree SpeedMenu.

� Browse and highlight the file(s), you want to add. (Hold down the Ctrl key to select
non-contiguous files.)

� After hightlight the desired files, shift focus to the input box and capture to the
Clipboard (Ctrl-C).

Use care when
deleting nodes;

you cannot undo
the deletion.

Chapter 2, Managing projects 21

� Browse back to the project file location.

� Shift focus to the input box, paste from the Clipboard (Ctrl-V or Shift + Insert) and
choose OK.

Files added to the project by this method do not have relative path information.

Editing source node attributes

Node attributes describe the source node and define the tool that translates it (if
applicable). To edit the attributes of a source node:

1. Right-click the source node (or select the node and press Alt-F10), then choose Edit
Node attributes from the SpeedMenu. The Node attributes dialog box appears.

2. Update the node attributes, then choose OK to confirm your settings.

Node attributes
� Name is the file name of the node, without a file extension.
� Description is an optional text description of the node.
� Style Sheet is the name of the Style sheet the Project Manager uses when it

translates that node. If <<None>> is specified, the Project Manager uses the
parent options, plus any local overrides set on nodes higher in the Project Tree
hierarchy.

If you need to create or edit an existing Style sheet, click the Styles button to access
the Style Sheets dialog box.

� Translator names the translator used on that node. The Paradigm C++ IDE
assigns a default translator for the node type (for example, CppCompile for a
.CPP node), which can be overridden using this field.

� Node type defines node extension, which in turn defines the available translators
for that node.

Adding target nodes to your project

To add a target to a project with the New Target dialog box:

1. Choose Project|New Target, or click the button on the SpeedBar.
2. Type the name for the new target, then choose one of the following target types:

� Standard (default) can be an absolute executable, .LIB, or other file.
� Source Pool is a collection of files that can be referenced in other targets.

3. Choose OK. If the target type is Standard, the TargetExpert dialog box appears so
you can further define your target. If the target type is SourcePool, the Target is
added to the project and you can add nodes to it immediately.

When you add a new target, it is always appended to the end of the Project Tree.

To view a sample project with two targets, open the file MULTITRG.IDE in the
EXAMPLES\MULTITRG directory. The project contains a text file that describes how
to use two or more targets in a project.

With more than one target in a project, you can choose to build a single target, multiple
targets, or the whole project.

☞☞☞☞

Paradigm C++ User's Guide22

Deleting target nodes
To delete a target node:

1. Right-click the target node you want to delete (or highlight it and press Alt-F10).
2. Choose Delete Node from the SpeedMenu.
3. The Project Manager asks if you're sure you want to delete the target. Choose OK to

delete the target and all it's dependencies from the project.

You can also delete several nodes by pressing Ctrl and clicking the nodes you want to
delete, then press Del.

Editing target attributes using TargetExpert

Target attributes describe the target being built by the IDE. Using TargetExpert, you can
modify the memory model for a 16-bit program, debug connection type, floating point
support, and various other options. Please note, however, you can't change target
attributes for SourcePools - they use the settings from the applications which include
them.

To change a target's attributes:

1. In the Project window, right-click the target node (or select it and press Alt-F10),
then choose TargetExpert from the SpeedMenu to open the TargetExpert dialog
box.

The TargetExpert fields are a subset of the fields in the New Target dialog box.

2. Update the target attributes, then choose OK to confirm your new settings.

Moving nodes within a project

You can move nodes within a project in the following ways:

� By dragging the node to its new location.
� By selecting the node and pressing Alt and the arrow keys. This moves the selected

node up or down through the visible nodes. You can also use Alt and the right and
left arrow keys to promote and demote nodes through levels of dependencies. For
example, if you have a .CPP file dependent that is on a header file (the .H file appears
under and right of the .CPP in the project window), you can move the header file to
the same level as the .CPP file by selecting the header file and pressing Alt ←.

Copying nodes in a project

You can copy nodes in your project file either by value or by reference. When you copy
nodes by value, the Project Manager makes an identical, but separate, copy of the node
in the location you specify. The nodes you copy inherit all the attributes from the original
node, and you have the ability to modify any of the copied node's attributes.

When you copy nodes by reference, you simply point to one node from a different
location in the project; a reference copy is not distinct from the original node. If you
modify the structure of the original node, the reference copy is also modified. However,
a reference copy does not inherit the options of the original node; you're free to attach
Style Sheets and override options in the copied node without affecting the original node.

To copy project nodes,

Use care when
deleting target

nodes; you
cannot undo the

deletion.

☞☞☞☞

Chapter 2, Managing projects 23

1. Select a group of nodes you want to copy (press Shift or Ctrl and click to select
modify nodes). You don’t need to select the node's dependents because they are
copied automatically.

2. Hold down the Ctrl key and drag the selected nodes to the new location to copy by
value.

Or

Press the Alt key and drag the selected nodes to the new location to copy by
reference.

When you release the mouse button, the copied node appears. If you reference-copied
the node, it will appear in a lighter font. At this point, if you've copied by value, you can
edit either the original or the copied nodes without changing other nodes in the project.
If you reference-copied, and you edit the original node (such as adding or deleting
dependents), all referenced copies are updated.

You cannot add to, delete, or modify nodes that have been copied by reference; to
modify nodes copied by reference, you must edit the master copy. If you delete an
original node, all reference copies to that node are also deleted. You cannot undo this
deletion.

Converting project files into makefiles

Using the Paradigm C++ IDE, you can convert project files (.IDE files) into makefiles
(.MAK files). To convert a project file to a makefile:

1. Open the project file you want to convert.
2. Choose Project|Generate Makefile. The Paradigm C++ IDE generates a makefile

with the same name as the project file, but with the extension .MAK, and places it in
the edit buffer. The Paradigm C++ IDE displays the new makefile in an Edit window.

3. Choose File|Save to save your new makefile.

Customizing the Project window

By default, the Project window displays target nodes and source nodes. To control the
display of nodes and options:

1. Choose Options|Environment to open the Environment Options dialog box, then
choose Project View. The right side of the dialog box displays the Project View
options.

2. Check or uncheck the options you want. A sample node called WHELLO changes as
you select or deselect options. This sample shows you how all nodes appear in the
Project window.

� Build translator displays the translator used on the node.
� Code size displays the total size of code segments. This information appears only

after the node has been compiled.
� Data size displays the size of the data segment in bytes. This information appears

only after the node has been compiled.
� Description displays the optional description of the node in the Project Tree.

Type the description using the Edit node attributes dialog box from the Project
Manager SpeedMenu.

� Location lists the path to the source file associated with the node.

☞☞☞☞

Paradigm C++ User's Guide24

� Connection displays the name of the target connection used for the node. This
only applies to target nodes that support a debugger connection.

� Number of lines displays the number of lines of code in the file associated with
the node. This information appears only after you compile the code.

� Node type describes the type of node (for example, .cpp, or .c).
� Style Sheet names the Style Sheet attached with a node.
� Output names the path and file name that is created when the node is translated.

For example, a .CPP node creates an .OBJ file.
� Show run-time nodes displays the nodes the Project Manager uses when the

project is built. For example, it lists startup code and libraries.
� Show Project Node displays the project node, of which all targets are

dependents.

3. Click OK to close the Environment Options dialog box.
4. To save your project customizations, choose Options|Save, then check Project. Note

that you can save different option sets with the different projects you work on.

Grouping sets of files with Source Pools

A Source Pool is a collection of nodes that can be referenced by multiple target nodes.
When a Target node references a Source Pool, the nodes in the Source Pool take on the
options and target attributes of the target. Because Source Pools let you create different
targets using a common set of source nodes, it is easy to maintain the files that the
targets use. For example, with Source Pools, you can create both 16- and 32-bit
applications using a single set of source nodes. Then, when you add or delete from the
Source Pool, you don’t have worry about updating all your target nodes; they're updated
automatically through the reference to the Source Pool.

You can also use Source Pools when you have several header files that you need to
include throughout your project. If you place the header files in a Source Pool, you can
reference them wherever you need them in your project. Then, you only have to update
the original Source Pool when you need to make changes to the group of header files; if
you add a new header file to the Source Pool, all the referenced copies are automatically
updated.

Source Pools are also useful when you want to assign a single Style Sheet to multiple
nodes. For example, if three targets in a project need to use the same Style Sheet, you
can reference a Source Pool that contains the Style Sheet instead of attaching the same
Style Sheet to each individual node. Then, if you need to update the Style Sheet (for
example, if you want to change from compiling with debug information to compiling
without it), you can update all the targets by modifying the single Style Sheet. You can
also use Source Pools to apply custom tools to project nodes. For more information, see
"Source Pools" in the online Help index.

Creating a Source Pool

When you create a Source Pool, you create a target node with a group of nodes under it.
However, the target node of the Source Pool cannot be compiled—to compile the nodes
in a Source Pool, you must copy the Source Pool to a another target node. Source Pools
work to your best advantage when you copy them by reference.

To create a Source Pool

1. In your project, create a new target node by choose Project|New Target.

What is a
Source Pool?

Chapter 2, Managing projects 25

2. Type the name for the Source Pool in the Target Name.
3. Select Source Pool from the Type list and press OK to create a Source Pool target

node in your project.
4. Select the new Source Pool in the Project Tree, then press Ins to open the Add To

Project List dialog box.
5. Select the source files you want, then press OK to add them to the Source Pool.
6. Copy the Source Pool by reference by holding down the Alt key and dragging the

Source Pool to the target nodes you want.

To see a working example of Source Pools, open the sample project called
SRCPOOL.IDE in the EXAMPLES\SRCPOOL directory. The project file includes a
text file that describes how the Source Pool is used in the example.

Translators, viewers, and tools

Translators, viewers, and tools are internal and external programs that are available to
you through the Paradigm C++ IDE.

� Translators are programs that create one file type from another. For example, the
C++ compiler is a translator that creates .OBJ files from .CPP files; the linker is a
translator that creates .EXE or .ROM files from .OBJ, .LIB, and .DEF files.

� Viewers are programs that let you examine the contents of a selected node. For
example, an editor is a viewer that lets you examine the source code of a .CPP file.

� Tools are programs that help you create and test your applications. The external
AXE utility is an example of a programming tool.

The Paradigm C++ IDE associates each node in a project with different translators or
viewers, depending on the file extension of the node. Although each node can be
associated with several different translators or viewers, each node is associated with a
single default translator or viewer. This is how the Paradigm C++ IDE knows to open
the Edit window when you double-click a .CPP node (double-clicking a node invokes
the default viewer on the node).

To see the default node type (determined by file extension) for a specific translator
or viewer:

1. Choose Options|Tools to open the Tools dialog box.
2. Select the item you want to inspect from the Tools list.
3. Choose Edit to access the Tools Options dialog box.
4. Choose Advanced to access the Tool Advanced Options dialog box, then inspect the

Default For text box.

When you right-click a node, you’ll find that some source nodes have a Special
command on the SpeedMenu. This command lists the alternative translators that are
available for the node type selected. For example, the commands C To Assembler, C++
To Assembler, and Preprocess appear on the Special menu of a .CPP node. The
command Implib appears if you selected a .DLL node. Using the Special command, you
can invoke any translator that is available for a selected node type. Also, by selecting a
source node in the Project Tree and choosing Edit Node Attributes from the
SpeedMenu, you can reassign the default translator for the selected node.

☞☞☞☞

Paradigm C++ User's Guide26

Adding translators and viewers

The Tools dialog box displays the default set of translators, tools, and viewers The
following steps show how to add an item to this list of programs:

1. Choose Options|Tools to access the Tool Options dialog box. This dialog box
displays the default list of translators, tools, and viewers.

2. Choose New to add a new program to the Tools list (to modify a program that is
already listed, select the tool, then choose Edit).

3. Set the following option in the Tools Options dialog box:

� Name is a description of the item you're adding. This is the placed on the Tool
list.

� Path is the path and executable program name. You can use the Browse button
to complete this selection.

� Command-line holds any command-line options, transfer macros, and the
Paradigm C++ IDE filters you want to pass to the program. For more
information, see "transfer macros" in the online Help index. (Try using
$PROMPT if you want to experiment with transfer macros.) the Paradigm C++
IDE filters are .DLL files that let tools interface with the Paradigm C++ IDE (for
example, the GrepFile tool uses a filter to output text to the Message window).
To see transfer macros and filters in use, choose Options|Tools, then select
GrepFiles and choose Edit.

� Menu Text appears on SpeedMenus and on the Tools menu. If you want to
assign a shortcut key to your menu text, precede the shortcut letter with an
ampersand (&) - this letter appears underlined in the menu. For example, &File
assigns the letter F as the shortcut key for File. If you want an ampersand to
appear in your menu text, use two ampersands (&&Up&date appears as
&Update in the menu).

You must supply Menu Text if you want the program item to appear on the
SpeedMenu or Tools menu.

� Help Hint is descriptive text that appears in the status line of the Tools dialog
box when you select the program item.

4. Open the Advanced Options dialog box (choose Advanced) to set the options for
your new program. Depending on the Tool type you choose (Simple Transfer,
Translator, or Viewer), different fields become available. If you create a Translator,
the program becomes available for make and build processes.

� Place On Tool Menu adds the item to the Tools menu.

� Place On SpeedMenu adds a viewer or translator to the associated SpeedMenu.
� Target Translator available for translators and viewers. For translators, this

field specifies whether the program produces a final target (such as an .AXE file)
or an intermediate file (such as an .OBJ or .I file). If you check this box, the
translator produced a final target that is saved to the directory you specify in the
Final text box (choose Project|Options|Directories). If you don’t check Target
Translator, the translated file is saved in the directory you specify in the
Intermediate text box.

For viewers, Target Translator specifies that the viewer works only on nodes that
have been translated (such as .OBJ or .AXE files); the node has to be translated
before you can view it.

☞☞☞☞

Chapter 2, Managing projects 27

� Translate From defines the node types (determined by file extension) that a
translator can translate. To specify multiple node types, use a semicolon to
separate file extensions.

When you enter a file extension in this field, the Project Manager adds the translator
to the Special menu of the project nodes that have that file extension. When you
choose Special from the Project Manager SpeedMenu, the Project Manager displays
all the available translators for that node type. However, it is important that each
node type can have only a single, default translator (see the description for Default
For).

To see how this works, look at the tool CppCompile (choose Options|Tools, double-
click CppCompile, then click Advanced). The Tool Advanced Options dialog box
shows that the C++ compiler is a translator for .CPP, .C, .CAS, and .H files. If you
have a source node with a .C extension, CppCompile appears on the Special menu
when you right-click the node and choose Special.

� Translate To defines the extension of the file that the translator generates.
� Applies To is similar to Translate From field, except that it's used for viewers

instead of translators.
� Default For changes the Paradigm C++ IDE's default translator or viewer for the

file types you specify. Type the file extensions (separating each with a semicolon)
for the file types whose default you want to override.

5. Choose OK twice to confirm your settings, then close the Tools dialog box.

Your new tool has now been added to the Tools list of the associated project, and to the
Tools menu or SpeedMenu, depending on where you chose to add the item. If you added
the item to the Tool menu, you can check the addition by choosing Tools from the main
menu; the new program name appears on the Tools list.

Although the Project Manager lets you define your own Tools items, these items apply
only to the project that you add them to; they aren’t added as permanent parts of the
Paradigm C++ IDE. However, translators, viewers, and tools can be passed to new and
existing projects by sharing the Style Sheets of the projects.

Paradigm C++ User's Guide28

Chapter 3, Project options 29

C h a p t e r

3

Project options

After you create a project file and write the code for the source nodes in your project,
you need to set the options for the different project nodes before you can compile the
project. This chapter describes how to set options in a project, how to view the options
you set, how to compile a project, and how to use the Message window to view and fix
compile-time errors. In addition, this chapter contains a complete reference to the
compiler and linker options that can be set from the Paradigm C++ IDE.

Setting project options

This section explains how to set, view, and manage project options.

Project options tell the Paradigm C++ IDE how to compile and link the nodes in your
project to form the targets you need. The settings of the project options can indicate
whether or not to generate debugging information, where to look for source code, what
types of compiler optimizations you want to use, and so on.

The Project Manager lets you set project options in two different ways:

� You can attach Style Sheets to your project nodes.
� You can override the settings in a Style Sheet using local overrides.

Style Sheets group a collection of option settings into a single unit. Once a Style Sheet is
created, you can attach it to a node, a group of nodes, or an entire project. Local
overrides are settings that take precedence over Style Sheet settings at the node level.

Using Style Sheets

A Style Sheet is a group of option settings. In your project, for example, you might want
to compile .C files with one set of options and .CPP files with another, or you might
want to build one target with debugging information, and another one without it. Style
Sheets make it easy to view and maintain the settings of your project options. Option
settings control how target nodes in your project are built. You can attach Style Sheets
to entire projects or to individual nodes in a project. You can attach one or more Style
Sheets to your entire project or assign one or more Style Sheets to individual nodes in
your project.

To view the options that can be incorporated into a Style Sheet, open the Project
Options dialog box by choosing Options|Project. This dialog box contains a hierarchical
list of topics on the left, with the options that relate to each topic listed on the right. To
expand and collapse the Topic list, click the + and - icons to the left of the topic listings.

To see an example of how Style Sheets are used, open the STYLESHT.IDE project file
located in the EXAMPLES\IDE directory. This file uses a different Style Sheet for each
of its two versions of the application and also contains a text file that explains the use of
Style Sheets.

Paradigm C++ User's Guide30

Predefined Style Sheets
The Project Manager contains several predefined Style Sheets that you can attach to any
node in your project. You can also customize a predefined Style Sheet to meet the
special needs of your projects.

To inspect the predefined Style Sheets, choose Options|Style Sheets on the main menu
(or click the Styles button on the Edit Node Attributes dialog box). This opens the Style
Sheets dialog box where you can create, compose, copy, edit, rename, or delete from the
list of Style Sheets that are available for your project. Predefined Style Sheets are listed
on the left with the description of the selected Style Sheet on the right.

The default project options
When you initially create a project, it inherits the Style Sheet known as the Default
Project Options. If some components in your project require different settings, you can
attach different Style Sheets to those nodes. If different nodes in your project require
different option settings, you should override the default option settings by attaching
different Style Sheets to the nodes in your project.

Be careful when you use the Options|Project command to modify option settings; if
your project contains more than a single target node, the changes you make always
modify the project's Default Project Options (regardless of the node you have selected
when you choose the command). Because of this, all targets in your project inherit the
changes you make when you use the Options|Project command. In addition, if you
modify project options when you don't have a project loaded, your modifications update
the Default Project Options Style Sheet; the projects you later create will inherit these
new default settings. If you need to revert to the Paradigm C++ IDE's factory default
settings, delete the file PCWDEF.PCW (located in the Paradigm C++ IDE BIN
directory), then open and close the Paradigm C++ IDE to create a new file.

Managing Style Sheets
The buttons at the bottom of the Style Sheets dialog box let you create, compose, copy,
edit, rename, and delete user-defined Style Sheets.

Create lets you design a new Style Sheet for the currently loaded project. To create a
Style Sheet:

Choose the Create button, then enter a name for your new Style Sheet into the Create
Style Sheet dialog box. Choose OK to add the new Style Sheet to the Available Style
Sheets list.

Compose lets you create a Style Sheet that contains the combined options from one or
more Style Sheets. To compose a Style Sheet:
1. Create a new Style Sheet using the Create button.
2. Select the new Style Sheet in the Available Style Sheets list, then click Compose.
3. Select the Style Sheet you want included in your new Style Sheet from the Available

Style Sheets list, then move the Style Sheet to the Composite Style Sheets list by
double-clicking it or by clicking the → button. (You can also remove Style Sheets
from the Composite Style Sheet list by selecting a Style Sheet there and clicking ←.)

4. Continue modifying the composed Style Sheet, then choose OK when you're
finished.

Create

Compose

Chapter 3, Project options 31

You cannot edit the option settings in a composed Style Sheet. However, you can edit
the option settings in the Style Sheets contained in the composed Style Sheet, which
affects the settings in the composed Style Sheet.

Copy lets you create a new Style Sheet from an existing one. When you choose Copy,
you're prompted for the new Style Sheet's name. Enter the new name, then choose OK
to make an exact copy of the selected Style Sheet. Copying is a fast way to create a Style
Sheet that closely resembles another-you only have to change the options you want.

Edit to change any of the copied options. Copying is a fast way to create a Style Sheet
that closely resembles another-you only have to change the options you want.

Edit lets you modify the option settings of an existing Style Sheet, including any
predefined Style Sheet.

Rename lets you rename a selected Style Sheet.

Delete lets you remove an unwanted Style Sheet. (This action cannot be reversed.)

Attaching Style Sheets to nodes
Sometimes different nodes in a project need to be built with option settings that are
different than those in the project Style Sheet. For example, you might want to compile
.C files with one set of options but .CPP files with another. Or, you might want to build
separate targets with a different set of compiler defines.

To attach an existing Style Sheet to a project node:
1. Right-click the node in the Project Tree (or select it and press Alt-F10).
2. Choose Edit node Attributes from the SpeedMenu. The Node Attributes dialog box

appears.
3. Select a Style Sheet from the drop-down box, then choose OK.

When you attach a Style Sheet to a node, all child nodes of that node inherit the settings
of the selected Style Sheet. To change the settings of a child node, attach a different
Style Sheet, or override an option setting using a local override.

Although you can attach only a single Style Sheet to a project node, one Style Sheet can
be composed of several different Style Sheets.

Sharing style sheets between projects
There are two ways to share Style Sheet between projects:

� inheriting style sheets from another project
� editing the .PDL file associated with a project

When you create a custom Style Sheet, that Style Sheet remains with the project for
which it was created; it doesn't get added to the list of predefined Style Sheets.
However, if you want a new project to use one of your custom Style Sheets or user-
defined tools, you can do so by letting a new project inherit settings from another
project.

Before a project can inherit the settings of another project, you must modify the
PCWx.INI file that resides in your Windows directory. If the file doesn't contain an
inherit setting, then you must add the settings to the file as follows:

[Project]
;To have new projects inherit settings from the Default Project
Settings (default) ;
inherit=0

☞☞☞☞

Copy

Edit

Rename

Delete

☞☞☞☞

Paradigm C++ User's Guide32

;To have new projects inherit settings from currently open project:
inherit=1

;To have new projects inherit factory default settings:
inherit=2

To pass Style Sheets or user-defined tools from one project to a new project:
1. Modify PCWx.INI so that inherit=1.

2. Open the project that contains the Style Sheet or tools you want to share.
3. Choose Project|New Project.

When the new project is created, it inherits the Style Sheets and user-defined tools of the
project that was open when you chose Project|New Project.

Project Description Language files
You can also share Style Sheets across projects by editing the Project Description
Language files (.PDL) associated with your projects. When you save a project, you can
instruct the Paradigm C++ IDE to create a .PDL file that has the same file name as the
project's Paradigm C++ IDE file. Likewise, when you open a project you can instruct the
Paradigm C++ IDE to read the project's .PDL file. Because a .PDL file contains
information about the Style Sheets and tools used in a project, you can edit a project's
.PDL file so that it uses the Style Sheet and tools of your choosing.

Be careful if you choose to edit .PDL files. If a .PDL file is corrupted, the Project
Manager will not be able to read it. You may want to make a backup copy of the .PDL
file before you begin making changes.

A .PDL file is a text file that is equivalent to a .IDE project file. Style sheet and Tools
information can be copied from one .PDL file to another, allowing you to quickly modify
Style Sheet and tools for your projects.

To edit the .PDL file:
1. Open the .PDL file containing the Style Sheet you want to share. You can open the

.PDL file using any text editor or select File | Open with Text Edit selected as the
viewer.

2. Search for Subsystem = Style Sheet. Then, scan for the desired Style Sheet by name.
For example, if you created a Style Sheet called MYSTYLE, you’ll see a section in
the .PDL file that starts { StyleSheet = “MYSTYLE”.

3. Copy all the text from the beginning to the ending brace. You can copy more than
one Style Sheet.
To share a user-defined tool, copy the section that reads Subsystem=<tool>.

4. Edit the .PDL file that is going to use the copied Style Sheet.
5. Find the section for Style Sheets, then paste the copied text to the end of the existing

Style Sheet list.
6. Save the .PDL file that received the copied Style Sheet. The .PDL file can be opened

as a project like any .IDE project file by selecting Project | Open project.

Setting local overrides
Inherited options or Style Sheet options can be overridden at the node level using local
overrides. Local overrides are useful when a node's option settings must differ from its
associated Style Sheet by one or two settings. Set options for an individual node by
selecting Edit Local Options on the Project Tree window SpeedMenu or by selecting

Chapter 3, Project options 33

Edit Local Options from the Edit Local Options on the Edit window SpeedMenu when
no project is loaded. The local options dialog box displays where the node is located in
the Project Manager and allows you to set options for that node.

Once options have been set, they become local overrides associated with the node. Local
Override are useful when you use a Style Sheet (perhaps inherited from a parent node).

Although the local overrides make it easy to set options for individual nodes, they have
the disadvantage of being difficult to track. While the Options Hierarchy dialog box
displays the Style Sheet and local override settings for a selected node, you must
examine each individual node to see which ones have been overridden. Because of this,
it's recommended that you use separate Style Sheets for nodes that require different
option settings, and use local overrides only in special cases.

To override an option setting:
1. Choose the node whose settings you want to override.
2. Right-click the node (or press Alt-F10) and choose Edit Local Options from the

SpeedMenu. The Options dialog box (which is similar to the Project Options dialog
box) appears and displays the settings for that node.

3. Select the option you want to override. The Paradigm C++ IDE automatically checks
the Local Override box whenever you modify a Style Sheet setting.

4. Choose OK to confirm your new settings.

The Local Override check box is enabled only when an option within a topic is selected
otherwise, the check box is grayed. When you select an option (using Tab, or by clicking
and dragging the mouse off the option), the Local Override check box shows the status
of the selected option. Because of this, you must individually select each option in a
topic to see which ones have been overriden locally. If you choose an option (by clicking
it, or by selecting it and pressing Enter), you change its setting , which always causes the
Local override check box to be checked.

To undo an override:
1. Right-click the node whose setting you want to modify, then choose Edit local

options from the SpeedMenu.
2. In the Options dialog box, select the topic that contains the overridden setting.

When you select a topic page that has a locally overridden option, the Project
Manager enables the Undo Page button.

3. Select the option (using Tab, or by clicking and dragging the mouse off the option)
whose local override you want to undo; the Local Override checkbox will be
checked.

4. Click the Local Override check box to undo the override; the option will revert to
the default Style Sheet setting. To revert the entire topic to the settings contained in
the associated Style Sheet, choose the Undo Page button.

5. Choose OK to confirm your modifications.

View project options

Because each node can have its own Style Sheet and you can override the option in the
Style Sheet, you need a quick way to view the option settings for each node.

To view option settings for the nodes in your project:
1. Right-click any node in the Project window and choose View Options Hierarchy, or

click the button on the SpeedBar.

☞☞☞☞

☞☞☞☞

Paradigm C++ User's Guide34

The Options Hierarchy dialog box appears, listing the nodes in the project on the left
and the options that each node uses on the right. You can expand and collapse the
list of nodes in the dialog box just like you can in the Project window, however,
Autodependency nodes do not appear.

An option that's surrounded by double-asterisks (**) in the Options listing indicates
that the option is overridden (by either a Style Sheet or local override) by a
dependent node located farther down in the Options listing. (The asterisks display
only when you select the node where the option is overridden.)

2. When you select a node in the Project Options At list, its setting appears to the right
in the Options list.
The Options list displays components of the project in square brackets. At the top of
the list, you'll see the name of the project followed by its Default Project Options.
Below this is the name of the target associated with the node you've selected. If the
node has a Style Sheet associated with it, it is displayed beneath the node (also in
brackets), along with the settings of the Style Sheet. If you've overridden any
settings, these are displayed beneath the [Node overrides] listing. The Options list
displays the setting for all the ancestors of the node selected in the Project Tree.

3. If you want to edit an option, double-click the option in the Option list, or select it
and click Edit. Whenever you edit options in this manner, the modifications become
local overrides.

4. When you finish viewing your project's option settings, choose Close.

Compiling projects

There are two basic ways to compile projects: built and make. Build compiles and links
all the nodes in a project, regardless of file dates. Make compares the time stamp of the
target with the time stamps of all the files used to build target. Make then compiles and
links only those nodes necessary to bring the target up to date.

To compile a project, open the project using the Project|Open command, then choose
either Compile, Make All, or Build All from the Project menu (note that the SpeedBar
has three similar looking buttons that correspond to these Project Menu commands).

� Compile (Alt-F9) builds the code in the currently active Edit window. If a Project
window is selected, all the selected nodes in the project are translated; child nodes
aren't translated unless they're selected.

� Make all (F9) translates all the out-of-date nodes in a project. If a project is not
open, the file contained in the active Edit window buffer is built.

When you choose Make All, the Project Manager moves down the Project Tree until
it finds a node with no dependents. The Project Manager then compares the node's
date and time against the date and time of the node's parent. The Project Manager
translates the node only if the child node is newer than the parent node. The Project
Manager then moves up the Project Tree and checks the next node's date and time.
In this way, the Project Manager recurses through the Project Tree, translating only
those nodes that have been updated since the last compile.

� Build All translates all nodes in a project - even if they are up-to-date. Build All
always starts at the project node and builds each successive target down the project.
Choose Cancel to stop a build.

When you choose Build All, the Project Manager starts at the first target and works
down the Project Tree until it comes to a node with no dependents. The Project

Chapter 3, Project options 35

Manager compiles that node first (and other nodes on the same level), then works
back up the Project Tree, compiling and linking all nodes needed to create the target.
This process is then repeated down the Project Tree, until all the targets have been
updated.

For example, if you have a project with an .LIB target that is dependent on two
separate .OBJ files, the Project Manager creates the first .OBJ file by compiling all its
dependents. It then creates the next .OBJ file. Once a target node's dependents are
created, it can compile or link the target node. In this case, the Project Manager will
link the two .OBJ files to create the library.

Compiling part of a project
You can compile part of a project several ways:

� Translate an individual node.
� Build a node and its dependents.
� Make a node and its dependents.
� Select several nodes and compile.

To translate an individual node:

1. Select the node you want to translate.
2. Choose Project|Compile from the main menu or choose the default translation

command from the SpeedMenu. For example, if you've selected a .CPP file, the node
SpeedMenu contains a C++ Compile command, which compiles only the selected
node.

To build a node and its dependents:

1. Choose the node you want to build.
2. Right-click the node (or press Alt-F10) and choose Build Node from the

SpeedMenu. All the dependent nodes are built regardless of whether they're out-of-
date.

To make a node and its dependents:

1. Choose the node you want to build.
2. Right-click the node (or press Alt-F10) and choose Make node from the SpeedMenu.

This command compiles only the dependent nodes whose source files are newer than
their associated target files.

To compile several selected nodes:

1. Select the project nodes you want to compile by pressing Ctrl and clicking the
desired project nodes. (The nodes must be the same file type, such as .CPP).

2. Choose Make Node or Build Node from the Project Manager SpeedMenu to compile
the selected nodes.

Fixing compile-time errors

Compile-time errors, or syntax errors, occur when your code violates a syntax rule of the
language you're programming in; the C++ compiler cannot compile your program unless
it contains valid language statements. If your compiler encounters a syntax error while
compiling your code, the Message window opens and displays the type of error or
warning it encountered. By choosing Options|Environment|Preferences, you can specify
if old messages should be preserved or deleted between calls to different programming

Paradigm C++ User's Guide36

tools (such as compiler, or GREP). Check Save Old Messages if you want the Message
window to retain its current listing of messages when you run a tool.

To clear the Message window, choose Remove All Messages from the Message window
SpeedMenu.

Viewing errors

To view the code that caused a compiler error or warning, select the message in the
Message window; the Paradigm C++ IDE updates the Edit window so that it displays
the location in your code where the error or warning occurred (this is called Automatic
Error Tracking). If the file containing the error isn't loaded in an Edit window, press
Spacebar to load the file (you can also load the file by pressing Alt-F10, then choosing
View Source from the SpeedMenu). When you view errors in this manner, the Message
window remains selected so you can navigate from message to message. To open or
view the Message window, click the button on the SpeedMenu, or choose
View|Message.

Fixing errors

To edit the code associated with an error or warning, do one of the following:

� Double-click the message in the Message window.
� Select the message in the Message window and press Enter.
� Press Alt-F10 and choode Edit Source from the SpeedMenu.

The Edit window gains focus with the insertion point placed on the line and column in
your source code where the compiler detected the error. From here, edit your code to fix
the error. After fixing the error, press Alt-F7 to move the next error message in the list
or press Alt-F8 to go back to the previous message.

Project options reference

You set compiler, linker, librarian, and make options from two different places in the
Paradigm C++ IDE: the Project Options multiple-page dialog box and TargetExpert.
The remainder of this chapter describes the options available in the Project Option dialog
box. They are described in alphabetical order.

16-bit compiler options

The 16-bit compiler options affect the compilation of all 16-bit source modules. It is
usually best to keep the default setting for most options in this section.

The subtopics are

� Processor
� Calling convention
� Memory model
� Segment names data
� Segment names far data
� Segment names code
� Entry/Exit code

Chapter 3, Project options 37

Calling conventions

Calling Convention options tell the compiler which calling sequences to generate for
function calls. The C, Pascal, and Register calling conventions differ in the way each
handles stack cleanup, order of parameters, case, and prefix of global identifiers.

You can use the _ _cdecl, _ _pascal, or _ _fastcall keywords to override the default
calling convention on specific functions.

C
Command-line equivalent: -pc, -p-

This option tells the compiler to generate a C calling sequence for function calls
(generate underbars, case sensitive, push parameters right to left). This is the same as
declaring all subroutines and functions with the _ _cdecl keyword. Functions declared
using the C calling convention can take a variable parameter list (the number of
parameters does not need to be fixed).

Pascal
Command-line equivalent: -p

This option tells the compiler to generate a Pascal calling sequence for function calls (do
not generate underbars, all uppercase, calling function cleans stack, pushes parameters
left to right). This is the same as declaring all subroutines and functions with the
_ _pascal keyword. The resulting function calls are usually smaller and faster than those
made with the C (-pc) calling convention. Functions must pass the correct number and
type of arguments.

Register
Command-line equivalent: -pr

This option forces the compiler to generate all subroutines and all functions using the
Register parameter-passing convention, which is equivalent to declaring all subroutine
and functions with the _ _fastcall keyword. With this option enabled, functions or
routines expect parameters to be passed in registers.

Default = C (-pc)

Memory model

The Memory Model section lets you specify the organization of segments for code and
data in your 16-bit programs. All .OBJ and .LIB files in your program should be
compiled in the same memory model.

The options are

� Model
� Assume SS equals DS
Options

� Put constant strings in code segments
� Far virtual tables
� Automatic far data
� Fast huge pointers
� Far data threshold

Paradigm C++ User's Guide38

Assume SS equals DS
The Assume SS Equals DS options specify how the compiler considers the stack
segment (SS) and the data segment (DS).

The memory model you use determines whether the stack segment (SS) is equal to the
data segment (DS). Usually, the compiler assumes that SS is equal to DS in the small and
medium memory models.

Command-line equivalent: -Fs-

The compiler assumes that the SS is never equal to DS. This is always the case in the
compact and large memory models.

Command-line equivalent: -Fs

The compiler always assumes that SS is equal to DS in all memory models. You can use
this option when porting code originally written for an implementation that makes the
stack part of the data segment but you will have to provide replacement startup code for
this option to work.

Default = Default for Memory Model

Automatic far data
Command-line equivalent: -Ff

When the Automatic Far Data option is enabled, the compiler automatically places data
objects larger than or equal to the threshold size into far data segments. The threshold
size defaults to 32,767. This option is useful for code that doesn’t use the huge memory
model, but declares enough large global variables that their total size is close to or
exceeds 64K. This option has no effect for programs that use small, and medium memory
models.

This option and the Far Data Threshold input box work together. The Far Data
Threshold specifies the minimum size above that which data objects will be automatically
made far.

If you use this option with the Generate COMDEFs option (-Fc), the COMDEFs
become far in the compact, large, and huge models.

Default = OFF

The command-line option -Fm enables all the other -F options (-Fc, -Ff, and -Fs). You
can use -Fm as a handy shortcut when porting code from other compilers. To do this in
the Paradigm C++ IDE, check the Automatic Far Data and Always options on this
Project Options page, and the Generate COMDEFs option on the Compiler|Floating
Point page.

Page alignment for far segments
Command-line equivalent: -Fa

Allows you to change from paragraph (alignment on a 16-byte boundary) to page
alignment (256-byte boundary alignment) of far segments.

Default for
memory

model

Never

Always

When this option
is disabled, the

size value is
ignored

Chapter 3, Project options 39

Borland C++-compatible far data
Command-line equivalent: -Fb

Enables Borland C++ compatible far data segments. When enabled, Paradigm C++ will
combine initialized and uninitialized far data into the FAR_DATA class instead of
placing initialized far data in class FAR_DATA and uninitialized far data in class
FAR_BSS.

Make all constant data far
Command-line equivalent: -dx

This option forces all constant data to be far so it can be placed in a read-only memory
address space. In the past the _ _far keyword was required to do this but with this
option all constant data will be treated as far by the Paradigm C++ compiler.

Pack far segments
Command-line equivalent: -Fp

This option if enabled allows the packing of far undimensioned arrays into the same
segment, if space permits this. Normally far undimensioned arrays are placed in separate
segments since the compiler did not know the size of the array until the initializers had
been parsed. This option enables a compiler change that calculates the array size to
allow far arrays to be placed in the same segment whenever possible, saving alignment
bytes. Support for this option is preliminary and it can only be enabled using the
Paradigm C++ IDE by adding the #pragma option --Fp to the source code.

Far data threshold
Command-line equivalent: -Ff=size, where size= threshold size

Use Far Data Threshold to specify the size portion needed to complete the Automatic
Far Data option.

Default = 32767 (if Automatic Far Data is disabled, this option value is ignored)

Far virtual tables
Command-line equivalent: -Vf

When you turn this option on, the compiler creates virtual tables in the code segment
instead of the data segment, unless you override this option using the Far Virtual Tables
Segment (-zV) or Far Virtual Tables Class (-zW) options. Virtual table pointers are
made into full 32-bit pointers (which is done automatically if you are using the huge
memory model).

You can use Far Virtual Tables to remove the virtual tables from the data segment
(which might be getting full). You might also use this option to share objects (of classes
with virtual functions) between modules that use different data segments.

You must compile all modules that might share objects entirely with or entirely without
this option.

You can get the same effect by using the huge or _export modifiers on a class-by-class
basis.

This option changes the mangled names of C++ objects.

Default = OFF

☞☞☞☞

Paradigm C++ User's Guide40

Fast huge pointers
Command-line equivalent: -h

This option offers an alternative method of calculating huge pointer expressions.

For 16-bit real-mode programs, this option offers a faster method of “normalizing” than
the standard method. (Normalizing is resolving a memory address so that the offset is
always less than 16.) When you use this option, huge pointers are normalized only when
a segment wraparound occurs in the offset part, which causes problems with huge arrays
if an array element crosses a segment boundary.

Usually, Paradigm C++ normalizes a huge pointer whenever adding or subtracting from
it. This ensures, for example, that if you have an array of structs that’s larger than 64K,
indexing into the array and selecting a struct field always works with structs of any size.
Paradigm C++ accomplishes this by always normalizing the results of huge pointer
operations--the address offset contains a number that is no higher than 15 and a segment
wraparound never occurs with huge pointers. The disadvantage of this approach is that it
tends to be quite expensive in terms of execution speed.

Default = OFF

Model
The Model options specify the memory model you want to use. The memory model you
choose determines the default method of memory addressing.

Command-line equivalent: -ms

Use the small model for average size applications. The code and data segments are
different and don't overlap, so you have 64K of code and 64K of data and stack. Near
pointers are always used.

The -ms! command-line option compiles using the small model and assumes DS != SS.
To achieve this in the Paradigm C++ IDE, you need to check both the Small and Never
options.

Command-line equivalent: -mm

Use the medium model for large programs that do not keep much data in memory. Far
pointers are used for code but not for data. Data and stack together are limited to 64K,
but code can occupy up to 1 MB.

The -mm! command-line option compiles using the medium model and assumes DS !=
SS. To achieve this in the Paradigm C++ IDE, you need to check both the Meduim and
Never options.

The net effect of the -ms! and -mm! options is actually very small. If you take the
address of a stack variable (parameter or auto), the default (DS == SS) is to make the
resulting pointer a near (DS relative) pointer. This way, you can assign the address to a
default-sized pointer in those models without problems. When DS != SS, the pointer
type created when you take the address of a stack variable is an _ss pointer. This means
that the pointer can be freely assigned or passed to a far pointer or to an _ss pointer. But
for the memory models affected, assigning the address to a near or default-sized pointer
produces a “Suspicious pointer conversion” warning. Such warnings are usually errors.

Small

Medium

☞☞☞☞

Chapter 3, Project options 41

Command-line equivalent: -mc

Use the compact model if your code is small but you need to address a lot of data. The
Compact model is the opposite of the medium model: far pointers are used for data but
not for code; code is limited to 64K, pointers can point almost anywhere. All functions
are near by default and all data pointers are far by default.

Command-line equivalent: -ml

Use the large model for fairly large real mode applications or any extended mode
application. Far pointers are used for both code and data. Data is limited to 1MB. Far
pointers can point almost anywhere. All functions and data pointers are far by default.

Command-line equivalent: -mh, 16-bit real mode only

Use the huge model for very large applications only. Far pointers are used for both code
and data. Paradigm C++ normally limits the size of all static data to 64K; the huge
memory model sets aside that limit, allowing data to occupy more than 64K.

Default = Large in the Paradigm C++ IDE; Small in PCC.EXE

Put constant strings in code segments
Command-line equivalent: -dc

This option moves all string literals from the data segment to the code segment of the
generated object file, making the data type const.

Use this option only with compact, large, or huge memory models since far data pointers
are needed to access the string literals in the code segment.

Using this option saves data segment space. This is true especially in large programs with
a large number of literal strings. This option shifts the burden from the data segment to
the code segment, so that the string literals are no longer copied to RAM.

Default = OFF

Processor

The Processor options let you specify the minimum CPU type compatible with your
program. These options introduce instructions specific to the CPU type you select to
increase performance.

The options are

� Instruction set
� Data alignment

16-bit instruction set
The Instruction Set options specify for which CPU instruction set the compiler should
generate code.

Command-line equivalent: -1-

Compact

Large

Huge

☞☞☞☞

8086

Paradigm C++ User's Guide42

Choose the 8086 option if you want the compiler to generate 16-bit code for the 8086-
compatible instruction set. (To generate 8086 code, you must not turn on the options -2,
-3, or -4, or -5.) This option is the default for 16-bit.

Command-line equivalent: -1

Choose the 80186 option if you want the compiler to generate extended 16-bit code for
the 80186 instruction set. Also supports the 80286 running in Real mode.

Command-line equivalent: -2

Choose the 80286 option if you want the compiler to generate 16-bit code for the 80286
protected-mode-compatible instruction set.

Command-line equivalent: -3

Choose the 80386 option if you want the compiler to generate 16-bit code for the 80386
protected-mode-compatible instruction set.

Command-line equivalent: -4

Choose the i486 option if you want the compiler to generate 80386/i486 instructions
running in enhanced-mode Windows.

Default = 8086 (-1-)

Command-line equivalent: -5

Choose the Pentium option if you want the compiler to generate Pentium instructions
running in enhanced-mode Windows.

Data alignment
The Data Alignment options let you choose the compiler aligns data in stored memory.
Word, double-word, and quad-word alignment forces integer-size and larger items to be
aligned on memory addresses that are a multiple of the type chosen. Extra bytes are
inserted in structures to ensure that members align correctly.

Command-line equivalent: -a1 or -a-

When Byte Alignment is turned on, the compiler does not force alignment of variables or
data fields to any specific memory boundaries; the compiler aligns data at either even or
odd addresses, depending on which is the next available address.

While byte-wise alignment produces more compact programs, the programs tend to run
a bit slower. The other data alignment options increase the speed that 80x86 processors
fetch and store data.

Command-line equivalent: -a2

When Word Alignment is on, the compiler aligns non-character data at even addresses.
Automatic and global variables are aligned properly. char and unsigned char variables

80186

80286

80386

i486

Pentium

Byte
alignment

Word
alignment (2-

byte)

Chapter 3, Project options 43

and fields can be placed at any address; all others are placed at an even-numbered
address.

Command-line equivalent: -a4, 32-bit only

Double Word alignment aligns non-character data at 32-bit word (4-byte) boundaries.

Command-line equivalent: -a8, 32-bit only

Quad Word alignment aligns non-character data at 64-bit word (8-byte) boundaries.

Default = Byte Alignment (-a-)

Segment names code

Segment Names Code options let you specify a new code segment name and reassign the
group and class.

The options are

� Code segment
� Code group
� Code class

Code
Use Code to change the name of the code segment as well as the code group and class.

In all options, use an asterisk (*) for name to select the default segment names.

Command-line equivalent = -zCname

Sets the name of the code segment to name. By default, the code segment is named
_CODE for near code and modulename_TEXT for far code, except for the medium and
large models where the name is filename_TEXT (filename is the source file name).

Command-line equivalent = -zPname

Causes any output files to be generated with a code group for the code segment named
name.

Command-line equivalent = -zAname

Changes the name of the code segment class to name. By default, the code segment is
assigned to class CODE.

Default = * (default segment name) for all options

Segment names data

Use Segment Names Data to change the default segment, group, and class names for
initialized and uninitialized data.

Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Double word
(4-byte)

Quad word
(8-byte)

Do not change
the settings in
this dialog box
unless you are

an expert.

Code
segment

Code group

Code class

☞☞☞☞

Paradigm C++ User's Guide44

The options available are

� Initialized Data
� Uninitialized Data

Initialized data
Use Initialized data to change the default segment, group, and class names for initialized
data.

In all options, use an asterisk (*) for name to select the default segment names.

Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Command-line equivalent = -zTname

Sets the name of the initialized data segment to name. By default, the initialized data
segments class is named DATA.

Default = * (default segment name) for all options

Command-line equivalent = -zSname

Sets the name of the initialized data segment group to name. By default, the data group
is named DGROUP.

Command-line equivalent = -zRname

Sets the name of the initialized data segment to name. By default, the initialized data
segment is named _DATA for near data and modulename_DATA for far data.

Uninitialized data
Use Uninitialized Data to change the default segment, group, and class names for code
uninitialized data.

In all options, use an asterisk (*) for name to select the default segment names.

Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Command-line equivalent = -zBname

Sets the name of the uninitialized data segment class to name. By default, the
uninitialized data segments are assigned to class BSS.

Default = * (default segment name) for all options

Command-line equivalent = -zGname

Sets the name of the uninitialized data segment group to name. By default, the data
group is named DGROUP.

☞☞☞☞

Initialized
data class

Initialized
data group

Initialized
data

segment

☞☞☞☞

Uninitialized
data (BSS

class)

Uninitialized
data (BSS

group)

Chapter 3, Project options 45

Command-line equivalent = -zDname

Sets the name of the uninitialized data segment. By default, the uninitialized data
segment is named _BSS for near uninitialized data and modulename_BBS for far
uninitialized data.

Segment names far data

16-bit Compiler|Segment Names Far Data options set the far data segment name, group,
class name, and the far virtual tables segment name and class.

Far initialized data
Use the far uninitialized data options to change the default segment, group, and class
names for far initialized data. These options also apply to far uninitialized data if the -Fb
option is enabled. In all options, use an asterisk (*) for name to select the default
segment names.

Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Command-line equivalent = -zFname

Sets the name of the class for _ _far initialized objects to name. By default, the name is
FAR_DATA.

Default = * (default segment name) for all options

Command-line equivalent = -zHname

Causes _ _far initialized objects to be placed into the group name. By default, far objects
are not placed into a group.

Command-line equivalent = -zEname

Sets the name of the segment where _ _far initialized objects are placed to name. By
default, the segment name is the name of the object module followed by _DATA.

Far uninitialized data
Use the far uninitialized data options to change the default segment, group, and class
names for far uninitialized data. In all options, use an asterisk (*) for name to select the
default segment names.

Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Command-line equivalent = -zYname

Sets the name of the class for _ _far uninitialized objects to name. By default, the name
is FAR_BSS.

Default = * (default segment name) for all options

Uninitialized
data (BSS
segment)

☞☞☞☞

Far data
class

Far data
group

Far data
segment

☞☞☞☞

Far
uninitialized

data class

Paradigm C++ User's Guide46

Command-line equivalent = -zZname

Causes uninitialized _ _far objects to be placed into the group name. By default, far
uninitialized objects are not placed into a group.

Command-line equivalent = -zXname

Sets the name of the segment where uninitialized _ _far objects are placed to name. By
default, the segment name is the name of the object module followed by _BSS.

Far virtual tables
Use Far Virtual Tables to change the default segment and class names virtual tables.

In all options, use an asterisk (*) for name to select the default segment names.

Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Command-line equivalent = -zWname

Sets the name of the far virtual table class segment to name. By default, far virtual table
classes are generated in the CODE segment.

Default = * (default segment name) for all options

Command-line equivalent = -zVname

Sets the name of the _ _far virtual table segment to name. By default, far virtual tables
are generated in the CODE segment.

Entry/Exit code

These options specify which type of prolog and epilog code the compiler generates for
each module's functions.

32-bit compiler options

The 32-bit Compiler page contains options specific to the compiler used for 32-bit
protected mode development.

Paradigm optimizing compiler

The Paradigm optimizing compiler is a fast compiler and it produces small executable
files. If you are compiling from the command line, use PCC32.EXE.

32-bit compiler options

32-bit compiler options listed on the Processor and Calling Convention pages affect the
compilation of all 32-bit applications. Because 32-bit programs use a flat memory model
(they are not segmented), there are fewer options to configure than for 16-bit programs.

Far
uninitialized
data group

Far
uninitialized

data
segment

☞☞☞☞

Virtual table
class

Virtual table
segment

Chapter 3, Project options 47

Calling conventions
Calling Convention options tell the compiler which calling sequences to generate for
function calls. The C, Pascal, and Register calling conventions differ in the way each
handles stack cleanup, order of parameters, case, and prefix of global identifiers.

You can use the _ _cdecl, _ _pascal, _ _fastcall, or _ _stdcall keywords to override the
default calling convention on specific functions.

Command-line equivalent: -pc, -p-

This option tells the compiler to generate a C calling sequence for function calls
(generate underbars, case sensitive, push parameters right to left). This is the same as
declaring all subroutines and functions with the _ _cdecl keyword. Functions declared
using the C calling convention can take a variable parameter list (the number of
parameters does not need to be fixed).

You can use the _ _pascal, _ _fastcall, or _ _stdcall keywords to specifically declare a
function or subroutine using another calling convention.

Command-line equivalent: -p

This option tells the compiler to generate a Pascal calling sequence for function calls (do
not generate underbars, all uppercase, calling function cleans stack, pushes parameters
left to right). This is the same as declaring all subroutines and functions with the
_ _pascal keyword. The resulting function calls are usually smaller and faster than those
made with the C (-pc) calling convention. Functions must pass the correct number and
type of arguments.

You can use the _ _cdecl, _ _fastcall, or _ _stdcall keywords to specifically declare a
function or subroutine using another calling convention.

Command-line equivalent: -pr

This option forces the compiler to generate all subroutines and all functions using the
Register parameter-passing convention, which is equivalent to declaring all subroutine
and functions with the _ _fastcall keyword. With this option enabled, functions or
routines expect parameters to be passed in registers.

You can use the _ _pascal, _ _cdecl, or _ _stdcall keywords to specifically declare a
function or subroutine using another calling convention.

Command-line equivalent: -ps

This option tells the compiler to generate a Stdcall calling sequence for function calls
(does not generate underscores, preserve case, called function pops the stack, and
pushes parameters right to left). This is the same as declaring all subroutines and
functions with the _ _stdcall keyword. Functions must pass the correct number and type
of arguments.

You can use the _ _cdecl, _ _pascal, _ _fastcall keywords to specifically declare a
function or subroutine using another calling convention.

Default = C (-pc)

These options
should be used
by experts only.

C

Pascal

Register

Standard
Call

Paradigm C++ User's Guide48

Processor
The 32-bit Compiler Processor options specify which CPU instruction set to use and
how to handle floating-point code for 32-bit programs.

The Instruction Set options specify for which CPU instruction set the compiler should
generate code.

Command-line equivalent: -3

Choose the 80386 option if you want the compiler to generate 80386 protected-mode
compatible instructions.

Command-line equivalent: -4

Choose the i486 option if you want the compiler to generate i486 protected-mode
compatible instructions.

Command-line equivalent: -5

Choose the Pentium option if you want the compiler to generate Pentium instructions.

While this option increases the speed at which the application runs on Pentium machines,
expect the program to be a bit larger than when compiled with the 80386 or i486
options. In addition, Pentium-compiled code will sustain a performance hit on non-
Pentium systems.

Default = 80386 (-3)

Build attributes

Build attributes affect whether or not a node is built during compilation. The icons
associated with each of these options are displayed next to the nodes in the Project
hierarchy diagram. Build attributes are set in the Options|Project dialog box.

Always build

Check Always Build and the node is always built, even if it has not changed.

Build when out of date

Check Build When Out of Date and the node is built only if it has changed.

Never build

Check Never Build and the node is not built.

Can't build

Check Can't Build to be notified when a node cannot be built.

Exclude from parent

Check Exclude from Parent and the system indicates when a node should be excluded
from parent (such as with source pools).

32-bit
instruction

set
80386

i486

Pentium

Chapter 3, Project options 49

C++ options

Project|C++ Options affect compilation of all C and C++ programs. For most of the C++
options, you'll usually want to use the default settings.

C++ compatibility

Use the C++ Compatibility options to handle C++ compatibility issues, such as handling
'char' types, specifying options about hidden pointers, passing class arguments, adding
hidden members and code to a derived class, passing the 'this' pointer to 'Pascal' member
functions, changing the layout of classes, or insuring compatibility when class instances
are shared with non-C++ code or code compiled with previous versions of Paradigm
C++.

'deep' virtual bases
(Command-line equivalent: -Vv)

When a derived class overrides a virtual function which it inherits from a virtual base
class, and a constructor or destructor for the derived class calls that virtual function
using a pointer to the virtual base class, the compiler can sometimes add hidden members
to the derived class. These “hidden members” add code to the constructors and
destructors.

This option directs the compiler not to add the hidden members and code so that the
class instance layout is the same as with previous version of Paradigm C++; the compiler
does not change the layout of any classes to relax the restrictions on pointers.

Default = OFF

Calling convention mangling compatibility
(Command-line equivalent: -VC)

When this option is enabled, the compiler disables the distinction of function names
where the only possible difference is incompatible code generation options. For example,
with this option enabled, the linker will not detect if a call is made to a _ _fastcall
member function with the cdecl calling convention.

This option is provided for backward compatibility only; it lets you link old library files
that you cannot recompile.

Default = OFF

Disable constructor displacements
(Command-line equivalent: -Vc)

When the Disable Constructor Displacements option is enabled, the compiler does not
add hidden members and code to a derived class (the default).

This option insures compatibility with previous versions of the compiler.

Default = OFF

Do not treat 'char' as distinct type
(Command-line equivalent: -K2, 16-bit)

Allow only signed and unsigned char types. The Paradigm C++ compiler allows for
signed char, unsigned char, and char data types. This option treats char as signed.

Paradigm C++ User's Guide50

This option is provided for compatibility with previous versions of Paradigm C++ (3.1
and earlier) and supports only 16-bit programs.

Default = OFF

Don't restrict scope of 'for' loop expression variables
Command-line equivalent: -Vd

This option lets you specify the scope of variables declared in for loop expressions. The
output of the following code segment changes, depending on the setting of this option.

int main(void)
{

for(int i=0; i<10; i++)
{

cout << "Inside for loop, i = " << i << endl;
} //end of for-loop block

cout << "Outside for loop, i = " << i << endl; //error without
-Vd

} //end of block containing for loop

If this option is disabled (the default), the variable i goes out of scope when processing
reaches the end of the for loop. Because of this, you'll get an Undefined Symbol
compilation error if you compile this code with this option disabled.

If this option is enabled (-Vd), the variable i goes out of scope when processing reaches
the end of the block containing the for loop. In this case, the code output would be:

Inside for loop, i = 0
...
Outside for loop, i = 10

Default = OFF

Pass class values via reference to temporary
Command-line equivalent: -Va

When this option is enabled, the compiler passes class arguments using the "reference to
temporary" approach. When an argument of type class with constructors is passed by
value to a function, this option instructs the compiler to create a temporary variable at
the calling site, initialize this temporary variable with the argument value, and pass a
reference from this temporary to the function.

Default = OFF

Push 'this' first for Pascal member functions
Command-line equivalent: -Vp

When this option is enabled, the compiler passes the this pointer to Pascal member
functions as the first parameter on the stack.

By default, the compiler passes the this parameter as the last parameter on the stack,
which permits smaller and faster member function calls.

Default = OFF

This option
insures

compatibility with
previous

versions of the
compiler.

Chapter 3, Project options 51

Treat 'far' classes as 'huge'
Command-line equivalent -Vh

When this option is enabled, the compiler treats all classes declared _ _far as if they were
declared as _ _huge. For example, the following code normally fails to compile.
Checking this option allows the following code fragment to compile:

struct __huge A
{
virtual void f(); // A vtable is required to see the error.
};
struct __far B : public A
{
};
// Error: Attempting to derive a far class from the huge base 'A'.

Default = OFF

Virtual base pointers
When a class inherits virtually from a base class, the compiler stores a hidden pointer in
the class object to access the virtual base class subobject.

Command-line equivalent: -Vb-

When the Always Near option is on, the hidden pointer will always be a near pointer.
(When a class inherits virtually from a base class, the compiler stores a hidden pointer in
the class object to access the virtual base class subobject.)

Command-line equivalent: -Vb

When the Same Size as ‘this' Pointer option is on, the compiler matches the size of the
hidden pointer to the size of the this pointer in the instance class.

This allows for compatibility with previous versions of the compiler.

Default = Always Near (-Vb-)

Vtable pointer follows data members
Command-line equivalent -Vt

When this option is enabled, the compiler places the virtual table pointer after any
nonstatic data members of the specified class.

This option insures compatibility when class instances are shared with non-C++ code and
when sharing classes with code compiled with previous versions of Paradigm C++.

Default = OFF

Exception handling/RTTI

Use the Exceptions Handling options to enable or disable exception handling and to tell
the compiler how to handle the generation of run-time type information.

If you use exception handling constructs in your code and compile with exceptions
disabled, you'll get an error.

The Virtual Base
Pointers options
specify options

about the hidden
pointer.

Always near

This option
allows for the
smallest and

most efficient
code.

Same size
as 'this'
pointer

Paradigm C++ User's Guide52

Enable exceptions
Command-line equivalent: -x

When this option is enabled, C++ exception handling is enabled. If this option is disabled
(-x-) and you attempt to use exception handling routines in your code, the compiler
generates error messages during compilation.

Disabling this option makes it easier for you to remove exception handling information
from programs; this might be useful if you are porting your code to other platforms or
compilers.

Disabling this option turns off only the compilation of exception handling code; your
application can still include exception code if you link .OBJ and library files that were
built with exceptions enabled (such as the Paradigm standard libraries).

Default = ON

Enable run-time type information
Command-line equivalent: -RT

This option causes the compiler to generate code that allows run-time type identification.

In general, if you set Enable Destructor Cleanup (-xd), you will need to set this option as
well.

Default = ON

Command-line equivalent: -xp

When this option is enabled, run-time identification of exceptions is available because the
compiler provides the file name and source-code line number where the exception
occurred. This enables the program to query file and line number from where a C++
exception was thrown.

Default = OFF

Command-line equivalent: -xd

When this option is enabled and an exception is thrown, destructors are called for all
automatically declared objects between the scope of the catch and throw statements.

In general, when you enable this option, you should also set Enable Runtime Type
Information (-RT) as well.

Destructors are not automatically called for dynamic objects allocated with new, and
dynamic objects are not automatically freed.

Default = ON

Command-line equivalent: -xf

When this option is enabled, inline code is expanded for every exception handling
function. This option improves performance at the cost of larger executable file sizes.

If you select both Fast Exception Prologs and Enable Compatible Exceptions (-xc), fast
prologs will be generated but Enable Compatible Exceptions will be disabled (the two
options are not compatible).

☞☞☞☞

Enable
exception

location
information

Enable
destructor

cleanup

☞☞☞☞

Enable fast
exception

prologs

☞☞☞☞

Chapter 3, Project options 53

Default = OFF

Command-line equivalent: -xc, 16-bit only

This option allows relocatable load modules and .LIBs built with Paradigm C++ to be
compatible with executables built with other products. When Enable Compatible
Exceptions is disabled, some exception handling information is included in the
relocatable load module, which could cause compatibility issues.

Default = OFF

General

Zero-length empty base classes
Command-line equivalent: -Ve

Usually the size of a class is at least one byte, even if the class does not define any data
members. When this option is enabled, the compiler ignores this unused byte for the
memory layout and the total size of any derived classes.

Default = OFF

Member pointer

Use C++ Member Pointers options to direct member pointers and affect how the
compiler treats explicit casts.

Honor precision of member pointers
Command-line equivalent: -Vmp

When this option is enabled, the compiler uses the declared precision for member pointer
types. Use this option when a pointer to a derived class is explicitly cast as a pointer-to-
member of a simpler base class (when the pointer is actually pointing to a derived class
member).

Default = OFF

Member pointer representation
The C++ Member pointers options specify what member pointers can point to.

Command-line equivalent: -Vmv

When this option is enabled, the compiler places no restrictions on where member
pointers can point. Member pointers use the most general (but not always the most
efficient) representation.

Default = ON

Command-line equivalent: -Vmm

When this option is enabled, member pointers can point to members of multiple
inheritance classes (with the exception of virtual base classes).

Default = OFF

Enable
compatible
exceptions

Support all
cases

Support
multiple

inheritance

Paradigm C++ User's Guide54

Command-line equivalent: -Vms

When this option is enabled, member pointers can point only to members of base classes
that use single inheritance.

Default = OFF

Command-line equivalent: -Vmd

When this option is enabled, member pointers use the smallest possible representation
that allows member pointers to point to all members of their particular class. If the class
is not fully defined at the point where the member pointer type is declared, the most
general representation is chosen by the compiler and a warning is issued.

Default = OFF

Templates

Use the options under C++ Options|Templates to tell the compiler how to generate
template instances in C++.

Templates instance generation
The Template Instance Generation options specify how the compiler generates template
instances in C++.

Command-line equivalent: -Jg

When the Smart option is enabled, the compiler generates public (global) definitions for
all template instances. If more than one module generates the same template instance, the
linker automatically merges duplicates to produce a single copy of the instance.

To generate the instances, the compiler must have available the function body (in the
case of a template function) or the bodies of member functions and definitions for static
data members (in the case of a template class), typically in a header file.

Default = ON

Command-line equivalent: -Jgd

When the Global option is on, the compiler generates public (global) definitions for all
template instances.

The Global option does not merge duplicates. If the same template instance is generated
more than once, the linker reports public symbol re-definition errors.

Default = OFF

Command-line equivalent: -Jgx

When the External option is on, the compiler generates external references to all
template instances.

When you use this option, all template instances in your code must be publicly defined in
another module with the external option (-Jgd) so that external references are properly
resolved.

Support
single

inheritance

Smallest for
class

Smart

This is a
convenient way

of generating
template

instances.

Global

External

Chapter 3, Project options 55

Default = OFF

Virtual tables

C++ Options|Virtual Tables options control C++ virtual tables and the expansion of
inline functions when debugging.

Virtual tables linkage
The C++ Virtual Tables options control C++ virtual tables and the expansion of inline
functions when debugging.

Command-line equivalent: -V

This option generates common C++ virtual tables and out-of-line inline functions across
the modules in your application. As a result, only one instance of a given virtual table or
out-of-line inline function is included in the program.

The Smart option generates the smallest and most efficient executables, but produces
.OBJ and .ASM files compatible only with PLINK and PASM.

Default = ON

Command-line equivalent: -Vs

You use the Local option to generate local virtual tables (and out-of-line inline
functions) so that each module gets its own private copy of each virtual table or inline
function it uses.

The Local option uses only standard .OBJ and .ASM constructs, but produces larger
executables.

Default = OFF

Command-line equivalent: -V0

You use the External option to generate external references to virtual tables. If you don’t
want to use the Smart or Local options, use the External and Public options to produce
and reference global virtual tables.

When you use this option, one or more of the modules comprising the program must be
compiled with the Public option to supply the definitions for the virtual tables.

Default = OFF

Command-line equivalent: -V1

Public produces public definitions for virtual tables. When using the External option (-
V0), at least one of the modules in the program must be compiled with the Public option
to supply the definitions for the virtual tables. All other modules should be compiled with
the External option to refer to that Public copy of the virtual tables.

Default = OFF

Smart

Local

External

☞☞☞☞

Public

Paradigm C++ User's Guide56

Compiler options

Compiler options are common to all C and C++ programs. They directly affect how the
compiler generates code.

Defines

Command-line equivalent: -Dname and -Dname=string

The macro definition capability of Paradigm C++ lets you define and undefine macros
(also called manifest or symbolic constants) in the Paradigm C++ IDE or on the
command line. The macros you define override those defined in your source files.

You can use the $INHERIT and $ENV() macros to specify the defines for the project
node you are modifying.

Defining macros from the Paradigm C++ IDE
Preprocessor definitions (such as those used in #if statements and macro definitions) can
be entered on the Compiler Defines page. The following rules apply when using the
Defines input box:

� Separate multiple definitions with semicolons (;), and assign values with an equal
sign (=). For example:

Switch1;Switch2;Switch3=OFF

� Leading and trailing spaces are stripped, but embedded spaces are left intact.
� If you want to include a semicolon in a macro, precede the semicolon with a

backslash (\).

Defining macros on the command line
On the command line, the -Dname option defines the identifier name to the null string. -
Dname=string defines name to string. In this assignment, string cannot contain spaces
or tabs. You can also define multiple #define options on the command line using either
of the following methods:

� Include multiple definitions after a single -D option by separating each define with a
semicolon (;) and assigning values with an equal sign (=). For example:

PCC.EXE -Dxxx;yyy=1;zzz=NO MYFILE.C

� Include multiple -D options, separating each with a space. For example:
PCC.EXE -Dxxx -Dyyy=1 -Dzzz=NO MYFILE.C

Code generation

Compiler Code Generation options affect how code is generated.

Allocate enums as ints
Command-line equivalent: -b

When the Allocate Enums As Ints option is on, the compiler always allocates a whole
word (a two-byte int for 16-bits or a four-byte int for 32-bits) for enumeration types
(variables of type enum).

When this option is off (-b-), the compiler allocates the smallest integer that can hold the
enumeration values: the compiler allocates an unsigned or signed char if the values of
the enumeration are within the range of 0 to 255 (minimum) or -128 to 127 (maximum),

☞☞☞☞

Chapter 3, Project options 57

or an unsigned or signed short if the values of the enumeration are within the following
ranges:

� 0 to 65,535 (minimum) or -32,768 to 32,767 (maximum) (16-bit)
� 0 to 4,294,967,295 or -2,147,483,648 to 2,147,483,647 (32-bit)

The compiler allocates a two-byte int (16-bit) or a four-byte int (32-bit) to represent the
enumeration values if any value is out of range.

Default = ON

Duplicate strings merged
Command-line equivalent: -d

When you check the Duplicate Strings Merged option, the compiler merges two literal
strings when one matches another. This produces smaller programs (at the expense of a
slightly longer compile time), but can introduce errors if you modify one string.

Default = OFF (-d-)

fastthis
Command-line equivalent: -po, 16-bit only

This option causes the compiler to use the _ _fastthis calling convention when passing
the this pointer to member functions. The this pointer is passed in a register (or a
register pair in 16-bit large data models). Likewise, calls to member functions load the
register (or register pair) with this. Note that you can use _ _fastthis to compile specific
functions in this manner.

When this is a 'near' (16-bit) pointer, it is supplied in the SI register; for 'far' this
pointers, DS:SI is used. If necessary, the compiler saves and restores DS. All references
in the member function to member data are done via the SI register.

The names of member functions compiled with _ _fastthis are mangled differently from
non-fastthis member functions, to prevent mixing the two. It is easiest to compile all
classes with _ _fastthis, but you can compile some classes with _ _fastthis and some
without, as in the following example:
// no -po on the command-line
class X;
#pragma option -po
class Y //Y will use fastthis
{
...
};
class X //X will not use fastthis,
{ //since its class declaration

//appeared before fastthis was turned on
...
};
#pragma option -po-

If you use a makefile to build a version of the class library that has _ _fastthis enabled,
you must define CLASSLIB_ALLOW_po and use the -po option. The
_CLASSLIB_ALLOW_po macro can be defined in
<Your_PCW_dir>\INCLUDE\paradigm.h

If you use a makefile to build a _ _fastthis version of the run-time library, you must
define _RTL_ALLOW_po and use the -po option.

☞☞☞☞

Paradigm C++ User's Guide58

If you rebuild the libraries and use -po without defining the appropriate macro, the linker
emits undefined symbol errors.

Default = OFF

Register variables
These options suppress or enable the use of register variables.

Command-line equivalent: -r-

Choose None to tell the compiler not to use register variables even if you have used the
register keyword.

Command-line equivalent: -rd

Choose Register Keyword to tell the compiler to use register variables only if you use
the register keyword and a register is available. Use this option or the Automatic option
(-r) to optimize the use of registers.

Command-line equivalent: -r

Choose Automatic to tell the compiler to automatically assign register variables if
possible, even when you do not specify a register variable by using the register type
specifier.

Generally, you can keep this option set to Automatic unless you are interfacing with
preexisting assembly code that does not support register variables.

Default = Automatic (-r)

Unsigned characters
Command-line equivalent: -K

When the Unsigned Characters option is on, the compiler treats all char declarations as
if they were unsigned char type, which provides compatibility with other compilers.

Default = OFF (char declarations default to signed; -K-)

Floating point

The Floating Point options specify how the compiler handles floating-point numbers in
your code.

Correct Pentium FDIV flaw
Command-line equivalent: -fp

Some early Pentium chips do not perform specific floating-point division calculations
with full precision. Although your chances of encountering this problem are slim, this
switch inserts code that emulates floating-point division so that you are assured of the
correct result. This option decreases your program's FDIV instruction performance.

Use of this option only corrects FDIV instructions in modules that you compile. The run-
time library also contains FDIV instructions which are not modified by the use of this
switch. To correct the run-time libraries, you must recompile them using this switch.

None

Register
keyword

You can use -rd
in #pragma

options.

Automatic

☞☞☞☞

Chapter 3, Project options 59

The following functions use FDIV instructions in assembly language which are not
corrected if you use this option:

acos cosh pow10l

acosl coshl powl

asin cosl sin

asinl exp sinh

atan expl sinhl

atan2 fmod sinl

atan2l fmodl tan

atanl pow tanh

cos pow10 tanhl

tanl

In addition, this switch does not correct functions that convert a floating-point number to
or from a string (such as printf or scanf).

Default = OFF

No floating point
Command-line equivalent: -f-

Choose No Floating Point if you are not using floating point. No floating-point libraries
are linked when this option is enabled (-f-). If you enable this option and use floating-
point calculations in your program, you will get link errors. When unchecked (-f), the
compiler emulates 80x87 calls at run-time.

Default = OFF (-f)

Fast floating point
Command-line equivalent: -ff

When Fast Floating Point is on, floating-point operations are optimized without regard
to explicit or implicit type conversions. Calculations can be faster than under ANSI
operating mode.

When this option is unchecked (-ff-), the compiler follows strict ANSI rules regarding
floating-point conversions.

Default = OFF

Compiler output

Set control of object file contents on the Compiler Output page.

Autodependency information
Command-line equivalent: -X-

When the Autodependency option is checked (-X-), the compiler generates
autodependency information for all project files with a .C or .CPP extension.

The Project Manager can use autodependency information to speed up compilation
times. The Project Manager opens the .OBJ file and looks for information about files

Paradigm C++ User's Guide60

included in the source code. This information is always placed in the .OBJ file when the
source module is compiled. After that, the time and date of every file that was used to
build the .OBJ file is checked against the time and date information in the .OBJ file. The
source file is recompiled if the dates are different. This is called an autodependency
check.

If the project file contains valid dependency information, the Project Manager does the
autodependency check using that information. This is much faster than reading each
.OBJ file.

When this option is unchecked (-X), the compiler does not generate the autodependency
information.

Modules compiled with autodependency information can use MAKE's autodependency
feature.

Default = ON (-X-)

Generate COMDEFs
Command-line equivalent: -Fc, 16-bit only

Generate COMDEFs generates communal variables (COMDEFs) for global C variables
that are not initialized and not declared as static or extern. Use this option when header
files included in several source files contain global variables.

For example, a definition such as
int SomeArray[256];

could appear in a header file that is then included in many modules. When this option is
on, the compiler generates SomeArray as a communal variable rather than a public
definition (a COMDEF record rather than a PUBDEF record). You can use this option
when porting code that uses a similar feature with another implementation.

The linker generates only one instance of the variable, so it will not be a duplicate
definition linker error. As long as a given variable does not need to be initialized to a
nonzero value, you do not need to include a definition for it in any of the source files.

Default = OFF

Generate underscores
Command-line equivalent: -u

When the Generate Underscores option is on, the compiler automatically adds an
underscore character (_) in front of every global identifier (functions and global
variables) before saving them in the object module. Pascal identifiers (those modified by
the _ _pascal keyword) are converted to uppercase and are not prefixed with an
underscore.

Underscores for C and C++ are optional, but you should turn this option on to avoid
errors if you are linking with the standard Paradigm C++ libraries.

Default = ON

Source

Compiler|Source options set source code interpretation.

Chapter 3, Project options 61

Identifier length
Command-line equivalent: -in, where n = significant characters

Use the Identifier Length input box to specify the number of significant characters (those
which will be recognized by the compiler) in an identifier.

Except in C++, which recognizes identifiers of unlimited length, all identifiers are treated
as distinct only if their significant characters are distinct. This includes variables,
preprocessor macro names, and structure member names.

Valid numbers for n are 0, and 8 to 250, where 0 means use the maximum identifier
length of 250.

By default, Paradigm C++ uses 250 characters per identifier. Other systems (including
some UNIX compilers) ignore characters beyond the first eight. If you are porting to
other environments, you might want to compile your code with a smaller number of
significant characters, which helps you locate name conflicts in long identifiers that have
been truncated.

Default = 250

Language compliance
The Language Compliance options tell the compiler how to recognize keywords in your
programs.

Command-line equivalents: -A-, -AT

The Paradigm Extensions option tells the compiler to recognize Paradigm's extensions to
the C language keywords, including near, far, huge, asm, cdecl, pascal, interrupt,
_export, _ds, _cs, _ss, _es, and the register pseudovariables (_AX, _BX, and so on).
For a complete list of keywords, see the keyword index.

Command-line equivalent: -A

The ANSI option compiles C and C++ ANSI-compatible code, allowing for maximum
portability. Non-ANSI keywords are ignored as keywords.

Command-line equivalent: -AU

The UNIX V option tells the compiler to recognize only UNIX V keywords and treat
any of Paradigm's C++ extension keywords as normal identifiers.

Command-line equivalent: -AK

The Kernighan and Ritchie option tells the compiler to recognize only the K&R
extension keywords and treat any of Paradigm's C++ extension keywords as normal
identifiers.

If you get declaration syntax errors from your source code, check that this option is set
to Paradigm Extensions.

Default = Paradigm Extensions (-A-)

� Accepts and ignores directives

Paradigm
extensions

ANSI

UNIX V

Kernighan
and Ritchie

Paradigm C++ User's Guide62

Nested comments
Command-line equivalent: -C

When the Nested Comments option is on, you can nest comments in your C and C++
source files.

Nested comments are not allowed in standard C implementations, and they are not
portable.

Default = OFF

Debugging

Compiler Debugging options affect the generation of debug information during
compilation. When linking larger .OBJ files, you may need to turn these options off to
increase the available system resources.

Browser reference information in OBJs
Command-line equivalent: -R

When the Browser Info In OBJs option is on, the compiler generates additional browser-
specific information such as location and reference information. This information is then
included in your .OBJ files. In addition to this option, you need debugging information (-
v) to use the Browser.

When this option is off, you can link and create larger object files. While this option does
not affect execution speed, it does affect compilation time and program size.

Default = OFF

Generate coverage information in OBJs
Command-line equivalent: -vc

When the Generate coverage information in OBJs option is on, the compiler enables
coverage records in object files. This is similar to the -v option except that it controls
coverage records, not debug records. It is disabled by default.

Default = OFF

Line numbers
Command-line equivalent: -y

When the Line Numbers option is on, the compiler automatically includes line numbers in
the object and object map files. Line numbers are used by both the Paradigm C++ IDE
and by the integrated debugger (if available) or any 3rd party source level debugging
solution.

Although the Debug Info in OBJs option (-v) automatically generates line number
information, you can turn that option off (-v-) and turn on Line Numbers (-y) to reduce
the size of the debug information generated. With this setup, you can still step, but you
will not be able to watch or inspect data items.

Including line numbers increases the size of the object and map files but does not affect
the speed of the executable program.

When Line Numbers is on, make sure you turn off Jump Optimization in the 16-bit
specific optimizations and Pentium scheduling in the 32-bit Compiler options. When
these options are enabled, When this option is enabled, the source code will not exactly

☞☞☞☞

Chapter 3, Project options 63

match the generated machine instructions, which can make stepping through code
confusing.

Default = OFF

Out-of-line inline functions
Command-line equivalent: -vi

When the Out-of-line inline functions option is on, the compiler expands C++ inline
functions inline.

To control the expansion of inline functions, the Debug information in OBJs option (-v)
acts slightly different for C++ code: when inline function expansion is disabled, inline
functions are generated and called like any other function.

Because debugging with inline expansion can be difficult, the command-line compilers
provide the following options:

� -v turns debugging on and inline expansion off
� -v- turns debugging off and inline expansion on
� -vi turns inline function expansion on
� -vi- turns inline expansion off (inline functions are expanded out of line)

For example, if you want to turn both debugging and inline expansion on, use the -v and
-vi options.

Default = OFF

Standard stack frame
Command-line equivalent: -k

When the Standard stack frame option is on, the compiler generates a standard stack
frame (standard function entry and exit code). This is helpful when debugging, since it
simplifies the process of stepping through the stack of called subroutines.

When this option is off, any function that does not use local variables and has no
parameters is compiled with abbreviated entry and return code. This makes the code
smaller and faster.

The Standard stack frame option should always be on when you compile a source file for
debugging.

Default = ON

Test stack overflow
Command-line equivalent: -N, 16-bit only

When this option is on, the compiler generates stack overflow logic at the entry of each
function.

Even though this is costly in terms of both program size and speed, it can be a real help
when trying to track down difficult stack overflow bugs. If an overflow is detected, the
run-time error message Stack overflow! is generated, and the program exits with
an exit code of 1.

Stack overflow testing is always enabled in the 32-bit compilers (this adds a minimal
overhead to 32-bit programs). (add note sidebar)

Default = OFF

Paradigm C++ User's Guide64

Precompiled headers

Using precompiled header files can dramatically increase compilation speed by storing an
image of the symbol table on disk in a file, then later reloading that file from disk instead
of parsing all the header files again. Directly loading the symbol table from disk is much
faster than parsing the text of header files, especially if several source files include the
same header file.

You can use the $INHERIT and $ENV() macros in any of the precompiled header
input fields.

Cache precompiled header
Command-line equivalent: -Hc

When you enable this option, the compiler caches the precompiled headers it generates.
This is useful when you are precompiling more than one header file.

To use this option, you must also enable the Generate and Use (-H) precompiled header
option.

Default = OFF

Precompiled header name
Command-line equivalent: -H=filename

This option lets you specify the name of your precompiled header file. The compilers set
the name of the precompiled header to filename.

When this option is enabled, the compilers generate and use the precompiled header file
that you specify.

Precompiled headers
Using precompiled headers can dramatically increase compilation speeds, though they
require a considerable amount of disk space.

Command-line equivalent: -H

When this option is enabled, the Paradigm C++ IDE generates and uses precompiled
headers. The default file name is <projectname>.CSM for the Paradigm C++ IDE
projects and PCDEF.CSM (16-bit) or PC32DEF.CSM (32-bit) for the command-line
compilers.

Command-line equivalent: -Hu

When the Use But Do Not Generate option is on, the compilers use preexisting
precompiled header files; new precompiled header files are not generated.

Command-line equivalent: -H-

When the Do not generate or use option is on, the compilers do not generate or use
precompiled headers.

Default = Do not generate or use (-H-)

☞☞☞☞

☞☞☞☞

Generate
and use

Use but do
not generate

Do not
generate or

use

Chapter 3, Project options 65

Stop precompiling after header file
Command-line equivalent: -H"xxx"; for example -H"stdio.h"

This option terminates compiling the precompiled header after the compiler compiles the
file specified as xxx. You can use this option to reduce the amount of disk space used by
precompiled headers.

When you use this option, the file you specify must be included from a source file for the
compiler to generate a .CSM file.

You cannot specify a header file that is included from another header file. For example,
you cannot list a header included by windows.h because this would cause the
precompiled header file to be closed before the compilation of windows.h was competed.

Directories options

The Directories options tell the Paradigm C++ compiler where to find or where to put
header files, library files, source code, output files, and other program elements.

Source directories

The Source directories options let you specify the directories that contain your standard
include files, library and .OBJ files, and program source files.

Click the down-arrow icon or press Alt+Down arrow to display the history list of
previously entered directory names.

You can use the $INHERIT and $ENV() macros in any of the following input fields.

Include
Command-line equivalent: -Ipath, where path = directory path

Use the Include list box to specify the drive and/or directories that contain program
include files. Standard include files are those given in angle brackets (<>) in an #include
statement (for example, #include <myfile>).

The Paradigm compilers and linkers use specific file search algorithms to locate the files
needed to complete the compilation and link cycles.

Library
Command-line equivalent: -Lpath, where path = directory path

Use the Library list box to specify the directories that contain the Paradigm C++ startup
object files (C0x.OBJ), run-time library files (.LIB files), and all other .LIB files. By
default, the linker looks for them in the directory containing the project file (or in the
current directory if you’re using the command-line compiler).

You can also use the linker option /Lpath to specify the library search directories when
you link files from the command line.

Source
The Source list box specifies the directories where the compiler and the integrated
debugger should look for your project source files.

☞☞☞☞

☞☞☞☞

☞☞☞☞

☞☞☞☞

Paradigm C++ User's Guide66

Specifying multiple directories
Multiple directory names are allowed in each of the list boxes; use a semicolon (;) to
separate the specified drives and directories. To display a history list of previously
entered directory names, click the down-arrow icon or press Alt+Down arrow.

From the command line, you can enter multiple include and library directories in the
following ways:

� You can stack multiple entries with a single -L or -I option by separating directories
with a semicolon:

PCC.EXE -Ldirname1;dirname2;dirname3 -Iinc1;inc2;inc3 myfile.c

� You can place more than one of each option on the command line, like this:
PCC.EXE -Ldirname1 -Ldirname2 -Iinc1 -Iinc2 -Iinc3 myfile.c

� You can mix listings:
PCC.EXE -Ldirname1;dirname2 -Iinc1 -Ld:dirname3 -Iinc2;inc3
myfile.c

If you list multiple -L or -I options on the command line, the result is cumulative; the
compiler searches all the directories listed in order from left to right.

File search algorithms

#include-file search algorithms
Paradigm C++ searches for files included in your source code with the #include directive
in the following ways:

If you specify a path and/or directory with your include statement, Paradigm C++
searches only the location specified. For example, if you have the following statement in
your code:

#include "c:\PARADIGM\include\stdio.h"

the header file stdio.h must reside in the directory C:\PARADIGM\INCLUDE. In
addition, if you use the statement:

#include <stdio.h>

and you set the Include option (-I) to specify the path c:\PARADIGM\include, the
file stdio.h must reside in C:\PARADIGM\INCLUDE.

� If you put an #include <somefile> statement in your source code, Paradigm
C++ searches for "somefile" only in the directories specified with the Include (-I)
option.

� If you put an #include "somefile" statement in your code, Paradigm C++
first searches for "somefile" in the current directory; if it does not find the file
there, it then searches in the directories specified with the Include (-I) option.

Library file search algorithms
The library file search algorithms are similar to those for include files:

� Implicit libraries: Paradigm C++ searches for implicit libraries only in the specified
library directories; this is similar to the search algorithm for #include
<somefile>.

Implicit library files are the ones Paradigm C++ automatically links in and the start-
up object file (C0x.OBJ). To see these files in the Project Manager, turn on run-time

Chapter 3, Project options 67

nodes (choose Options|Environment|Project View, then check Show Runtime
Nodes).

� Explicit libraries: Where Paradigm C++ searches for explicit (user-specified) libraries
depends in part on how you list the library file name. Explicit library files are ones
you list on the command line or in a project file; these are file names with a .LIB
extension.

� If you list an explicit library file name with no drive or directory (like this:
mylib.lib), Paradigm C++ first searches for that library in the current directory.
If the first search is unsuccessful, Paradigm C++ looks in the directories specified
with the Library (-L) option. This is similar to the search algorithm for #include
"somefile".

� If you list a user-specified library with drive and/or directory information (like this:
c:\mystuff\mylib1.lib), Paradigm C++ searches only in the location you
explicitly listed as part of the library path name and not in any specified library
directories.

Output directories

The Output Directories options specify the directories where your relocatable load
module (.EXE), absolutable executable (.AXE), .LIB, .MAP, and .LOC files are placed.
The Paradigm C++ IDE looks for those directories when performing a make or run and
to check dates and times of relocatable load module, .OBJs, and .LIBs. If the entry is
blank, the files are stored in the current directory.

Click the down-arrow icon or press Alt+Down arrow to display the history list of
previously entered directory names.

You can use the $INHERIT and $ENV() macros in any of the following input fields.

Intermediate
Use the Intermediate list box to specify where Paradigm C++ places object (.OBJ) files
when it builds your project. This is also the directory where a tool places any temporary
files that it might create.

Final
Command-line equivalent: -npath, where path = directory path

The Final list box specifies the location where the Paradigm C++ IDE places the
generated target files (for example, relocatable load modules and absolute executables.

Guidelines for entering directory names
Use the following guidelines when entering directories in the Directories options pages.

� You must separate multiple directory path names (if allowed) with a semicolon (;).
� You can use up to a maximum of 512 characters (including whitespace).
� Whitespace before and after the semicolon is allowed but not required.
� Relative and absolute path names are allowed, including path names relative to the

logged position in drives other than the current one.

For example,
C:\;C:..\PARADIGM;D:\myprog\source

☞☞☞☞

Paradigm C++ User's Guide68

$INHERIT and $ENV()

Paradigm C++ supports the two macros $INHERIT and $ENV() in the Directories
page, the Compiler|Defines page and the Compiler|Precompiled Header page of the
Project Options dialog box.

You can add $INHERIT and $ENV() anywhere in the strings you type into the input
boxes.

$INHERIT
The $INHERIT macro expands to the value of the respective option of the current nodes
parent.

For example, suppose the project node MYSOURCE.CPP has a parent node
MYSOURCE.AXE, and the defines for MYSOURCE.AXE are

DEBUG;

If you set the Defines value for MYSOURCE.CPP to:
_RTL;$INHERIT;STRICT

MYSOURCE.CPP will inherit the defines of MYSOURCE.AXE, which will give it the
following Defines values:

_RTL;DEBUG;;STRICT

$ENV()
The $ENV(environment_variable) macro expands to the defined value of the specified
environment variable. For example, suppose the environment variable PCROOT is set to
the following value:

PCROOT = C:\PARADIGM

You can then set the Include path in the Directories page as follows:
$ENV(PCROOT)\Include

This will set the actual include path to:
C:\PARADIGM\Include

Librarian options

Librarian options affect the behavior of the built-in librarian. The built-in librarian
combines the .OBJ files in your project into .LIB files. Options in this section control
that process. In addition, you can cause the librarian to generate a list (.LST) file
containing the .OBJs in a generated .LIB and the functions those .OBJs contain.

PLIB.EXE is the command-line librarian.

Case-sensitive library

Command-line equivalent = /C

When the Case-sensitive library option is on, the librarian treats case as significant in all
symbols in the library. For example, if Case-sensitive library is checked, "CASE",
"Case", and "case" are all treated as different symbols.

Create extended dictionary

Command-line equivalent = /E

☞☞☞☞

Chapter 3, Project options 69

When the Create extended dictionary option is on, the librarian includes, in compact
form, additional information that helps the linker process library files faster.

Generate list file

When the Generate list file option is on, the librarian automatically produces a list file
(.LST) that lists the contents of your library when it is created.

Library page size

Command-line equivalent = /Psize, where size is number of pages

The Library page size input box is where you set the number of bytes in each library
"page" (dictionary entry).

The page size determines the maximum size of the library. Page size must be a power of
2 between 16 and 32,768 inclusive. The default page size of 16 allows a library of about
1 MB in size.

To create a larger library, change the page size to the next higher value (32).

Purge/debug comment records

Command-line equivalent = /0

When the Purge/debug comment records option is on, the librarian removes all comment
records from modules added to the library. Debug, browser, and other information is
stored as object file comment records and can be removed with this option.

Lint options

Lint options are used to control the operation of the Paradigm C++ Lint utility. Lint can
be used to perform a high level of checking on C/C++ source files and can detect and
warn of many potential problems (such as the unexpected loss of precision in a
calculation) or of inefficient usage (such as including a header file that is never used).
The options and diagnostic levels are:

All diagnostics

Displays all output from Lint including errors, warnings, and informational diagnostics.
This corresponds to the Lint -w3 command line option.

Warnings and error diagnostics

Displays Lint error and warning diagnostics. This corresponds to the Lint -w2 command
line option.

Error diagnostics

Displays only Lint error diagnostics. This corresponds to the Lint -w command line
option.

Lint Options File

Specifies a Lint option file to be included in the Lint command file. This will allow you to
add any number of Lint options to tailor the operation and output of Lint to meet the
requirements of your project.

Paradigm C++ User's Guide70

Linker options

Linker options affect how an application is linked.

Linker options let you control how intermediate files (.OBJ, and .LIB) are combined into
absolute executables (.AXE) and dynamic-link libraries (.DLL). For most options in this
section, you will usually want to keep the default settings.

16-bit linker

16-bit Linker options tell the linker how to link 16-bit programs.

Enable 32-bit processing
Command-line equivalent = /3, 16-bit only

The Enable 32-bit processing option lets you link 32-bit real address mode object
modules produced by PASM or a compatible assembler. This option increases the
memory requirements for PLINK and slows down linking.

Default = OFF

Initialize segments
Command-line equivalent = /i, 16-bit only

When the Initialize segments option is on, the linker initializes uninitialized trailing
segments to be output into the executable file even if the segments do not contain data
records. This is normally not needed and will increase the size of your .AXE files.

Default = OFF

32-bit linker

32-bit linker options tell the linker how to link 32-bit programs.

Allow import by ordinal
(Command-line equivalent = /o, 32-bit only)

This option lets you import by ordinal value instead of by the import name. When you
specify this option, the linker emits only the ordinal numbers (and not the import names)
to the resident or nonresident name table for those imports that have an ordinal number
specified. If you do not specify this option, the linker ignores all ordinal numbers
contained in import libraries or the .DEF file, and emits the import names to the resident
and nonresident tables.

Committed stack size (in hexadecimal)
Command-line equivalent = /Sc:xxxx, 32-bit only

Specifies the size of the committed stack in hexadecimal. The minimum allowable value
for this field is 4K (0x1000) and any value specified must be equal to or less than the
Reserved StackSize setting (/S).

Specifying the committed stack size here overrides any STACKSIZE setting in a module
definition file.(add note sidebar)

The command-line version of this option (/Sc:xxxx) accepts hexadecimal numbers as the
stack reserve value.

This option is
different than
the 16-bit /o

(overlays)
option.

Chapter 3, Project options 71

Default = 8K (0x2000)

Committed heap size (in hexadecimal)
Command-line equivalent = /Hc:xxxx, 32-bit only

Specifies the size of the committed heap in hexadecimal. The minimum allowable value
for this field is 0 and any value specified must be equal to or less than the Reserved Heap
Size setting (/H).

Specifying the committed heap size here overrides any HEAPSIZE setting in a module
definition file.(add note sidebar)

The command-line version of this option (/Hc:xxxx) accepts hexadecimal numbers as the
stack reserve value.

Default = 4K (0x1000)

File alignment (in hexadecimal)
Command-line equivalent = /Af:xxxx, 32-bit only

The File Alignment option specifies page alignment for code and data within the
executable file. The linker uses the file alignment value when it writes the various objects
and sections (such as code and data) to the file. For example, if you use the default value
of 0x200, the linker stores the section of the image on 512-byte boundaries within the
executable file.

When using this option, you must specify a file alignment value that is a power of 2, with
the smallest value being 16.

The old style of this option (/A:dd) is still supported for backward compatibility. With
this option, the decimal number dd is multiplied by the power of 2 to calculate the file
alignment value.(add note sidebar)

The command-line version of this option (/Af:xxxx) accepts either decimal or
hexadecimal numbers as the file alignment value.

Default = 512 (0x200)

Image base address (in hexadecimal)
Command-line equivalent = /B:xxxx, 32-bit only

The Image Base Address option specifies an image base address for an application, and
is used in conjunction with the Image is based option. If this setting is turned on, internal
fixes are removed from the image and the requested load address of the first object in the
application is set to the hexadecimal number specified. All successive objects are aligned
on 64K linear address boundaries. This option makes applications smaller on disk and
improves both load-time and run-time performance (the operating system no longer has
to apply internal fixes).

The command-line version of this option (/B:xxxx) accepts either decimal or
hexadecimal numbers as the image base address.

It is not recommended that you enable this option when producing a DLL. In addition,
do not use the default setting of 0x400000 if you intend to run your application of
Win32s systems.(add note sidebar)

Default = 0x400000 (recommended for true Win32 system applications)

Paradigm C++ User's Guide72

Image is based
The Image is Based option affects whether an application has an image base address. If
this setting is turned on, internal fixes are removed from the image and the requested
load address of the first object in the application is set to the number specified in the
Image Base Address input box. Using this option can greatly reduce the size of your final
application module; however, it is not recommended for use when producing a DLL.

Default = OFF

Maximum linker errors
Command-line equivalent = /Enn

Specifies maximum errors the linker reports before terminating. /E0 (default) reports an
infinite number of errors (that is, as many as possible).

Object alignment (in hexadecimal)
Command-line equivalent = /Ao:xxxx, 32-bit only

The linker uses the object alignment value to determine the virtual addresses of the
various objects and sections (such as code and data) in your application. For example, if
you specify an object alignment value of 8192, the linker aligns the virtual addresses of
the sections in the image on 8192-byte (0x2000) boundaries.

When using this option, you must specify an object alignment value that is a power of 2,
with the smallest value being 4096 (the default).

The command-line version of this option (/Ao:xxxx) accepts either decimal or
hexadecimal numbers as the object alignment value.

Default = 4096 (0x1000)

Reserved heap size (in hexadecimal)
Command-line equivalent = /H:xxxx, 32-bit only

Specifies the size of the reserved heap in hexadecimal. The minimum allowable value for
this field is 0.

Specifying the reserved heap size here overrides any HEAPSIZE setting in a module
definition file.(add note sidebar)

The command-line version of this option (/H:xxxx) accepts hexadecimal numbers as the
stack reserve value.

Default = 1Mb (0x1000000)

Reserved stack size (in hexadecimal)
Command-line equivalent = /S:xxxx, 32-bit only

Specifies the size of the reserved stack in hexadecimal. The minimum allowable value for
this field is 4K (0x1000).

Specifying the reserved stack size here overrides any STACKSIZE setting in a module
definition file.(add note sidebar)

The command-line version of this option (/S:xxxx) accepts hexadecimal numbers as the
stack reserve value.

Default = 1Mb (0x1000000)

Chapter 3, Project options 73

Verbose
Command-line equivalent = /r, 32-bit only

This option causes the linker to emit messages that indicate what part of the link cycle is
currently being executed by the linker. With this option turned on, the linker emits some
or all of the following messages:

� Starting pass 1
� Generating map file
� Starting pass 2

General

Use the Linker|General options to include or exclude debugging information from your
.EXE or .ROM file, generated by the linker. Debug information must be included in your
program if you want to use the debugger (you can turn it off for production versions).

Case-sensitive link
Command-line equivalent = /c

When the Case-Sensitive Link option is enabled, the linker differentiates between upper
and lower-case characters in public and external symbols. Normally, this option should
be checked, since C and C++ are both case-sensitive languages.

Default = ON

Default libraries
Command-line equivalent = /n

When you are linking with modules created by a compiler other than the Paradigm C++
compiler, the other compiler might have placed a list of default libraries in the object file.

When the Default Libraries option is unchecked (off), the linker tries to find any
undefined routines in these libraries and in the default libraries supplied by the Paradigm
C++ IDE.

When this option is checked (on), the linker searches only the default libraries supplied
by the Paradigm C++ IDE and ignores any defaults in .OBJ files. You might want to
check this option when linking modules written in another language.

Default = ON

Include debug information
Command-line equivalent = /v

When the Include Debug Information option is on, the linker includes information in the
output file needed to debug your application with the integrated debugger.

On the command line, this option causes the linker to include debugging information in
the executable file for all object modules that contain debugging information. You can
use the /v+ and /v- options to selectively enable or disable debugging information on a
module-by-module basis (but not on the same command-line where you use /v). For
example, the following command includes debugging information for modules mod2 and
mod3, but not for mod1 and mod4:

PLINK mod1 /v+ mod2 mod3 /v- mod4

Default = ON in the Paradigm C++ IDE; OFF on the command line

Paradigm C++ User's Guide74

Subsystem version (major.minor)
Command-line equivalent = /Vd.d

When you use the /Vd.d command-line option, the linker sets the Windows version ID to
the number specified by d.d.. For example, if you specify /V4.0, the linker sets the
Subsystem version field in the .EXE header of the relocatable load module to 4.0.

Default = 4.0

Map file

Linker|Map File options tell the linker what type of map file to produce. You specify the
type of map file created with the Map File options. These options control the information
generated on segment ordering, segment sizes, and public symbols.

Include source line numbers
Command-line equivalent: /l, 16-bit only

When the Include Source Line Numbers option is on, the linker includes source line
numbers in the object map files.

For this option to work, linked .OBJ files must be compiled with debug information
using -v.

When Include Source Line Numbers is on, make sure you turn Jump Optimizations off
in the Optimization|16 bit Specific options page, otherwise the compiler might group
together common code from multiple lines of source text during jump optimization, or it
might reorder lines (which makes line-number tracking difficult).

Default = OFF

Map file
You use the Map File options to choose the type of map file to be produced at link time.

For settings other than Off, the map file is placed in the output directory defined in the
Directories|Output page.

Command-line equivalent = /x

The Off option tells the linker not to create a map file.

Default = OFF

Command-line equivalent = /s

The Segments option adds a “Detailed map of segments” to the map file created with the
Publics option (/m). The detailed list of segments contains the segment class, the
segment name, the segment group, the segment module, and the segment ACBP
information. If the same segment appears in more than one module, each module appears
as a separate line.

The ACBP field encodes the A (alignment), C (combination), and B (big) attributes into
a set of four bit fields, as defined by Intel. PLINK uses only three of the fields: A, C, and
B. The ACBP value in the map is printed in hexadecimal. The following field values must
be ORed together to arrive at the ACBP value printed.

Command-
line usage

Off

Segments

Chapter 3, Project options 75

Field Value Description

A (alignment) 00 An absolute segment

20 A byte-aligned segment

40 A word-aligned segment

60 A paragraph-aligned segment

80 A page-aligned segment

A0 An unnamed absolute portion of storage

C (combination) 00 Cannot be combined

08 A public combining segment

B (big) 00 Segment less than 64K

02 Segment exactly 64K

With the Segments options enabled, public symbols with no references are flagged idle.
An idle symbol is a publicly defined symbol in a module that was not referenced by an
EXTDEF record or by any other module included in the link. For example, this fragment
from the public symbol section of a map file indicates that symbols Symbol1 and
Symbol3 are not referenced by the image being linked (they can either be deleted or
declared static since no other module requires these symbols):

0002:00000874 Idle Symbol1
0002:00000CE4 Symbol2
0002:000000E7 Idle Symbol3

Command-line equivalent = /m

This option causes the linker to produce a map file that contains an overview of the
application segments and two listings of the public symbols. The segments listing has a
line for each segment, showing the segment starting address, segment length, segment
name, and the segment class. The public symbols are broken down into two lists, the first
showing the symbols in sorted alphabetically, the second showing the symbols in
increasing address order. Symbols with absolute addresses are tagged Abs.

A list of public symbols is useful when debugging: many debuggers use public symbols,
which lets you refer to symbolic addresses while debugging.

For more information, see Linker|Map file.

Print mangled names in map file
Command-line equivalent = /M

Prints the mangled C++ identifiers in the map file, not the full name. This can help you
identify how names are mangled (mangled names are needed as input by some utilities).

Default = OFF

Warnings

Warnings options enable or disable the display of Linker warnings.

32-bit warnings
� No entry point
� Duplicate symbol

Table 3-1
Segment field

values

Publics

☞☞☞☞

Paradigm C++ User's Guide76

� No def file
� Import does not match previous definition
� Extern not qualified with _import
� Using based linking in DLL
� Self-relative fixup overflowed
� .EXE module built with a .DLL extension
� Multiple stack segments found

"No stack" warning
This option lets you control whether or not the linker emits the "No stack" warning. The
warning is generated if no stack segment is defined in any of the object files or in any of
the libraries included in the link. Except for .DLLs, this indicates an error. If a Paradigm
C++ program produces this error, make sure you are using the correct C0x startup
object file.

Default = OFF

Warn duplicate symbol in .LIB
Command-line equivalent = /d 16-bit, /wdpl 32-bit

When the Warn Duplicate Symbols option is on, the linker warns you if a symbol appears
in more than one object or library files.

If the symbol must be included in the program, the linker uses the symbol definition from
the first file it encounters with the symbol definition.

Default = OFF

Make options

Make options control the conditions under which the building of a project stops and how
the Project Manager uses autodependency information.

Autodependencies

When the Make|Autodependencies option is selected, the Project Manager automatically
checks dependencies for every target that has a corresponding source file in the project
list.

None
When None is selected, no autodependency checking is performed.

Use
When Use is selected, autodependency checking is performed by reading the
autodependency information out of the .OBJ files. This option is the default.

Cache
When Cache is selected, autodependency information is stored in the project file.

Cache and display
When Cache and Display is selected, the Project Manager stores the autodependency
information in the project file. Once the autodependency information is generated (after a

Use the
PLINK32

command-line
option /w-stk to

turn this warning
off.

Use the
PLINK32

command-line
option /w-dpl to

turn this warning
off.

Chapter 3, Project options 77

compile) the information is displayed in the Project Tree. This makes dependency
checking faster, but is not recommended because it makes project files larger.

Break make on

The Make|Break Make On options specify the error condition that stops the making of a
project.

Warnings
Command-line equivalent = -w!

When this compiler option is enabled, the compiler terminates the compile and returns a
non-zero error code if a warning is encountered; an .OBJ file is not created.

Errors
This option stops a make when the compiler encounters errors.

Fatal errors
This option tells the Project Manager to generate a list of errors and warnings for all files
and all targets in the project. The Project Manager will go on to link if no errors occur.

Default = Errors

New node path

Turn on the Absolute option if you want new nodes to have an absolute, instead of a
relative, path.

Messages options

Messages options let you control the messages generated by the compiler. Compiler
messages are indicators of potential trouble spots in your program. These messages can
warn you of many problems that may be waiting to happen, such as variables and
parameters that are declared but never used, type mismatches, and many others.

Setting a message option causes the compiler to generate the associated message or
warning when the specific condition arises. Note that some of the messages are on by
default.

ANSI violations

Compiler Messages|ANSI Violations options enable or disable individual warning
messages about statements that violate the ANSI standard for the C language.

Option Command-line equivalent Default

Void functions may not return a value -w-voi ON

Both return and return of a value used -w-ret ON

Suspicious pointer conversion -w-sus ON

Undefined structure 'ident' -wstu OFF

Redefinition of 'ident' is not identical -w-dup ON

Hexadecimal value more than three digits -w-big ON

Bit fields must be signed or unsigned int -wbbf OFF

This option stops
a make if the

compiler
encounters

warnings.

Table 3-2
ANSI violation

messages

Paradigm C++ User's Guide78

'ident' declared as both external and static -w-ext ON

Declare 'ident' prior to use in prototype -w-dpu ON

Division by zero -w-zdi ON

Initializing 'ident' with 'ident' -w-bei ON

Initialization is only partially bracketed -wpin OFF

Non-ANSI keyword used -wnak OFF

Display warnings

Use the Display Warnings options to choose which warnings are displayed.

All
Command-line equivalent: -w

Display all warning and error messages.

Default = OFF

Selected
Command-line equivalent: -waaa

Choose which warnings are displayed. Using pragma warn in your source code
overrides messages options set either at the command line or in the Paradigm C++ IDE.

To disable a message from the command line, use the command-line option -w-aaa,
where aaa is the 3-letter message identifier used by the command-line option.

Default = ON

None
Suppresses the display of warning messages. Errors are still displayed.

Default = OFF

General

Compiler Messages|General options enable or disable a few general warning messages.

Option Command-line equivalent Default

Unknown assembler instruction -wasm OFF

Ill-formed pragma -w-ill ON

Array variable 'ident' is near -w-ias ON

Superfluous & with function -wamp OFF

'ident' is obsolete -w-obs ON

Cannot create precompiled header -w-pch ON

User-defined warnings -w-msg ON

Default segments required for huge objects -w-hsg ON

Automatic far data is ignored -w-far ON

User-defined warnings
Command-line equivalent: -wmsg

Table 3-3
General warning

messages

Chapter 3, Project options 79

The User-defined warnings option allows user-defined messages to appear in the
Paradigm C++ IDE's Message window. User-defined messages are introduced with the
#pragma message compiler syntax.

In addition to messages that you introduce with the #pragma message compiler syntax,
User-defined warnings displays warnings introduced by third-party libraries. Remember,
if you need Help on a third-party warning, please contact the vendor of the header file
that issued the warning.

Default = ON

Inefficient C++ coding

Compiler Messages|Inefficient C++ Coding options enable or disable individual warning
messages about inefficient C++ coding.

Option Command-line equivalent Default

Functions containing 'ident' not expanded inline -w-inl ON

Temporary used to initialize 'ident' -w-lin ON

Temporary used for parameter 'ident' -w-lvc ON

Inefficient coding

Compiler Messages|Inefficient Coding options are used to enable or disable individual
warning messages about inefficient coding.

Option Command-line equivalent Default

'ident' assigned a value which is never used -w-aus ON

Parameter 'ident' is never used -w-par ON

'ident' declared but never used -wuse OFF

Structure passed by value -wstv OFF

Unreachable code -w-rch ON

Code has no effect -w-eff ON

Label 'lbl' is declared but never used -w-lbl OFF

The warnings Unreachable Code and Code Has No Effect can indicate
serious coding problems. If the compiler generates these warnings, be sure to examine
the lines of code that cause these warnings.

Obsolete C++

Compiler Messages|Obsolete C++ options choose which specific obsolete items or
incorrect syntax C++ warnings to display.

Option Command-line equivalent Default

Base initialization without class name is obsolete -w-obi ON

This style of function definition is obsolete -w-ofp ON

Overloaded prefix operator used as postfix operator -w-pre ON

☞☞☞☞

Table 3-4
Inefficient C++

coding
messages

Table 3-5
Inefficient coding

messages

☞☞☞☞

Table 3-6
Obsolete C++

messages

Paradigm C++ User's Guide80

Portability

Compiler Messages|Portability options enable or disable individual warning messages
about statements that might not operate correctly in all computer environments.

Option Command-line equivalent Default

Non-portable pointer conversion -w-rpt ON

Non-portable pointer comparison -w-cpt ON

Constant out of range in comparison -w-rng ON

Constant is long -wcln OFF

Conversion may lose significant digits -wsig OFF

Constant declaration 'sym' should be initialized -wuco OFF

Mixing pointers to signed and unsigned char -wucp OFF

Integral constant overflow with 'op' operation -wico OFF

Potential C++ errors

Compiler Messages|Potential C++ Errors options enable or disable individual warning
messages about statements that violate C++ language implementation.

Option Command-line equivalent Default

Constant member 'ident' is not initialized -w-nci ON

Assigning 'type' to 'enumeration' -w-eas ON

'function' hides virtual function 'function2' -w-hid ON

Non-const function <function> called for const object -w-ncf ON

Base class 'ident' inaccessible because also in 'ident' -w-ibc ON

Array size for 'delete' ignored -w-dsz ON

Use qualified name to access nested type 'ident' -w-nst ON

Handler for '<type1>' Hidden by Previous Handler for '<type2>' -w-hch ON

Conversion to 'type' will fail for virtual base members -w-mpc ON

Maximum precision used for member pointer type <type> -w-mpd ON

Use '> >' for nested templates instead of '>>' -w-ntd ON

Non-volatile function <function> called for volatile object -w-nvf ON

Potential errors

Compiler Messages|Potential Errors options enable or disable individual warning
messages about potential coding errors.

Option Command-line equivalent Default

Possibly incorrect assignment -w-pia ON

Possible use of 'ident' before definition -wdef OFF

No declaration for function 'ident' -wnod OFF

Call to function with no prototype -w-pro ON

Function should return a value -w-rvl ON

Ambiguous operators need parentheses -wamb OFF

Table 3-7
Portability
messages

Table 3-8
Potential

C++Errors

Table 3-9
Potential error

messages

Chapter 3, Project options 81

Condition is always (true/false) -w-ccc ON

Continuation character \ found in // -w-com ON

Uninitialized constant declaration -wuco OFF

Stop after ... errors

Command-line equivalent: -jn

Errors: Stop After causes compilation to stop after the specified number of errors has
been detected. You can enter any number from 0 to 255.

Default = 25

Stop after ... warnings

Command-line equivalent: -gn

Warnings: Stop After causes compilation to stop after the specified number of warnings
has been detected. You can enter any number from 0 to 255.

Entering 0 causes compilation to continue until either the end of the file or the error limit
set in Errors: Stop After has been reached, whichever comes first.

Default = 100

Optimization options

Optimization options are the software equivalent of performance tuning. There are two
general types of compiler optimizations:

� Those that make your code smaller
� Those that make your code faster

Although you can compile with optimizations at any point in your product development
cycle, be aware when debugging that some assembly instructions might be "optimized
away" by certain compiler optimizations.

General settings

The main Optimizations page in the Project Options dialog box contains four radio
buttons that let you select the overall type of optimizations you want to use. Because of
the complexities of setting compiler optimizations, it is recommended that you use either
the Optimize for Size or the Optimize for Speed radio buttons. The general optimization
settings are:

� Disable all optimizations
� Use selected optimizations
� Optimize for size
� Optimize for speed

16- and 32-bit

The 16- and 32-bit compiler options specify optimization settings for all compilations.

Entering 0
causes

compilation to
continue until the

end of the file.

Paradigm C++ User's Guide82

Common subexpression
The Common subexpressions options tell the compiler how to find and eliminate
duplicate expressions in your code.

When the No optimization option is on, the compiler does not eliminate common
subexpressions. This is the default behavior of the command-line compilers.

Command-line equivalent: -Oc

When the Optimize locally option is on, the compiler eliminates common subexpressions
within groups of statements unbroken by jumps (basic blocks).

Command-line equivalent: -Og

When you set this option, the compiler eliminates common subexpressions within an
entire function. This option globally eliminates duplicate expressions within the target
scope and stores the calculated value of those expressions once (instead of recalculating
the expression).

Although this optimization could theoretically reduce code size, it optimizes for speed
and rarely results in size reductions. Use this option if you prefer to reuse expressions
rather than create explicit stack locations for them.

Induction variables
Command-line equivalent: -Ov

When this option is enabled, the compiler creates induction variables and it performs
strength reduction, which optimizes for loops speed.

Use this option when you're compiling for speed and your code contains loops. The
optimizer uses induction to create new variables (induction variables) from expressions
used in loops. The optimizer assures that the operations performed on these new
variables are computationally less expensive (reduced in strength) than those used by the
original variables.

Optimizations are common if you use array indexing inside loops, because a
multiplication operation is required to calculate the position in the array that is indicated
by the index. For example, the optimizer creates an induction variable out of the
operation v[i] in the following code because the v[i] operation requires
multiplication. This optimization also eliminates the need to preserve the value of i:

int v[10];
void f(int x, int y, int z)
{
int i;
for (i = 0; i < 10; i++)

v[i] = x * y * z;
}

No
optimization

Optimize
locally

Optimize
globally

Chapter 3, Project options 83

With Induction variables enabled, the code changes:
int v[10];
void f(int x, int y, int z)
{
int i, *p;
for (p = v; p < &v[9]; p++)
*p = x * y * z;

}

Inline intrinsic functions
Command-line equivalent: -Oi

When the Inline Intrinsic Functions option is on, the compiler generates the code for
common memory functions like strcpy() within your function's scope. This eliminates
the need for a function call. The resulting code executes faster, but it is larger.

The following functions are inlined with this option:

alloca fabs memchr memcmp

memcpy memset rotl rotr

stpcpy strcat strchr strcmp

strcpy strlen strncat strncmp

strncpy strnset strrchr

You can control the inlining of these functions with the pragma intrinsic. For example,
#pragma intrinsic strcpy causes the compiler to generate inline code for all
subsequent calls to strcpy in your function, and #pragma intrinsic -strcpy
prevents the compiler from inlining strcpy. Using these pragmas in a file overrides any
compiler option settings.

When inlining any intrinsic function, you must include a prototype for that function
before you use it; the compiler creates a macro that renames the inlined function to a
function that the compiler recognizes internally. In the previous example, the compiler
would create a macro #define strcpy _ _strcpy_ _.

The compiler recognizes calls to functions with two leading and two trailing underscores
and tries to match the prototype of that function against its own internally stored
prototype. If you don't supply a prototype, or if the prototype you supply doesn't match
the compiler's prototype, the compiler rejects the attempt to inline that function and
generates an error.

16-bit

The Optimizations|16-bit options pertain to real mode and extended mode applications
only.

Assume no pointer aliasing
Command-line equivalent: -Oa

When the Assume no pointer aliasing option is on, the compiler assumes that pointer
expressions are not aliased in common subexpression evaluation.

Assume no pointer aliasing affects the way the optimizer performs common
subexpression elimination and copy propagation by letting the optimizer maintain copy

Paradigm C++ User's Guide84

propagation information across function calls and by letting the optimizer maintain
common subexpression information across some stores. Without this option the
optimizer must discard information about copies and subexpressions. Pointer aliasing
might create bugs that are hard to spot, so it is only applied when you enable this option.

Assume no pointer aliasing controls how the optimizer treats expressions that contain
pointers. When compiling with global or local common subexpressions and Assume no
pointer aliasing is enabled, the optimizer recognizes *p * x as a common
subexpression in function func1.

int g, y;
int func1(int *p)
{

int x=5;
y = *p * x;
g = 3;
return (*p * x);

}
void func2(void)
{
g=2;
func1(&g); // This is incorrect--the assignment g = 3

// invalidates the expression *p * x
}

Copy propagation
Command-line equivalent: -Op

When this option is enabled; copies of constants, variables, and expressions are
propagated whenever possible.

Copy propagation is primarily speed optimization, but it never increases the size of your
code. Like loop-invariant code motion, copy propagation relies on the analysis
performed during common subexpression elimination. Copy propagation means that the
optimizer remembers the values assigned to expressions and uses those values instead of
loading the value of the assigned expressions. With this, copies of constants, expressions,
and variables can be propagated.

Dead code elimination
Command-line equivalent: -Ob

When the Dead code elimination option is on, the compiler reveals variables that might
not be needed. Because the optimizer must determine where variables are no longer used
(live range analysis), you might also want to set Global register allocation (-Oe) when
you use this option.

Global register allocation
Command-line equivalent: -Oe

When this option is enabled, global register allocation and variable live range analysis are
enabled. This option should always be used when optimizing code because it increases
the speed and decreases the size of your application.

Invariant code motion
Command-line equivalent: -Om

Chapter 3, Project options 85

When this option is enabled, invariant code is moved out of loops and your code is
optimized for speed. The optimizer uses information about all the expressions in the
function (gathered during common subexpression elimination) to find expressions whose
values do not change inside a loop.

To prevent the calculation from being done many times inside the loop, the optimizer
moves the code outside the loop so that it is calculated only once. The optimizer then
reuses the calculated value inside the loop.

You should use loop-invariant code motion whenever you are compiling for speed and
have used global common subexpressions, because moving code out of loops can result
in enormous speed gains. For example, in the following code, x * y * z is evaluated
in every iteration of the loop:

int v[10];
void f(int x, int y, int z)
{
int i;
for (i = 0; i < 10; i++)
v[i] = x * y * z;

}

The optimizer rewrites the code:
int v[10];
void f(int x, int y, int z)
{
int i,t1;
t1 = x * y * z;
for (i = 0; i < 10; i++)
v[i] = t1;

}

Jump optimization
Command-line equivalent: -O

When Jump optimization option is on, the compiler reduces the code size by eliminating
redundant jumps and reorganizing loops and switch statements.

When this option is enabled, the sequences of stepping in the debugger can be confusing
because of the reordering and elimination of instructions. If you are debugging at the
assembly level, you might want to disable this option.

Default = ON

Loop optimization
Command-line equivalent: -Ol)

When this option is enabled, loops are compacted into REP/STOSx instructions.

Loop optimization takes advantage of the string move instructions on the 80x86
processors by replacing the code for a loop with a string move instruction, making the
code faster.

Depending on the complexity of the operands, the compacted loop code can also be
smaller than the corresponding non-compacted loop.

Suppress redundant loads
Command-line equivalent: -Z

Paradigm C++ User's Guide86

When this option is enabled, the compiler suppresses the reloading of registers by
remembering the contents of registers and reusing them as often as possible.

Exercise caution when using this option; the compiler cannot detect if a value has been
modified indirectly by a pointer.

32-bit

Use the Optimizations|32-bit options to specify options specific to protected mode
applications. The options are:

Pentium instruction scheduling
Command-line equivalent: -OS

When enabled, this switch rearranges instructions to minimize delays that can be caused
by Address Generation Interlocks (AGI) which occur on the i486 and Pentium
processors. This option also optimizes the code so that it takes advantage of the Pentium
parallel pipelines. Best results for Pentium systems are obtained when you use this switch
in conjunction with the 32-bit Compiler|Pentium option in the Project Options dialog box
(-5).

Scheduled code is more difficult to debug at the source level because instructions from a
particular source line may be mixed with instructions from other source lines. Stepping
through the source code is still possible, although the execution point might make
unexpected jumps between source lines as you step. Also, setting a breakpoint on a
source line may result in several breakpoints being set in the code. This is especially
important to note when inspecting variables, since a variable may be undefined even
though the execution point is positioned after the variable assignment.

Stepping through the following function when this switch is enabled demonstrates the
stepping behavior:

int v[10];
void f(int i, int j)
{

int a,b;

a = v[i+j];
b = v[i-j];
v[i] = a + b;
v[j] = a - b;

}

Execution starts by computing the index i-j in the assignment to b (note that a is still
undefined although the execution point is positioned after the assignment to a). The
index i+j is computed, v[i-j] is assigned to b, and v[i+j] is assigned to a. If a
breakpoint is set on the assignment to b, execution will stop twice: once when
computing the index and again when performing the assignment.

Default = OFF (-O-S)

General optimization settings

Disable all optimizations
Command-line equivalent: -Od

Disables all optimization settings, including ones which you may have specifically set and
those which would normally be performed as part of the speed/size tradeoff.

☞☞☞☞

Chapter 3, Project options 87

Because this disables code compaction (tail merging) and cross-jump optimizations,
using this option can keep the debugger from jumping around or returning from a
function without warning, which makes stepping through code easier to follow.

You can override this setting using the predefined Style Sheets in the Project Manager.

Use selected optimizations
Does not set any optimization by default, but lets you set the specific optimization
options you need through the settings contained in the Optimization subtopics. The
subtopic pages are

� 16 and 32-bit
� 16-bit specific
� 32-bit specific

Configuring your own optimization settings should be reserved for expert users only.

Optimize for size
Command-line equivalents: -O1

This radio button sets an aggregate of optimization options that tells the compiler to
optimize your code for size. For example, the compiler scans the generated code for
duplicate sequences. When such sequences warrant, the optimizer replaces one sequence
of code with a jump to the other and eliminates the first piece of code. This occurs most
often with switch statements. The compiler optimizes for size by choosing the smallest
code sequence possible.

This option (-O1) sets the following optimizations:

� Jump optimizations (-O)
� Dead code elimination (-Ob)
� Duplicate expressions (-Oc)
� Register allocation and live range analysis (-Oe)
� Loop optimizations (-Ol)
� Instruction scheduling (-OS)
� Register load suppression (-Z)

The compiler options -Ot and -G are supported for backward compatibility only, and are
equivalent to the -O1 compiler option.

Optimize for speed
Command-line equivalent: -O2

This radio button sets an aggregate of optimization options that tells the compiler to
optimize your code for speed. This switch (-O2) sets the following optimizations:

� Dead code elimination (-Ob)
� Register allocation and live range analysis (-Oe)
� Duplicate expression within functions (-Og)
� Intrinsic functions (-Oi)
� Loop optimizations (-Ol)
� Code motion (-Om)
� Copy propagation (-Op)

☞☞☞☞

☞☞☞☞

☞☞☞☞

Paradigm C++ User's Guide88

� Instruction scheduling (-OS)
� Induction variables (-Ov)
� Register load suppression (-Z)

The compiler options -Os and -G- are supported for backward compatibility only, and
are equivalent to the -O2 compiler option. The -Ox option is also supported for
backward compatibility and for compatibility with Microsoft make files.

Command-line only options

The options are available only from the command line.

Object search paths

Command-line equivalent = /j

This option lets you specify the directories the linker will search if there is no explicit
path given for an .OBJ module in the compile/link statement.This option works with
both PLINK and PLINK32.

The Specify object search path uses the following command-line syntax:
/j<PathSpec>[;<PathSpec>][...]

The linker uses the specified object search path(s) if there is no explicit path given for the
.OBJ file and the linker cannot find the object file in the current directory. For example,
the command

PLINK32 /jc:\myobjs;.\objs splash .\common\logo,,,utils logolib

directs the linker to first search the current directory for SPLASH.OBJ. If it is not found
in he current directory, the linker then searches for the file in the C:\MYOBJS directory,
and then in the .\OBJs directory. However, notice that the linker does not use the object
search paths to find the file LOGO.OBJ because an explicit path was given for this file.

16- and 32-bit command-line options

The following command-line switches are supported by the command-line compilers
PCC.EXE and PCC32.EXE.

Compile to .ASM, then assemble
Command-line equivalent = -B

This command-line option causes the compiler to first generate an .ASM file from your
C++ (or C) source code (same as the -S command-line option). The compiler then calls
PASM (or the assembler specified with the -E option) to create an .OBJ file from the
.ASM file. The .ASM file is then deleted. To use this 32-bit compiler option, you must
install a 32-bit assembler, such as PASM32.EXE, and then specify this assembler with
the -E option. In the Paradigm C++ IDE, right-click the source node in the Project
Manager, then choose Special|C++ to Assembler.

Your program will fail to compile with the -B option if your C or C++ source code
declares static global variables that are keywords in assembly. This is because the
compiler does not precede static global variables with an underscore (as it does other
variables), and the assembly keywords will generate errors when the code is assembled.

☞☞☞☞

☞☞☞☞

Chapter 3, Project options 89

Compile to .OBJ, no link
Command-line equivalent = -c

Compiles and assembles the named .C, .CPP, and .ASM files, but does not execute a link
on the resulting .OBJ files. In the Paradigm C++ IDE, choose Project|Compile.

Specify assembler
Command-line equivalent = -Efilename

Assemble instructions using filename as the assembler. The 16-bit compiler uses PASM
as the default assembler. In the Paradigm C++ IDE, you can configure a different
assembler using the Tool menu.

Specify executable file name
Command-line equivalent = -efilename

Link file using filename as the name of the executable file. If you do not specify an
executable name with this option, the linker creates an executable file based on the name
of the first source file or object file listed in the command.

Pass option to linker
Command-line equivalent = -lx

Use this command-line option to pass option(s) x to the linker from a compile command.
Use the command-line option -l-x to disable a specific linker option.

Create a MAP file
Command-line equivalent = -M

Use this command-line option tells the linker to create a map file.

Compile .OBJ to filename
Command-line equivalent = -ofilename

Use this option to compile the specified source file to filename.OBJ.

C++ compile
Command-line equivalent = -P

The -P command-line option causes the compiler to compile all source files as C++ files,
regardless of their extension. Use -P- to compile all .CPP files as C++ source files and all
other files as C source files.

The command-line option -Pext causes the compiler to compile all source files as C++
files and it changes the default extension to whatever you specify with ext. This option is
provided because some programmers use different extensions as their default extension
for C++ code.

The option -P-ext compiles files based on their extension (.CPP compiles to C++, all
other extensions compile to C) and sets the default extension (other than .CPP).

Compile to assembler
Command-line equivalent = -S

Paradigm C++ User's Guide90

This option causes the compiler to generate an .ASM file from your C++ (or C) source
code. The generated .ASM file includes the original C or C++ source lines as comments
in the file.

Specify assembler option
Command-line equivalent = -Tx

Use this command-line option to pass the option(s) x to the assembler you specify with
the -E option. To disable all previously enabled assembler options, use the -T-
command-line option.

Undefine symbol
Command-line equivalent = -Uname

This command-line option undefines the previous definition of the identifier name.

Linker supported command-line options

The following switches are supported by the 16-bit command-line compiler (PCC.EXE)
and linker (PLINK.EXE).

Generate 8087 instructions
Command-line equivalent = -f87

Use this 16-bit compiler option to create 16-bit real-mode 8087 floating-point code.

Compile to real-mode
Command-line equivalent = -tD

The compiler creates a 20-bit real-mode application (same as -tDe).

Enable backward compatibility options
Command-line equivalent = -Vo

This compiler option enables the following 16-bit backward compatibility options: -Va, -
Vb, -Vc, -Vp, -Vt, -Vv. Use this option as a handy shortcut when linking libraries built
with older versions of Paradigm C++.

Link 20-bit address space
Command-line equivalent = /Tde

PLINK generates a 20-bit (1 MB) address space application.

Link 24-bit address space
Command-line equivalent = /Tee

PLINK generates a 24-bit (16 MB) address space application.

Enable 24-bit extended addressing
Command-line equivalent = -Y

Enables use of the 24-bit extended addressing mode to allow a real-mode address space
of 16MB.

When this option is enabled, the macro __EXTADDR__ will be defined.

Chapter 3, Project options 91

32-bit command-line options

The following switches are supported by the 32-bit command-line compiler
(PCC32.EXE) and linker (PLINK32.EXE).

The following 32-bit command-line options are not needed if you include a module
definition file in your compile and link commands which specifies the type of 32-bit
application you intend to build.

Generate a multi-threaded target
Command-line equivalent = -tWM

The compiler creates a multi-threaded relocatable load module or .DLL. (The command-
line option -WM is supported for backward compatibility only; it has the same
functionality as -tWM.)

Link using 32-bit Windows API
Command-line equivalent = /aa

PLINK32 generates a protected-mode executable that runs using the 32-bit Windows
API.

Link for 32-bit console application
Command-line equivalent = /ap

PLINK32 generates a protected-mode executable file that runs in console mode.

Link 32-bit .DLL file
Command-line equivalent = /Tpd

PLINK32 generates a 32-bit protected-mode Windows .DLL file.

Link 32-bit relocatable load module file
Command-line equivalent = /Tpe

PLINK32 generates a 32-bit protected-mode Windows relocatable load module.

Compiler command-line options

The following table lists the command-line compiler options in alphabetical order:

Option Description

@filename Read compiler options from the response file "filename"

+filename Use alternate configuration file "filename"

-1- Generate 8086 compatible instructions (16-bit compiler only)

-1 Generate the 80186/286 compatible instructions (Default for 16-bit)

-2 Generate 80286 protected-mode compatible instructions (16-bit
compiler only)

-3 Generate 80386 protected-mode compatible instructions (Default for
32-bit)

-4 Generate 80386/80486 protected-mode compatible instructions

-5 Generate Pentium instructions

-A Use only ANSI keywords

☞☞☞☞

Table 3-10
Compiler

command-line
options

Paradigm C++ User's Guide92

-a Align byte (Default: -a- use byte-aligning)

-AK Use only Kernighan and Ritchie keywords

-an Align to "n" where 1=byte, 2=word (16-bit = 2 bytes) 4=Double word
(32-bit only, 4 bytes), 8=Quad word (32-bit only, 8 bytes)

-AT Use Paradigm C++ keywords (also -A-)

-AU Use only UNIX V keywords

-B Compile to .ASM (-S), the assemble to .OBJ (command-line compiler
only)

-b Make enums always integer-sized (Default: -b- make enums byte-sized when
possible)

-C Turn nested comments on (Default: -C- turn nested comments off)

-c Compile to .OBJ, no link (command-line compiler only)

-Dname Define "name" to the null string

-Dname=string Define "name" to "string"

-d Merge duplicate strings (Default)

-dc Move string literals from data segment to code segment (16-bit
compiler only)

-dx Make all constant data far

-Efilename Specify assembler

-efilename Specify executable file name

-f Emulate floating point

-f- No floating point

-f87 Generate 8087 floating-point code (command-line compiler only)

-Fa Enable page alignment for far segments

-Fb Enable Borland C++-compatible far data

-Fc Generate COMDEFs (16-bit compiler only)

-Ff Create far variables automatically

-Ff=size Create far variables automatically; set the threshold to "size" (16-bit
compiler only)

-ff Fast floating point

-fp Correct Pentium FDIV flaw

-Fp Pack far segments

-Fs Assume DS=SS in all memory models (16-bit compiler only)

-gn Warnings: stop after "n" messages (Default: 255)

-H Generate and use precompiled headers (Default)

-H=filename Set the name of the file for precompiled headers

-H”xxx” Stop precompiling after header file xxxx

-h Uses fast huge pointers

-Hc Cache precompiled header

-Hu Use but do not generate precompiled headers

-in Make significant identifier length to be "n" (Default)

-Jg Generate definitions for all template instances and merge duplicates
(Default)

-Jgd Generate public definitions for all template instances; duplicates result
in redefinition errors

-Jgx Generate external references for all template instances

Chapter 3, Project options 93

-jn Errors: stop after "n" messages (Default)

-K Default character type unsigned (Default: -K- default character type
signed)

-k Turn on standard stack frame (Default)

-K2 Allow only two character types (signed and unsigned). Char is treated as signed.

-lx Pass option “x” to linker (command-line compiler only)

-M Create a Map file (command-line compiler only)

-mc Compile using compact memory model (16-bit compiler only)

-mh Compile using huge memory model

-ml Compile using large memory model (16-bit or 32-bit compilers)

-mm Compile using medium memory model (16-bit compiler only)

-mm! Compile using medium memory model; assume DS!=SS (16-bit
compiler only. Note: there is no space between the -mm and the !)

-ms Compile using small memory model (Default, 16-bit compiler only)

-ms! Compile using small memory model; assume DS! = SS (16-bit
compiler only. Note: there is no space between the -ms and the !)

-N Check for stack overflow

-O Optimize jumps

-ofilename Compile .OBJ to “filename” (command-line compiler only)

-O1 Generate smallest possible code

-O2 Generate fastest possible code

-Oa Optimize assuming pointer expressions are not aliased on common
subexpression evaluation

-Ob Eliminate dead code

-Oc Eliminate duplicate expressions within basic blocks

-Od Disable all optimizations

-Oe Allocate global registers and analyze variable live ranges

-Og Eliminate duplicate expressions within functions

-Oi Expand common intrinsic functions

-Ol Compact loops

-Om Move invariant code out of loops

-Op Propagate copies

-OS Pentium instruction scheduling

-Ov Enable loop induction variable and strength reduction

-P Force C++ compile (command-line compiler only)

-p Use Pascal calling convention

-pc Use C calling convention (Default: -pc, -p-)

-po Use fastthis calling convention for passing this parameter in registers

-pr Use fastcall calling convention for passing parameters in registers

-ps Use stdcall calling convention (32-bit compiler only)

-R Include browser information in generated .OBJ files

-r Use register variables (Default)

-rd Allow only declared register variables to be kept in registers

-RT Enable run-time type information (Default)

-S Compile to assembler (command-line compiler only)

-Tx Specify assembler option “x” (command-line compiler only)

Paradigm C++ User's Guide94

-tD Compile to a 16-bit real-mode relocatable load module (same as -tDe) (command-
line compiler only)

/Tdc Compile to a real address mode .COM file (command-line compiler only)

/Tde PLINK generates a 20-bit address space

/Tee PLINK generates a 24-bit address space

-tWM Generate a 32-bit multi-threaded target (command-line compiler only)

-Uname Undefine any previous definitions of "name" (command-line compiler
only)

-u Generate underscores (Default)

-V Use smart C++ virtual tables (Default)

-v Turn on source debugging

-V0 External C++ virtual tables

-V1 Public C++ virtual tables

-Va Pass class arguments by reference to a temporary variable (16-bit
compiler only)

-Vb Make virtual base class pointer same size as 'this' pointer of the class
(Default, 16-bit compiler only)

-VC Calling convention mangling compatibility

-Vc Do not add the hidden members and code to classes with pointers to
virtual base class members (16-bit compiler only)

-Vd for loop variable scoping

-Ve Zero-length empty base classes

-Vf Far C++ virtual tables (16-bit compiler only)

-Vh Treat “far” classes as “huge”

-vi Control expansion of inline functions

-Vmd Use the smallest representation for member pointers

-Vmm Member pointers support multiple inheritance

-Vmp Honor the declared precision for all member pointer types

-Vms Member pointers support single inheritance

-Vmv Member pointers have no restrictions (most general representation)
(Default)

-Vo Enable backward compatibility options (command-line compiler only)

-Vp Pass the 'this' parameter to 'pascal' member functions as the first

-Vs Local C++ virtual tables

-Vt Place the virtual table pointer after nonstatic data members (16-bit
compiler only)

-Vv ‘deep’ virtual basses

-w Display warnings on

-w"xxx" Enable "xxx" warning message (Default)

-wamb Ambiguous operators need parentheses

-wamp Superfluous & with function

-wasm Unknown assembler instruction

-waus 'identifier' is assigned a value that is never used (Default)

-wbbf Bit fields must be signed or unsigned int

-wbei Initializing 'identifier' with 'identifier' (Default)

-wbig Hexadecimal value contains more than three digits (Default)

Chapter 3, Project options 95

-wccc Condition is always true OR Condition is always false (Default)

-wcln Constant is long

-wcpt Nonportable pointer comparison (Default)

-wdef Possible use of 'identifier' before definition

-wdpu Declare type 'type' prior to use in prototype (Default)

-wdup Redefinition of 'macro' is not identical (Default)

-wdsz Array size for 'delete' ignored (Default)

-weas Assigning ‘type’ to ‘enum’

-weff Code has no effect (Default)

-wext 'identifier' is declared as both external and static (Default)

-wfar Automatic far data is ignored

-whch Handler for '<type1>' Hidden by Previous Handler for '<type2>'

-whid 'function1' hides virtual function 'function2' (Default)

-whsg Default segments required for huge objects-segment name reset

-wias Array variable 'identifier' is near (Default)

-wibc Base class 'base1' is inaccessible because also in 'base2' (Default)

-wico Integral constant overflow with 'op' operator

-will Ill-formed pragma (Default)

-winl Functions containing reserved words are not expanded inline (Default)

-wlbl Label 'lbl' is declared but never used

-wlin Temporary used to initialize 'identifier' (Default)

-wlvc Temporary used for parameter 'parameter' in call to 'function' (Default)

-wmsg User-defined warnings

-wmpc Conversion to type fails for members of virtual base class base
(Default)

-wmpd Maximum precision used for member pointer type <type> (Default)

-wnak Non-ANSI Keyword Used: '<keyword>' (Note: Use of this option is a
requirement for ANSI conformance)

-wnci The constant member 'identifier' is not initialized (Default)

-wnfc Non-constant function ‘ident’ called for const object

-wnod No declaration for function 'function'

-wnst Use qualified name to access nested type 'type' (Default)

-wntd Use '> >' for nested templates instead of '>>' (Default)

-wnvf Non-volatile function <function> called for volatile object (Default)

-wobi Base initialization without a class name is now obsolete (Default)

-wobs 'ident' is obsolete

-wofp Style of function definition is now obsolete (Default)

-wovl Overload is now unnecessary and obsolete (Default)

-wpar Parameter 'parameter' is never used (Default)

-wpch Cannot create precompiled header: header (Default)

-wpia Possibly incorrect assignment (Default)

-wpin Initialization is only partially bracketed

-wpre Overloaded prefix operator 'operator' used as a postfix operator

-wpro Call to function with no prototype (Default)

-wrch Unreachable code (Default)

Paradigm C++ User's Guide96

-wret Both return and return of a value used (Default)

-wrng Constant out of range in comparison (Default)

-wrpt Nonportable pointer conversion (Default)

-wrvl Function should return a value (Default)

-wsig Conversion may lose significant digits

-wstu Undefined structure 'structure'

-wstv Structure passed by value

-wsus Suspicious pointer conversion (Default)

-wuco Constant declaration 'symbol' should be initialized

-wucp Mixing pointers to different 'char' types

-wuse 'identifier' declared but never used

-wvoi Void functions may not return a value (Default)

-WX Creates a relocatable load module for a DOS Protected Mode Interface (DPMI) file

-wzdi Division by zero (Default)

-X Disable compiler autodependency output (Default: -X- use compiler
autodependency output)

-x Enable exception handling (Default)

-xc Enable compatible exception handling

-xd Enable destructor cleanup (Default)

-xf Enable fast exception prologs

-xp Enable exception location information

-y Line numbers on

-Y Enables 24-bit extended addressing mode

-Z Enable register load suppression optimization

-zAname Code class set to "name"

-zBname BSS class set to "name"

-zCname Code segment set to "name"

-zDname BSS segment set to "name"

-zEname Far data segment set to "name"

-zFname Far data class set to "name"

-zGname BSS group set to "name"

-zHname Far data group set to "name"

-zIname Constant initialized far data segment set to "name"

-zJname Constant initialized far data class set to "name"

-zKname Constant initialized far data group set to "name"

-zPname Code group set to "name"

-zRname Data segment set to "name"

-zSname Data group set to "name"

-zTname Data class set to "name"

-zVname Far virtual segment set to "name" (16-bit compiler only)

-zWname Far virtual class set to "name" (16-bit compiler only)

-zXname Far BSS segment set to "name"

-zYname Far BSS class set to "name"

-zZname Far BSS group set to "name"

Chapter 3, Project options 97

Command-line options by function

The Paradigm C++ IDE groups the compiler and linker command-line options into the
following categories:

� Compiler
� 16-bit compiler
� 32-bit compiler

� C++ options
� Optimizations
� Messages
� Linker

In addition, there are compiler and linker options that you can set from only the
command-line:

Option Description

Configuration Files
@filename Read compiler options from the response file "filename"

Response Files
+filename Use alternate configuration file "filename"

Compiler|Defines
-Dname Define "name" to the null string

-Dname=string Define "name" to "string"

-Uname Undefine any previous definitions of "name"

Compiler|Code Generation
-b Make enums always integer-sized (Default: -b- make enums byte-sized

when possible)

-K Default character type unsigned (Default: -K- default character type
signed)

-d Merge duplicate strings (Default)

-po Use fastthis calling convention for passing this parameter in registers
(16-bit compiler only)

-r Use register variables (Default)

-rd Allow only declared register variables to be kept in registers

-Y Enables 24-bit extended addressing

Compiler|Floating Point
-f- No floating point

-f Emulate floating point

-ff Fast floating point

-fp Correct Pentium FDIV flaw

Compiler|Compiler Output
-X Disable compiler autodependency output (Default: -X- use compiler

autodependency output)

-u Generate underscores (Default)

-Fc Generate COMDEFs (16-bit compiler only)

Table 3-11
Command-line

only options

Paradigm C++ User's Guide98

Compiler|Source
-C Turn nested comments on (Default: -C- turn nested comments off)

-in Make significant identifier length to be "n" (Default)

-AT Use Paradigm C++ keywords (also -A-)

-A Use only ANSI keywords

-AU Use only UNIX V keywords

-AK Use only Kernighan and Ritchie keywords

Compiler|Debugging
-k Turn on standard stack frame (Default)

-N Check for stack overflow

-vi Control expansion of inline functions

-y Line numbers on

-v Turn on source debugging

-R Include browser information in generated .OBJ files

-vc Enable coverage records in object files (Disabled By Default)

Compiler|Precompiled Headers
-H Generate and use precompiled headers (Default)

-Hu Use but do not generate precompiled headers

-Hc Cache precompiled header

-H=filename Set the name of the file for precompiled headers

-H”xxx” Stop precompiling after header file xxxx

16-bit Compiler|Processor
-1- Generate 8086 compatible instructions (Default for 16-bit)

-1 Generate the 80186/286 compatible instructions (16-bit only)

-2 Generate 80286 protected-mode compatible instructions (16-bit
compiler only)

-3 Generate 80386 protected-mode compatible instructions (Default for
32-bit)

-4 Generate 80386/80486 protected-mode compatible instructions

-5 Generates Pentium instructions

-a Align byte (Default: -a- use byte-aligning)

-an Align to "n" where 1=byte, 2=word (16-bit = 2 bytes), 4=Double word
(32-bit only, 4 bytes), 8=Quad word (32-bit only, 8 bytes)

16-bit Compiler|Calling Convention
-pc Use C calling convention (Default: -pc, -p-)

-p Use Pascal calling convention

-pr Use fastcall calling convention for passing parameters in registers

16-bit Compiler|Memory Model
-ms Compile using small memory model (Default, 16-bit compiler only)

-ms! Compile using small memory model; assume DS! = SS (16-bit
compiler only. Note: there is no space between the -ms and the !)

-mm Compile using medium memory model (16-bit compiler only)

-mm! Compile using medium memory model; assume DS!=SS (16-bit
compiler only. Note: there is no space between the -mm and the !)

-mc Compile using compact memory model (16-bit compiler only)

-ml Compile using large memory model (16-bit compiler only)

Chapter 3, Project options 99

-mh Compile using huge memory model

-Fa Enable page alignment for far segments

-Fb Enable Borland C++-compatible far data

-Fs Assume DS=SS in all memory models (16-bit compiler only)

-dc Move string literals from data segment to code segment (16-bit
compiler only)

-dx Make all constant data far

-Vf Far C++ virtual tables (16-bit compiler only)

-h Uses fast huge pointers

-Ff Create far variables automatically

-Ff=size Create far variables automatically; set the threshold to "size" (16-bit
compiler only)

-Fp Pack far segments

16-bit Compiler|Segment Names Data
-zRname Data segment set to "name"

-zSname Data group set to "name"

-zTname Data class set to "name"

-zDname BSS segment set to "name"

-zGname BSS group set to "name"

-zBname BSS class set to "name"

16-bit Compiler|Segment Names Far Data
-zEname Far data segment set to "name"

-zHname Constant initialized far data segment set to "name "

-zIname Constant initialized far data class set to "name "

-zJname Constant initialized far data group set to "name "

-zKname Far data group set to "name"

-zFname Far data class set to "name"

-zVname Far virtual segment set to "name" (16-bit compiler only)

-zWname Far virtual class set to "name" (16-bit compiler only)

-zXname Far BSS segment set to "name"

-zYname Far BSS class set to "name"

-zZname Far BSS group set to "name"

16-bit Compiler|Segment Names Code
-zCname Code segment set to "name"

-zPname Code group set to "name"

-zAname Code class set to "name"

32-bit Compiler|Processor
-3 Generate 80386 instructions. (Default for 32-bit)

-4 Generate 80486 instructions

-5 Generate Pentium instructions

32-bit Compiler|Calling Convention
-pc Use C calling convention (Default: -pc, -p-)

-p Use Pascal calling convention

-pr Use fastcall calling convention for passing parameters in registers

-ps Use stdcall calling convention (32-bit compiler only)

Paradigm C++ User's Guide100

C++ Options|Member Pointer
-Vmp Honor the declared precision for all member pointer types

-Vmv Member pointers have no restrictions (most general representation)
(Default)

-Vmm Member pointers support multiple inheritance

-Vms Member pointers support single inheritance

-Vmd Use the smallest representation for member pointers

C++ Options|C++ Compatibility
-Vd for loop variable scoping

-K2 Allow only two character types (signed and unsigned). Char is treated
as signed.

-VC Calling convention mangling compatibility

-Vb Make virtual base class pointer same size as 'this' pointer of the class
(Default, 16-bit compiler only)

-Va Pass class arguments by reference to a temporary variable (16-bit
compiler only)

-Vc Do not add the hidden members and code to classes with pointers to
virtual base class members (16-bit compiler only)

-Vp Pass the 'this' parameter to 'pascal' member functions as the first

-Vv ‘deep’ virtual basses

-Vt Place the virtual table pointer after nonstatic data members (16-bit
compiler only)

-Vh Treat “far” classes as “huge”

C++ Options|Virtual Tables
-V Use smart C++ virtual tables (Default)

-Vs Local C++ virtual tables

-V0 External C++ virtual tables

-V1 Public C++ virtual tables

C++ Options|Templates
-Jg Generate definitions for all template instances and merge duplicates

(Default)

-Jgd Generate public definitions for all template instances; duplicates result
in redefinition errors

-Jgx Generate external references for all template instances

C++ Options|Exception Handling
-x Enable exception handling (Default)

-xp Enable exception location information

-xd Enable destructor cleanup (Default)

-xf Enable fast exception prologs

-xc Enable compatible exception handling

-RT Enable run-time type information (Default)

C++ Options|General
-Ve Zero-length empty base classes

Optimizations
-Od Disable all optimizations

-O1 Generate smallest possible code

Chapter 3, Project options 101

-O2 Generate fastest possible code

Optimizations|16- and 32-bit
-Oc Eliminate duplicate expressions within basic blocks

-Og Eliminate duplicate expressions within functions

-Oi Expand common intrinsic functions

-Ov Enable loop induction variable and strength reduction

Optimizations|16-bit
-O Optimize jumps

-Ol Compact loops

-Z Enable register load suppression optimization

-Ob Eliminate dead code

-OW Suppress the inc bp/dec bp on windows far functions (16-bit compiler
only)

-Oe Allocate global registers and analyze variable live ranges

-Oa Optimize assuming pointer expressions are not aliased on common
subexpression evaluation

-Om Move invariant code out of loops

-Op Propagate copies

Optimizations|32-bit
-OS Pentium instruction scheduling

Messages
-w Display warnings on

-wxxx Enable "xxx" warning message (Default)

-gn Warnings: stop after "n" messages (Default: 255)

-jn Errors: stop after "n" messages (Default)

Messages|Portability
-wrpt Nonportable pointer conversion (Default)

-wcpt Nonportable pointer comparison (Default)

-wrng Constant out of range in comparison (Default)

-wcln Constant is long

-wsig Conversion may lose significant digits

-wucp Mixing pointers to different 'char' types

-wico Integral constant overflow with 'op' operator

Messages|ANSI Violations
-wvoi Void functions may not return a value (Default)

-wret Both return and return of a value used (Default)

-wsus Suspicious pointer conversion (Default)

-wstu Undefined structure 'structure'

-wdup Redefinition of 'macro' is not identical (Default)

-wbig Hexadecimal value contains more than three digits (Default)

-wbbf Bit fields must be signed or unsigned int

-wext 'identifier' is declared as both external and static (Default)

-wdpu Declare type 'type' prior to use in prototype (Default)

-wzdi Division by zero (Default)

-wbei Initializing 'identifier' with 'identifier' (Default)

Paradigm C++ User's Guide102

-wpin Initialization is only partially bracketed

-wnak Non-ANSI Keyword Used: '<keyword>' (Note: Use of this option is a
requirement for ANSI conformance)

Messages|Obsolete C++
-wobi Base initialization without a class name is now obsolete (Default)

-wofp Style of function definition is now obsolete (Default)

-wpre Overloaded prefix operator 'operator' used as a postfix operator

-wovl Overload is now unnecessary and obsolete (Default)

Messages|Potential C++ Errors
-wnci The constant member 'identifier' is not initialized (Default)

-weas Assigning ‘type’ to ‘enum’

-whid 'function1' hides virtual function 'function2' (Default)

-wnfc Non-constant function ‘ident’ called for const object

-wibc Base class 'base1' is inaccessible because also in 'base2' (Default)

-wdsz Array size for 'delete' ignored (Default)

-wnst Use qualified name to access nested type 'type' (Default)

-whch Handler for '<type1>' Hidden by Previous Handler for '<type2>'

-wmpc Conversion to type fails for members of virtual base class base
(Default)

-wmpd Maximum precision used for member pointer type <type> (Default)

-wntd Use '> >' for nested templates instead of '>>' (Default)

-wnvf Non-volatile function <function> called for volatile object (Default)

Messages|Inefficient C++ Coding
-winl Functions containing reserved words are not expanded inline (Default)

-wlin Temporary used to initialize 'identifier' (Default)

-wlvc Temporary used for parameter 'parameter' in call to 'function' (Default)

Messages|Potential Errors
-wpia Possibly incorrect assignment (Default)

-wdef Possible use of 'identifier' before definition

-wnod No declaration for function 'function'

-wpro Call to function with no prototype (Default)

-wrvl Function should return a value (Default)

-wamb Ambiguous operators need parentheses

-wccc Condition is always true OR Condition is always false (Default)

-wuco Constant declaration 'symbol' should be initialized

Messages|Inefficient Coding
-waus 'identifier' is assigned a value that is never used (Default)

-wpar Parameter 'parameter' is never used (Default)

-wuse 'identifier' declared but never used

-wstv Structure passed by value

-wrch Unreachable code (Default)

-weff Code has no effect (Default)

-wlbl Label 'lbl' is declared but never used

Messages|General
-wasm Unknown assembler instruction

Chapter 3, Project options 103

-will Ill-formed pragma (Default)

-wias Array variable 'identifier' is near (Default)

-wamp Superfluous & with function

-wobs 'ident' is obsolete

-wpch Cannot create precompiled header: header (Default)

-wmsg User-defined warnings

-whsg Default segments required for huge objects-segment name reset

-wfar Automatic far data is ignored

Linker options
General

Map file

16-bit linker

16-bit optimizations

32-bit linker

Warnings

Command-line only options
16- and 32-bit command-line options

Linker supported command-line options

32-bit command-line options

Command-line options

When you start PCW, you can specify options that direct Paradigm C++'s behavior. You
can type these options on the command line or specify them as properties of the
Paradigm C++ icon.

PCW has the following command-line syntax:
pcw [options] [filename]

options You can use either a hyphen (-) or a slash (/) to specify the options listed
in the following table.

filename If you are not in the directory where filename is located, you must
specify the full path to the file. PCW loads filename into the most logical
environment based on the extension of the file. For example:

pcw cpp\project.ide

Displays the project in the Project Manager.

pcw \PARADIGM\examples\real\cppdemo\cppdemo.cpp

Displays the C++ source file in the Edit window.

pcw work\project.c

Displays the C source file in the Edit window.

You can specify the following PCW options in either upper- or lowercase: Add table
header Table 3.12, Paradigm C++ options)

Paradigm C++ User's Guide104

Option Description

-b project_filename Uses the Paradigm C++ IDE to build the specified project_filename. If the
project consists of multiple targets, all targets are built. Once the targets are
built, the Paradigm C++ IDE is closed. This option allows you to invoke the
Paradigm C++ IDE environment from a batch file so you can automate builds.
For example:
pcw -b project.ide

-iini_filename Starts PCW and specifies an INI file other than PCWx.INI. For
example:
pcw -imyini.ini

-m project_filename Uses the Paradigm C++ IDE to make the specified project_filename. If the
project consists of multiple targets, all targets are brought up to date.
Once the targets are made, the Paradigm C++ IDE is closed. This option allows
you to invoke the Paradigm C++ environment from a batch file so you can
automate makes. For example:
pcw -m project.ide

-q Starts PCW quietly (with no splash screen or About box on
startup).

-sscript_filename Starts PCW and runs the specified script_filename. For example:
pcw -s script.spp

Chapter 4, Browsing through your code 105

C h a p t e r

4

Browsing through your code

The browser lets you search through your object hierarchies, classes, functions,
variables, types, constants, and labels that your program uses. The browser also lets you:

� Graphically view the hierarchies in your application, then select the object of your
choice and view the functions and symbols it contains.

� List the variables your program uses, then select one and view its declaration, list all
references to it in your program, or go to where it is declared in your source code.

� List all the classes your program uses, then select one and list all the symbols in its
interface part. From this list, you can select a symbol and browse as you would with
any other symbol in your program.

Using the browser

If the program in the current Edit window or the first file in your project has not yet been
compiled, the Paradigm C++ IDE must first compile your program before invoking the
browser.

If you try to browse a variable or class definition (or any symbol that does not have
symbolic debug information), the Paradigm C++ IDE displays an error message.

If you changed the following default settings on the Project options dialog box, before
you use the browser, be sure to:
1. Choose Options|Project.
2. Choose Compiler|Debugging and check

� Debug information in OBJs
� Browser reference information in OBJs

3. Choose Linker|General and check Include debug information.
4. Compile your application.

Starting the browser

To start browsing through your code, choose one of the following menu or SpeedBar
commands: From the main menu or the SpeedBar:

� Search|Browse symbol
� Search|Browse Classes
� Search|Browse Globals

Browser views
The browser provides the following views:

� Global symbols
� Objects (Class overview)
� Symbol declaration

Paradigm C++ User's Guide106

� Class inspection
� References

Browsing objects (class overview)

Choose Search|Browse classes to see an overall view of the object hierarchies in your
application, as well as the small details.

The browser draws your objects and shows their ancestor-descendant relationships in a
horizontal tree. The red lines in the hierarchy help you see the immediate ancestor-
descendant relationships of the currently selected object more clearly.

To see more detail about a particular object, double-click it. (If you are not using a
mouse, select the object by using your arrow cursor keys and press Enter.) The browser
lists the symbols (the procedures, functions, variables, and so on) used in the object.

One or more letters appear to the left of each symbol in the object that describe what
kind of symbol it is. "See Browser filters and letter symbols".

Browsing global symbols

Choose Search|Browse globals to open a window that lists every global symbol in your
application in alphabetical order.

To see the declaration of a particular symbol listed in the browser, use one of the
following methods:

� Double-click the symbol
� Select the symbol and press Enter
� Select the symbol, choose Browse symbol from the SpeedMenu

Search
The Search input box at the bottom of the window lets you quickly search through the
list of global symbols by typing the first few letters of the symbol name. As you type, the
highlight bar in the list box moves to a symbol that matches the typed characters.

Browser SpeedMenu
Once you select the global symbol you are interested in, you can use the following
commands on the Browser SpeedMenu:

� Edit Source
� Browse Symbol
� Browse References
� Return to Previous View
� Print Class Hierarchy
� Toggle Window Mode

Browsing symbols in your code

You can browse any symbol in your code without viewing object hierarchies or lists of
symbols first.

To do so, highlight or place the insertion point on the symbol in your code and choose
Browse symbol. from the Search menu or the Edit window SpeedMenu.

Chapter 4, Browsing through your code 107

If the symbol you select is a structured type, the browser shows you all the symbols in
the scope of that type. You can then choose to inspect any of these further. For example,
if you choose an object type, you will see all the symbols listed that are within the scope
of the object.

Symbol declaration window
This Browser window shows the declaration of the selected symbol.

You can use the following commands on the Browser SpeedMenu:

� Edit Source
� Browse References
� Browse Class Hierarchy
� Return to Previous View
� Toggle Window Mode

Browsing references
This Browser window shows the references to the selected symbol.

You can use the following commands on the Browser SpeedMenu:

� Edit Source
� Browse Class Hierarchy
� Return to Previous View
� Toggle Window Mode
� Set Options

Class inspection window
This Browser window shows the symbols (functions and variables) used in the selected
class.

Once you select the symbol you are interested in, you can use the following commands
on the Browser SpeedMenu:

� Edit Source
� Browse Symbol
� Browse References
� Browse Class Hierarchy
� Return to Previous View
� Toggle Window Mode
� Set Options

Browser filters and letter symbols

When you browse a particular symbol, the same letters that appear on the left that
identify the symbol appear in a Filters matrix at the bottom of the Browser window. The
Filters matrix has a column for each letter which can appear in the top or bottom row of
the column.

Use the filters to select the type of symbols you want to see listed. (You can also use the
Browser options settings to specify the types of symbols you want to see listed.)

Paradigm C++ User's Guide108

Letter Symbol

F Function

T Type

V Variable

C Integral constants

? Debuggable

I Inherited from an ancestor

v Virtual method

In some cases, more than one letter appears next to a symbol. Additional letters appear
to the right of the letter identifying the type of symbol and further describe the symbol:

To view all instances of a particular type of symbol

For example, to view all the variables in the currently selected object, click the top cell in
the V column. All the variables used in the object appear.

To hide all instances of a particular type of symbol

For example, to view only the functions and procedures in an object, you need to hide all
the variables. Click the bottom cell in the V column, and click the top cells in the F and P
columns.

To change several filter settings at once

Drag your mouse over the cells you want to select in the Filters matrix.

Customizing the browser

Use the Environment Options dialog box to select the Browser options you want to use.
1. Choose Options|Environment.
2. Choose Browser.
3. Specify the types of symbols you want to have visible in the Browser using the

Visible symbols option.
4. Specify how many browser views you can have open at one time. See single or

multiple Browser window mode in the Browser window behavior option.

Table 4-1
Browser letter

symbols

☞☞☞☞

Click the top cell
of the column.

Click the bottom
cell of the letter

column.

Chapter 5, Using the integrated debugger 109

C h a p t e r

5

Using the integrated debugger

No matter how careful you are when you code, your program is likely to have errors or
bugs that prevent it from running the way you intended. Debugging is the process of
locating and fixing the errors in your program.

The Paradigm C++ IDE contains an integrated debugger that lets you debug 16- and 32-
bit embedded applications without leaving the development environment. Among other
things, the integrated debugger lets you control the execution of your program, inspect
the values of variables and items in data structures, modify the values of data items while
debugging. You can access the functionality of the integrated debugger through two
menus: Debug and View along with local menus and keystrokes. This chapter introduces
you to the functionality of the integrated debugger and gives a brief overview of the
debugging process.

Types of bugs

The integrated debugger can help find two basic types of programming errors: run-time
errors and logic errors.

Run-time errors

If your program successfully compiles, but fails when you run it, you've encountered a
run-time error. Your program contains valid statements, but the statements cause errors
when they're executed. For example, your program might be trying to open a nonexistent
file, or might be trying to divide a number by zero. The operating system detects run-
time errors and stops your program execution if such an error is encountered.

Without a debugger, run-time errors can be difficult to locate because the compiler
doesn't tell you where the error is located in your source code. Often, the only clue you
have to work with is where your program failed and the error message generated by the
run-time error.

Although you can find run-time errors by searching through your program source code,
the integrated debugger can help you quickly track down these types of errors. Using the
integrated debugger, you can run to a specific program location. From there, you can
begin executing your program one statement at a time, watching the behavior of your
program with each step. When you execute the statement that causes your program to
fail, you have pinpointed the error. From there, you can fix the source code recompile
the program, and resume testing your program.

Logic errors

Logic errors are errors in design and implementation of your program. Your program
statements are valid (they do something), but the actions they perform are not the actions
you had in mind when you wrote the code. For instance, logic errors can occur when
variables contain incorrect values, or when the output of your program is incorrect.

Paradigm C++ User's Guide110

Logic errors are often the most difficult type or errors to find because they can show up
in places you might not expect. To be sure your program works as designed, you must
thoroughly test all of its aspects. Only by scrutinizing each portion of the user interface
and output of your program can you be sure that its behavior corresponds to its design.
As with run-time errors, the integrated debugger helps you locate logic errors by letting
you monitor the values of your program variables and data objects as your program
executes.

Planning a debugging strategy

After program design, program development consists of a continuous cycle of program
coding and debugging. Only after you thoroughly test your program should you
distribute it to your end users. To ensure that you test all aspects of your program, it's
best to have a thorough plan for your debugging cycles.

One good debugging method involves breaking your program down into different
sections that you can systematically debug. By closely monitoring the statements in each
program section, you can verify that each area is performing as designed. If you do find a
programming error, you can correct the problem in your source code, recompile the
program, and then resume testing.

Starting a debugging session

To start a debugging session:

1. Build your program with debug information.
2. Run your program from within the Paradigm C++ IDE.

When debugging, you have complete control of your program's execution. You can
pause the program at any point to examine the values of program variables and data
structures, to view the sequence of function calls, and to modify the values of program
variables to see how different values affect the behavior of your program.

Compiling with debug information

Before you can begin a debugging session, you must compile your program with
symbolic debug information. Symbolic debug information, contained in a symbol table,
enables the debugger to make connections between your program's source code and the
machine code that's generated by the compiler. This lets you view the actual source code
of your program while running the program through the debugger.

To generate symbolic debug information for your project:

1. In the Project window, select the project node.
2. Choose Options|Project to open the Project Options dialog box.
3. From the Compiler|Debugging topic, check Debug Information in .OBJs to include

debug information in your project .OBJ files (this option is checked by default).
4. From the Linker|General topic, check Include Debug Information. This option

transfers the symbolic debug information contained in your .OBJ files to the .ROM
file (this option is checked by default).

Adding debugging information to your files increases their file size. Because of this,
you'll want to include debug information in your files only during the development stage
of your project. Once your program is fully debugged, compile your program without
debug information to reduce the final .AXE file size.

Chapter 5, Using the integrated debugger 111

Not all .OBJ files in your project need symbolic debug information - only those modules
you need to debug must contain a symbol table. However, since you can't statement step
into a module that doesn't contain debug information, it's best to compile all your
modules with a minimum of line number debug information during the development
stages of your project.

Running your program in the Paradigm C++ IDE

Once you've compiled your program with debug information, you can begin a debugging
session by running your application in the Paradigm C++ IDE. By running your
application in the Paradigm C++ debugger, you have control of when the application
runs and when it pauses. Whenever the program is paused in the Paradigm C++ IDE, the
debugger takes control.

When your program is running under the Paradigm C++ IDE, it behaves as it normally
would if it were running in a stand-alone target. During the time that your application is
not running, the debugger has control, and you can use its features to examine the
current state of the program. By viewing the values of variables, the functions on the call
stack, and the program output, you can ensure that the area of code you're examining is
performing as it was designed.

The actual behavior of the application depends on the target system being used. 16-bit
applications can only be debugged on remote target systems running PDREMOTE/ROM
or with an in-circuit emulator. 32-bit applications can be debugged locally in emulation
mode or can be debugged remotely using PDREMOTE/ROM or an in-circuit emulator.

Specifying program arguments
If the program you want to debug uses command-line arguments, you can specify those
arguments in the Paradigm C++ IDE in two ways.

First:

1. Choose Options|Environment then select the Debugger topic.
2. In the Arguments text box, type the arguments you want to use when you run your

program under the control of the integrated debugger.
Second:

1. Choose Debug|Load.
2. Type your program name and arguments in the Load dialog box.

Controlling program execution

An important advantage of a debugger is that it lets you control the execution of your
program; you can control whether your program will execute a single machine
instruction, a single line of code, an entire function, or an entire program block. By
dictating when the program should run and when it should pause, you can quickly move
over the sections that you know work correctly and concentrate on the sections that are
causing problems.

The integrated debugger lets you control the execution of your program in the following
ways:

� Running to the cursor location
� Stepping through code
� Running to a breakpoint

☞☞☞☞

Paradigm C++ User's Guide112

� Pausing your program

When running code through the debugger, program execution can be based on lines of
source code or on machine instructions. When debugging at the source level, the
integrated debugger lets you control the rate of debugging to the level of a single line of
code. However, the debugger considers multiple program statements on one line of text
to be a single line of code; you cannot individually debug multiple statements contained
on a single line of text. In addition, the debugger regards a single statement that's spread
over several lines of text as a single line of code.

There are a number of options you can select to control the behavior of the integrated
debugger while you work. See Options | Environment | Debugger in the Paradigm C++
IDE for these options and their descriptions. See also "Debugger options" in the online
Help of the Paradigm C++ IDE.

Running to the cursor location

Often when you start a debugging session, you'll want to run your program to a spot just
before the suspected location of the problem. At that point, use the debugger to ensure
that all data values are as they should be. If everything is OK, you can run your program
to another location, and again check to ensure that your program is behaving as it
should.

To run to a specific source line:

1. In the Edit window or CPU window, position the cursor on the line of code where
you want to begin (or resume) debugging.

2. Run to the cursor location in one of the following ways:

� Click the Run To Here button on the SpeedBar.
� Choose Run To Current from the Edit window SpeedMenu
� Choose Run To Current in the Disassembly pane of the CPU window.

To run to a specific machine instruction:

1. After your process is loaded, open a CPU view and position the disassembly pane so
that the highlight is on the address to which you want to run.

2. Choose Run To Current from the disassembly pane SpeedMenu, or click the Run To
Here button on the SpeedMenu.

When you run to the cursor, your program executes at full speed until the execution
reaches the location marked by the cursor in the Edit window, or highlight in the CPU
window. When the execution encounters the code marked by the text cursor or
highlighted, the debugger regains control and places the execution point on that line of
code.

The execution point

The execution point marks the next line of source code to be executed by the debugger.
Whenever you pause your program execution within the debugger (for example,
whenever you run to the cursor or step to a program location), the debugger highlights a
line of code using a green arrow and colored background (depending on your color
setup), marking the location of the execution point.

The execution point always shows the next line of code to be executed, whether you are
going to step through, step into, or run your program at full speed. If there is no source

☞☞☞☞

Chapter 5, Using the integrated debugger 113

associated with the code at the current execution point, a CPU window is opened
showing the instruction with the instruction at the current execution point.

Finding the execution point
While debugging, you're free to open, close, and navigate through any file in an Edit
window. Because of this, it's easy to lose track of the next program statement to execute,
or the location of the current program scope. To quickly return to the execution point,
choose Debug|Source At Execution Point or click the SpeedBar button. Even if you've
closed the Edit window containing the execution point, Find Execution Point opens an
Edit window, and highlights the source code containing the execution point.

If there is no source associated with the code at the current execution point, you will get
an error stating that no line corresponds to the address. If this happens, you can see the
current execution point by opening the CPU window.

Stepping through code

Stepping is the simplest way to move through your code one statement at a time.
Stepping lets you run your program one line (or instruction) at a time – the next line of
code (or instruction) will not execute until you tell the debugger to continue. After each
step, you can examine the state of the program, view the program output, and modify
program data values. Then, when you are ready, you can continue executing the next
program statement.

There are two basic ways to step through your code:

The Step Into command is available on the SpeedMenu in the Edit window or by using
F8. Step Into causes the debugger to walk through your code one statement at a time. If
the execution point is located on a function call, the debugger moves to the first line of
code that defines that function. From here, you can execute that function, one statement
at a time. When you step past the return of the function, the debugger resumes stepping
from the point where the function was called. Using the Step Into command to step
through your program one statement at a time is known as single stepping.

The Step Over command is also available on the SpeedMenu in the Edit window or by
using F7. Step Over is the same as Step Into, except that if you issue the Step Over
command when the execution point is on a function call, the debugger executes the
function at full speed, and pauses the execution on the line of code following the function
call.

Stepping rules

The debugger steps over single lines of lines of code based on the following rules:

� If you string several statements together on one line, you cannot debug those
statements individually; the debugger treats all statements as a single line of code.

� If you spread a single statement over multiple lines in your source file, the debugger
executes all the lines as a single statement.

To ensure that the debugger accurately represents your C++ source code while stepping,
choose Options|Project|Compiler|Debugging and click Out-of-Line Inline Functions.

Stepping into
To Step Into code, choose Statement|Step Into from the Edit window SpeedMenu or
press F7 (default keyboard mapping).

Step Into

Step Over

☞☞☞☞

Paradigm C++ User's Guide114

When you choose Step Into, the debugger executes the code highlighted by the
execution point. If the execution point is highlighting a function call, the debugger moves
the execution point to the first line of code that defines the function being called.

If the executing statement calls a function that does not contain debug information, the
debugger opens the CPU window and positions the execution point on the disassembled
instruction that corresponds to the function definition in memory.

Example

The following code fragment shows how Step Into works. Suppose these two functions
are in a program that was compiled with debug information:

func_1() {
statement_a;
func_2();
statement_b;

}

func_2() {
int customers;
statement_m;

}

If you choose Step Into when the execution point is on statement a in func 1, the
execution point moves to highlight the call to func 2. Choosing Step Into again
positions the execution point at the first line in the definition of func 2. Another Step
Into command moves the execution point to statement_m , the first executable line
of code in func_2.

When you step past a function return statement (in this case, the closing function brace),
the debugger positions the execution point on the line following the original function
call. Here, the debugger would highlight statement_b with the execution point.

As you debug, you can choose to Step Into some functions and Step Over others. Use
Step Into when you need to fully test the function highlighted by the execution point.

Stepping over
To Step Over code, choose Statement|Step Over from the Edit Window SpeedMenu or
press F8 (default keyboard mapping).

When you choose the Step Over command, the debugger executes the code highlighted
by the execution point. If the execution point is highlighting a function call, the debugger
executes that function at full speed, including any function calls within the function
highlighted by the execution point. The execution point then moves to the next complete
line of code.

Example

The following code fragment shows how Step Over works. Suppose these two functions
are in a program that was compiled with debug information:

func_1() {
statement_a;
func_2();
statement_b;

}

func_2() {
statement_m;
func_3();

}

Chapter 5, Using the integrated debugger 115

If you choose Step Over when the execution point is on statement a in func 1,
the execution point moves to highlight the call to func 2. Choosing Step Over again
runs func 2 at full speed, moving the execution point to statement b. Notice that
when you step over func 2, func 3 is also run at full speed.

As you debug, you can choose to Step Into some functions and Step Over others. Step
Over is good to use when you have fully tested a function, and you do not need to single
step through its code.

Debugging member functions and external code
If you use classes in your programs, you can still use the integrated debugger to step
through the member functions in your code. The debugger handles member functions the
same way it would step through functions in a program that is not object-oriented.

If you define a member function inline, then you should check Out-of-line inline
functions to facilitate debugging the inline function.

You can also step through or step over external code written in any language (including
C, C++, Object Pascal, and assembly language) as long as the code meets all the
requirements for external linking and contains full Paradigm symbolic debugging
information. If the external code does not contain debug information, you can still step
through the code using the CPU window.

Running to a breakpoint

You set breakpoints on lines of source code where you want the program execution to
pause during a run. Running to a breakpoint is similar to running to a cursor position that
the program runs at full speed until it reaches a certain source-code location. However,
unlike Run to Cursor, you can have multiple breakpoints in your code and you can
customize each one so it pauses the program's execution only when a specified condition
is met. For more information on breakpoints, see “Examining program data values,”
page 5-127.

Pausing a program

In addition to stepping over or through code, you can also pause your program while it
is running. Choosing Debug|Pause Process causes the debugger to pause your program.
You can use the debugger to examine the value of variables and inspect data at this state
of the program. When you are done, choose Debug|Run to continue the execution of
your program.

Terminating the program

Sometimes while debugging, you will find it necessary to restart the program from the
beginning. For example, you might need to restart the program if you step past the
location of a bug, or if variables or data structures become corrupted with unwanted
values.

Choose Debug|Terminate debug session (or press Ctrl-F2) to end the current program
run. Terminating a program closes all open program files, releases all memory allocated
by the program, and clears all variable settings. However, terminating a program does
not delete any breakpoints or watches that you might have set. This makes it easy to
resume a debugging session.

☞☞☞☞

Paradigm C++ User's Guide116

Using breakpoints

You use breakpoints is similar to using the Run to Cursor command in that the program
runs at full speed until it reaches a certain point. But, unlike Run to Cursor, you can have
multiple breakpoints and you can choose to stop at a breakpoint only under certain
conditions. Once your program’s execution is paused, you can use the debugger to
examine the state of your program.

The Paradigm C++ IDE keeps track of all your breakpoints during a debugging session
and associates them with your current project. You can maintain all your breakpoints
from a single Breakpoints window and not have to search through your source code files
to look for them.

Debugging with breakpoints

When you run your program from the Paradigm C++ IDE, it will stop whenever the
debugger reaches the location in your program where the breakpoint is set, but before it
executes the line or instruction. The line that contains the breakpoint (or the line that
most closely corresponds to the program location where the breakpoint is set) appears in
the Edit window highlighted by the execution point. At this point, you can perform any
other debugging actions.

Setting breakpoints

You can set a breakpoint the following ways:

To set an unconditional breakpoint on a line in your source code, use one of the
following methods:

� Place the insertion point on a line in an Edit window and choose Toggle|Breakpoint
from the Edit window SpeedMenu. or press F5 (default keyboard setting).

� Click the gutter in an Edit window next to the line where you want to set a
breakpoint.

Setting an unconditional breakpoint
To set an unconditional breakpoint on a machine instruction:

1. Highlight a machine instruction in the Disassembly pane in the CPU window.
2. Choose Toggle Breakpoint on the SpeedMenu or press F5 (default keyboard

setting).

Setting a conditional breakpoint
To set a conditional breakpoint on a line or machine instruction:

1. Place the insertion point on a line in an Edit window or highlight a line in the
Disassembly pane of the CPU window.

2. Choose Debug|Add Breakpoint or choose Add Breakpoint from the SpeedMenu.
3. Complete the information on the Add Breakpoint dialog box.
4. Do one of the following:

� Click the Advanced button to display the Breakpoint Condition/Action Options
dialog box.

� Supply the conditions and action settings you want. See “Creating conditional
breakpoints,” page 5-117.

Chapter 5, Using the integrated debugger 117

� Specify option set in the Options input box.

Setting other breakpoints
To set other types of breakpoints:

1. Choose Debug|Add Breakpoint (or press F5 in the default keyboard setting) from
anywhere in the Paradigm C++ IDE or choose Add Breakpoint from the SpeedMenu
in an active Edit or Breakpoint window, or the Disassembly pane of the CPU
window.

2. Select a breakpoint type on the Add Breakpoint dialog box and supply any additional
information associated with the type of breakpoint selected.

3. Either

� Click OK to set an unconditional breakpoint.
� Click the Advanced button to display the Breakpoint Condition/Action Options

dialog box. See “Creating conditional breakpoints,” page 5-117.

To view a breakpoint

Choose View|Breakpoint to display the Breakpoints window.

Setting breakpoints after program execution begins
While your program is running, you can switch to the debugger (just like you switch to
any Windows application) and set a breakpoint. When you return to your application, the
new breakpoint is set, and your application will pause or perform a specified action when
it reaches the breakpoint.

Creating conditional breakpoints

Use a conditional breakpoint when you want the debugger to activate a breakpoint only
under certain conditions. For example, you may not want a breakpoint to activate every
time it is encountered, especially if the line containing the breakpoint is executed many
times before the actual occurrence in which you are interested. Likewise, you may not
always want a breakpoint to pause program execution. In these cases, use a conditional
breakpoint.

To set a conditional breakpoint:

1. Choose Debug|Add Breakpoint to open the Add Breakpoint dialog box.

Paradigm C++ User's Guide118

Add Breakpoint dialog box

2. Select a breakpoint type and supply the applicable information.
3. Click Advanced to display the Breakpoint Condition/Action Options dialog box.
4. Click Expr. True and enter an expression that tells the debugger when to trigger the

breakpoint. If the condition is not met, the debugger ignores the breakpoint along
with any of its actions.

5. If you want the debugger to activate a breakpoint only after it has been reached a
certain number of times, click Pass count and enter the number of passes. Otherwise,
your program will pause every time the breakpoint is activated.

6. If you want program execution to pause when the breakpoint is activated, click Break
(the default). Otherwise, your program will not pause when the debugger activates
the breakpoint.

7. If you want the debugger to perform various actions when the breakpoint activates,
use the Actions settings. Otherwise, click OK.

Figure 5-1

Chapter 5, Using the integrated debugger 119

Breakpoint Condition/Action Options dialog box

Removing breakpoints

You can remove a breakpoint the following ways:

From an Edit window
Double-click the gutter in an Edit window next to the line that contains the breakpoint
you want to remove.

From an Edit window or the Disassembly pane of the CPU window
1. Place the insertion point on the line or highlight the instruction where the breakpoint

is set.
2. Choose Toggle Breakpoint from the SpeedMenu.

From the Breakpoints window
1. Choose View|Breakpoint to display the Breakpoints window.
2. Select one or more breakpoints.
3. Choose Remove Breakpoint(s) from the SpeedMenu.

Figure 5-2

Paradigm C++ User's Guide120

To select multiple breakpoints in the Breakpoints window, hold down the Shift or Ctrl
key as you select each breakpoint.

Disabling and enabling breakpoints

Disable a breakpoint when you prefer not to activate it the next time you run your
program, but want to save it for later use. The breakpoint remains listed in the
Breakpoints window and available for you to enable when you want.

To enable or disable a breakpoint

1. Choose View|Breakpoint to open the Breakpoints window.
2. Click the checkbox next to the breakpoint to enable it or clear the checkbox to

disable it.

To disable or enable selected breakpoints

1. In the Breakpoints window, hold down the Shift or Ctrl key as you select each
breakpoint.

2. Choose Enable/Disable Breakpoints from the SpeedMenu.

To use a breakpoint to disable or enable a group of breakpoints

1. Choose Debug|Add Breakpoint to open the Add Breakpoint dialog box.
2. Click Options to open the Breakpoint Condition/Action Options dialog box.
3. Click Enable Group or Disable Group and enter a group name.

Viewing and editing code at a breakpoint

Even if a breakpoint is not in your current Edit window, you can quickly locate it in your
source code.

Viewing code at a breakpoint
1. Choose View|Breakpoint to display the Breakpoints window.
2. Select a breakpoint.
3. Choose View Source on the Breakpoints window SpeedMenu.

The source code displays in an Edit window at the breakpoint line and the Breakpoints
window remains active. If the source code is not currently open in an Edit window, the
Paradigm C++ IDE opens a new Edit window.

Editing code at a breakpoint
1. Choose View|Breakpoint to display the Breakpoints window.
2. Select a breakpoint.
3. Choose Edit Source from the Breakpoints window SpeedMenu.

The source code displays in an active Edit window with your cursor positioned on the
breakpoint line, ready for you to edit. If the source code is not currently open in an Edit
window, the Paradigm C++ IDE opens a new Edit window.

Resetting invalid breakpoints

A breakpoint must be set on executable code; otherwise, it is invalid. For example, a
breakpoint set on a comment, a blank line, or a declaration is invalid. A common error is
to set a breakpoint on code that is conditionalized out using #if or #ifdef.

☞☞☞☞

Chapter 5, Using the integrated debugger 121

If you set an invalid breakpoint and run your program, the debugger displays an Invalid
Breakpoint dialog box.

To reset an invalid breakpoint

1. Close the Invalid Breakpoint dialog box.
2. Open the Breakpoints window.
3. Find the invalid breakpoint and delete it.
4. Set the breakpoint in a proper location and continue to run your program.

If you ignore the Invalid Breakpoint (by dismissing the dialog box) and then choose Run,
the Paradigm C++ IDE executes your program, but does not enable the invalid
breakpoint.

Using breakpoint groups

The integrated debugger lets you group breakpoints together so you can enable or
disable them with a single breakpoint action.

Creating a breakpoint group
1. Choose Debug|Add Breakpoint to open the Add Breakpoint dialog box.
2. Enter a name in the Group input box.

Disabling or enabling a breakpoint group
1. Choose Debug|Add Breakpoint to open the Add Breakpoint dialog box.
2. Click Options to open the Breakpoint Condition/Action Options dialog box.
3. Click Enable Group or Disable Group and enter a group name.

Using breakpoint option sets

To quickly specify the behavior of one more breakpoints as you create or modify them,
store breakpoint settings in an option set.

Creating a breakpoint option set
1. Choose Debug|Breakpoint options to open the Breakpoint Condition/Action Options

dialog box.
2. Enter the conditions and actions. See “Creating conditional breakpoints,” page

5-117.
3. Click Add.
4. Enter a name in the dialog box that displays and click OK.

Associating a breakpoint with an option set
� Enter an Option name in the Add or Edit Breakpoints dialog box.

Deleting an option set

1. Choose Debug|Breakpoint options to open the Breakpoint Condition/Action Options
dialog box.

2. Select an Option set and click Delete.

☞☞☞☞

To remove a
breakpoint from
a group, select

the group name
and press

Delete.

You can also
create an option

set when you
create or edit a

breakpoint.

Paradigm C++ User's Guide122

Changing breakpoint options

To change the conditions and actions of a breakpoint:

1. Choose View|Breakpoint to open the Breakpoints window.
2. Double-click on a breakpoint or choose Edit Breakpoint from the SpeedMenu.
3. Change the option set in the Options input box on the Edit Breakpoint dialog box.

or

Add new information as described in “Creating conditional breakpoints,” page 5-117.

Changing the color of breakpoint lines

To use colors to indicate if a breakpoint is enabled, disabled, or invalid:

1. Choose Options|Environment.
2. Select Syntax Highlighting and choose Customize.
3. From the Element list, select the following breakpoint options you want to change:

� Enabled Break
� Disabled Break
� Invalid Break

4. Select the background (BG) and foreground (FG) colors you want.
5. If you want highlighting, choose Default Color.

Using the Breakpoints window

The Breakpoints window lists all breakpoints currently set in the loaded project (or the
file in the active Edit window if a project is not loaded) and contains a tab for each of the
following breakpoint types.

To display the Breakpoints window, choose View|Breakpoint (Figure 5-3)

Breakpoints window

The Breakpoints window lets you perform the following actions:

☞☞☞☞
Figure 5-3

Chapter 5, Using the integrated debugger 123

� Click the checkbox beside a breakpoint to enable it or clear the checkbox to disable
the breakpoint.

� Double-click on a breakpoint or press Enter to open the Edit Breakpoint dialog box
to change breakpoint settings.

About the Breakpoints window
The Breakpoints window provides the following information about each breakpoint:

� Name of the source code file in which the breakpoint is set (for source breakpoints).

� Location (such as line number, file name, module, or address number) where the
breakpoint is set.

� Current state of the breakpoint:

Verified - The breakpoint is legal and validated when the process was loaded.

Unverified - The process has not been loaded since you added the breakpoint.

Invalid - The breakpoint is illegal. The line on which you set the breakpoint does not
contain executable code (such as a blank line, comment, or declaration) and the
debugger will ignore it.

� Number of times the debugger must reach the breakpoint before activating the
breakpoint. This information appears after a breakpoint has been activated. See “Pass
Count,” page 5-125.

� Associated option set and group name as well as the conditions/action options
specified. See “Creating conditional breakpoints,” page 5-117.

� Last Event Hit shows the breakpoint last encountered.

Integrated debugger features

Add breakpoint
Use the Add Breakpoint dialog box to create a breakpoint. The options that appear in
the middle of the dialog box change according to the breakpoint type selected:

� Source
� Address
� Data Watch
� C++ Exception

The following options always display on the right side of the dialog box:

� Other

If you want to set conditions and actions that control breakpoint behavior, click
Advanced to open the Breakpoint Condition/Action Options dialog box.

Other
Contains the following options:

Indicates the name of the option set that defines breakpoint behavior.

Indicates the name of group to which the breakpoint belongs.

Choose a
command from
the Breakpoint

window
SpeedMenu.

☞☞☞☞

Options

Group

Paradigm C++ User's Guide124

Source breakpoint
Sets a breakpoint on a line in your source code.

Indicates the file that contains the source code where the breakpoint is set.

Indicates the line in the source file on which the breakpoint is set.

If you select a line of code in an Edit window and choose Add Breakpoint from the
SpeedMenu, the debugger completes these settings for you.

Address breakpoint
Sets a breakpoint on a machine instruction.

Indicates the address of the machine instruction on which the breakpoint is set.

C++ exception breakpoint
Sets a breakpoint that pauses your program when it throws or catches a C++ exception.

Specifies the data type (such as int, long, char, or a class name) used with the
exception. If you enter an ellipses (...) into the Type field, the debugger will trap any
C++ exception that is thrown or caught by your program.

Pauses program execution when an exception is thrown.

Pauses program execution when an exception is caught.

Pauses program execution when any object is destroyed (when a destructor is called)
after an exception is thrown.

Breakpoint Condition/Action Options
Use this dialog box to:

� Specify settings that control the behavior of one or more breakpoints, such as the
conditions under which a breakpoint is activated and the type of actions that take
place when it does.

� Enable and disable breakpoint groups

To display this dialog box, use any of the following methods:

� Choose Debug|Breakpoint Options.
� Choose Debug|Add Breakpoint and click the Advanced button on the Add

Breakpoint window.
� Choose View|Breakpoint and double-click a breakpoint listed in the Breakpoints

window. Then click the Advanced button on the Edit Breakpoint window.

The Breakpoint Condition/Action Options dialog box contains the following options:

Names Lists the names of Option sets that have been created.

Conditions Provides settings that determine when and where a breakpoint is
activated.

Actions Provides settings that determine what actions take place when a
breakpoint is activated.

Lists the names of existing option sets. Use the checkbox next to each option set to
enable or disable it.

File

Line #

☞☞☞☞

Offset

Type

Stop on
Throw

Stop on
Catch

Stop on
Destructor

Names

Chapter 5, Using the integrated debugger 125

For example, if you clear the checkbox next to an option set called MyOptionSet, the
debugger ignores its settings and all breakpoints that use this option set behave like
unconditional breakpoints. To reactivate the breakpoint settings in MyOptionSet so
that they will used by the debugger, click its checkbox.

This group of settings determines when and where a breakpoint is activated:

Expr. True Each time the debugger encounters the breakpoint, it evaluates an
expression to determine if the breakpoint should activate.

Pass Count Indicates the number of times the debugger encounters the breakpoint line
before it activates.

Click Add or Delete to create or remove an option set.

Enter the expression you want to evaluate each time the debugger reaches the
breakpoint. If the expression becomes true (nonzero) when the breakpoint is
encountered, the debugger activates the breakpoint and carries out any actions specified
for it. You can enter a Boolean expression that, for instance, tests if a value falls within a
certain range or if a flag has been set.

For example:

If you enter the expression
x == 1

the debugger activates the breakpoint only if x has been assigned the value 1 at the time
the breakpoint is encountered.

If you enter the expression
x > 3

and select Break, when the debugger reaches the breakpoint, your program pauses if the
current value of x is greater than 3. Otherwise, the breakpoint is ignored.

This option includes the following settings:

Up to Specifies the number of times you want the debugger to reach the
breakpoint before it is activated.

Current Shows the actual number of times the debugger has reached the
breakpoint so far. You can change this setting if you want to.

Unconditional breakpoint example

Suppose Break is checked, and in the Pass Count box you enter 2. In this case, your
program does not stop until the second time the debugger reaches the breakpoint.

Conditional breakpoint example

Suppose Break is checked, plus you enter the expression x>3 and in the Pass Count box
you enter 2. In this case, your program does not stop until the second time the
debugger reaches the breakpoint (that is, when the value of x is greater than 3).

Conditions

Expr. True

Pass Count

Paradigm C++ User's Guide126

This group of options lets you specify the actions you want carried out each time the
breakpoint is activated:

Break Pauses program execution

Stop Log Stops posting debugger generated messages

Start Log Starts posting debugger generated messages

Log Expr Displays the value of an expression in the message window

Eval Expr Evaluates an expression

Log Message Displays a message in the message window

Enable Group Reactivates a group of breakpoints

Disable Group Disables a group of breakpoints

Click Break (the default) to pause program execution when the debugger activates the
breakpoint. Clear this checkbox if you do not want your program to pause at the
breakpoint.

Stops displaying debugger messages in the Run-time Tab of the Message window when
the breakpoint is activated.

Starts displaying debugger messages in the Run-time Tab of the Message window when
the breakpoint is activated.

Click Log Exp if you want to display the value of an expression in the Run-time tab of
the Message window. Then, enter the expression in the input box next to it. The
debugger logs the value each time the breakpoint activates. Use this option when you
want to output a value each time you reach a specific place in your program — this
technique is known as instrumentation.

For example, you can place a breakpoint at the beginning of a routine and set it to log
the values of the routine arguments. Then, after running the program, you can determine
where the routine was called from, and if it was called with erroneous arguments. This
will give you no idea where it was called from, but will tell you what the arguments are.

When you log expressions, be careful of expressions that unexpectedly change the values
of variables or data objects (side effects).

Click Eval Expr if you want the breakpoint to evaluate an expression. Then, enter an
expression in the input box next to it. For best results, use an expression that changes the
value of a variable or data object (side effects).

By “splicing in” a piece of code before a given source line, you can effectively test a
simple bug fix; you do not have to go through the trouble of compiling and linking your
program just to test a minor change to a routine.

Actions

Break

Stop Log

Start Log

Log Expr

☞☞☞☞

Eval Expr

You cannot use
this technique to

directly modify
your compiled

program.

Chapter 5, Using the integrated debugger 127

Click Log message if you want the breakpoint to display a message in the Run-time tab
of the Message window when the breakpoint is activated. Then, enter the text of the
message in the input box next to it.

Click Disable group if you want the breakpoint to disable a group of breakpoints. Then,
enter a group name in the input box next to it.

When a group of breakpoints is disabled, the breakpoints are not erased, they are simply
hidden from the debugger until you enable them.

Click Enable group if you want the breakpoint to reactivate a group of breakpoints that
have been previously disabled. Then, enter a group name in the input box next to it.

Enter a name for the option set and click OK to create a new set of breakpoint options.
Then enter your selections using the Breakpoint Condition/Action options dialog box.

Use this dialog box to modify an existing breakpoint. The options that appear on left side
of the dialog box change according to the breakpoint type selected.

The integrated debugger provides the following types of breakpoints:

� Source
� Address
� Data watch
� C++ Exception

The following options always display on the right side of the dialog box:

� Other

If you want to set conditions and actions that control breakpoint behavior, click
Advanced to open the Breakpoint Condition/Action options dialog box.

Examining program data values

Even though you can discover many interesting things about your program by running
and stepping through it, you'll usually need to examine the values of program variables to
uncover bugs. For example, it's helpful to know the value of the index variable as you
step through a for loop, or the values of the parameters passed to a function call.

After you have paused your application within the integrated debugger, you can examine
the different symbols and data structures with regards to the location of the current
execution point.

You can view the state of your program by:

� Watching program values
� Inspecting data elements.
� Evaluating expressions
� Viewing the low-level state of your program
� Viewing functions in the Call Stack window

Log
Message

Disable
Group

☞☞☞☞

Enable
Group

Add
Conditions/

Actions

Edit
Breakpoint
dialog box

☞☞☞☞

Paradigm C++ User's Guide128

You can also use the Browser to view the global variables and classes contained in your
program.

Modifying program data values

Sometimes you will find that a programming error is caused by an incorrect data value.
Using the integrated debugger, you can test a "fix" by modifying the data value while
your program is running. You can modify program data values using:

� The Evaluate dialog box.
� The Inspector window's Change SpeedMenu command
� A breakpoint's Evaluate action, set from the Breakpoint Condition/Action dialog box
� The CPU window's Dump pane
� The Register & Stack window

Understanding watch expressions

You use watches to monitor the changing values of a variables or expressions during
your program run. After you enter a watch expression, the Watches window displays the
current value of the expression based on the scope of the execution point. Each time
your program pauses (such as when it encounters a breakpoint), the value of the watch
changes to reflect the current value of the expression according to the values of the
variables in your program.

Using Watches window
To display the Watches window, choose View|Watch.

The Watches window lists the watches you are currently monitoring. Check the
checkbox beside a watch to enable it. Clear the checkbox beside a watch to disable it.

The left side of the Watches window lists the expressions you enter as watches and their
corresponding data types and values appear on the right. The values of compound data
objects (such as arrays and structures) appear between braces ({ }).

If the execution point steps out of the scope of a watch expression, the watch expression
is undefined. When the execution point re-enters the scope of the expression, the
Watches window again displays the current value of the expression.

Figure 5-4
Watches

window

The Watches
window will be

blank if you have
not added any

watches.

☞☞☞☞

Chapter 5, Using the integrated debugger 129

Adding a watch

You can add a watch the following ways:

� Place the insertion point on a word in an Edit window and choose Watch from the
Edit window SpeedMenu. The debugger adds a watch on the expression at the
insertion point and opens the Watches window.

� From the Watches window, right-click to bring up the Watches window SpeedMenu
and choose Add Watch. In the Add Watch dialog box, create a watch expression on
any variable or expression available to the program you are debugging.

� Bring up the Add Watch dialog box by choosing Debug|Add Watch and enter a
variable or expression you would like to watch.

Add Watch dialog box
The Add Watch dialog box lets you monitor the value of both simple variables (such as
integers) and compound data objects (such as arrays). In addition, you can watch the
values of calculated expressions that do not refer directly to memory locations. For
example, you could watch the expression x * y + 4.

To create a watch expression using the Add Watch dialog box:

1. Choose Debug|Add Watch or choose Add Watch from the Watches window
SpeedMenu.

2. Enter an expression into the Expression input box.
3. Click OK to add the watch or choose any of the following optional settings:

� Advanced

After you add the watch expression, the Paradigm C++ IDE automatically opens the
Watches window if it is not already open.

Formatting watch expressions
You can format the display of a watch expression using the Watch Properties dialog box.
Click Advanced from the Add Watch dialog box to bring up the Watch Properties dialog
box.

Figure 5-5
Add Watch
dialog box

☞☞☞☞

Figure 5-6
Watch

Properties dialog
box

☞☞☞☞
Paradigm C++ User's Guide130

By default, the debugger displays integer values in decimal form. However, by checking
the Hexadecimal button in the Watch Properties dialog box, you can specify that an
integer watch be displayed as hexadecimal. You can also vary the display of the watches
using the Display As buttons in the Watch Properties dialog box.

For more on Display As buttons in the Watch Properties dialog box, select the Display
As button you would like help on and hit F1 for online Help.

To format a floating-point expression, click the Floating Point button, then indicate the
number of significant digits you want displayed in the Watch window by typing this
number in the Significant Digits text box.

If you're setting up a watch on an element in a data structure such as an array), you can
display the values of consecutive data elements. For example, suppose you have an array
of five integers named xarray. Type the number 5 in the Repeat Count text box of the
Watch Properties dialog box to see all five values of the array.

You can also format watch expressions using the expression format specifiers shown in
Table 5-1, page 5-133. Format specifiers settings override any settings specified in the
Watch Properties dialog box. Format specifiers use the following syntax:

expression [, format_specifier]

Changing watch properties

To change the properties of a watch:

1. Choose View|Watch, to open the Watches window.
2. Double-click a watch to open the Edit Watch dialog box.

Chapter 5, Using the integrated debugger 131

Edit Watch dialog box
Use this dialog box to change the settings for a watch expression:

1. Either accept or change the information in either of the following options:
2. Either

� Choose OK to save your changes and close the dialog box.
� Click Advanced to open the Watch Properties if you want to change how a

watch expression displays in the Watches window.

Disabling and enabling watches

Evaluating many watch expressions can slow down the process of debugging. Disable a
watch expression when you prefer not to view it in the Watches window, but want to
save it for later use.

To enable or disable a watch

1. Choose View|Watch to open the Watch window.
2. Either

� Click the checkbox next to a watch to enable it.

� Clear the checkbox next to a watch to disable it.

To disable or enable selected watches

1. Hold down the Shift or Ctrl key and click on one or more watches in the Watch
window.

2. Choose Enable or Disable watches from the Watch window SpeedMenu.

Deleting a watch

You can delete a watch the following ways:

1. Choose View|Watch to display the Watches window.
2. Select one or more watch expressions. (To make multiple selections, hold down the

Shift or Ctrl key and click.)
3. Choose Remove Watch(es) on the SpeedMenu.

Figure 5-7
Edit Watch
dialog box

Paradigm C++ User's Guide132

Dynamic updates

The Dynamic update dialog box controls the behavior of memory reads and peripheral
register reads while running. Inspector and Watch windows can be updated dynamically
while running, if the option Allow memory reads while running is enabled. Peripheral
register viewers can also be dynamically updated while running if the option Allow
peripheral reads while running is enabled. Enabling these options will interrupt target
execution. Do not enable these options if you wish non-intrusive execution of your
application.

These options only apply to remote debugging solutions with the ability to interrupt
target execution.

Inspecting data elements

You can use inspect windows to examine and modify data values. Inspect windows are
extremely useful because they format the data according to the type of data being
viewed; there are different types of Inspect windows for scalars, arrays, structures,
functions, and classes with and without member functions.

The easiest way to inspect a data item is to highlight the expression you want to inspect
(or just position the text cursor on the token) in the Edit window, and choose Inspect
Object from the SpeedMenu (or press Alt-F5). If you inspect expressions using this
method, the expression is always evaluated within the scope of the line on which the
expression appears.

You can also inspect data expressions using the following method,

1. Choose Debug|Inspect to display the Inspect Expression window.
2. Type the expression you want to inspect, then choose a previously entered

expression from the drop down list.
3. Choose OK to display an Inspector window.

If the execution point is in the scope of the expression you are inspecting, the value
appears in the Inspect window. If the execution point is outside the scope of the
expression, the value is undefined.

If you are inspecting a compound data item, such as an array or a structure, you can
view the details of the data item by opening another Inspect window on the element you
want to inspect.

To inspect an element of a compound data item:

1. In the Inspector window, select the item you want to inspect.
2. Choose Inspect on the Inspector window SpeedMenu, or press Enter.

You can also use Inspector windows to change the value of a single data item:

1. Select the data item whose value you want to modify.
2. Choose Change on the Inspect window SpeedMenu.
3. Type the new value into the Change value dialog box and click OK.

If you are inspecting a data structure, it is possible the number of items displayed might
be so great that you will have to scroll in the Inspector window to see the data you want.
For easier viewing,

Narrow the display to a range of data items:

1. Left-click in the Inspect window or choose Set Range from the SpeedMenu.

☞☞☞☞

Chapter 5, Using the integrated debugger 133

2. In the Starting Index text box, enter the index of the first item you want to view.
3. In the Count text box, enter the number of items you want to see in the Inspect

window.

Evaluating and modifying expressions

You can evaluate expressions using the Expression Evaluator dialog box. The
Expression Evaluator dialog box has the advantage that it lets you change the values of
variables and items in data structures during the course of your debugging session. This
can be useful if you think you've found the solution to a bug, and you want to try it out
before exiting the debugger, changing the source code, and recompiling the program.

Evaluating expressions
Choose Debug|Evaluate to open the Expression Evaluator dialog box. By default, the
token at the cursor position in the current Edit window is placed in the Expression text
box. You can accept or modify this expression, enter another one, or choose an
expression from the history list of expressions you've previously evaluated.

To evaluated the expression, click the Evaluate button. Using this dialog box, you can
evaluate any valid language expression, except ones that contain:

� Local or static variables that are not accessible from the current execution point
� Symbols or macros defined with #define

When you evaluate an expression, the current value of the expression is displayed in the
Result field of the dialog box. If you need to, you can format the result by adding a
comma and one or more format specifiers to the end of the expression entered in the
Expression text box. Table 5.1 details the legal format specifiers.

Character Types affected Function

H or X Integers Hexadecimal. Shows integer values in hexadecimal
with the 0x prefix, including those in data structures.

Figure 5-8
Evaluator dialog

box

Table 5-1
Expression

format specifiers

Paradigm C++ User's Guide134

C Char, strings Character. Shows special display characters for
ASCII 0-31. By default, such characters are shown
using the appropriate C escape sequences (/n, /t, and
so on).

D Integers Decimal. Shows integer values in decimal form,
including those in data structures.

Fn Floating point Floating point. Shows n significant digits (where n is
in the range of 2-18, and 7 is the default).

nM All Memory dump. Shows n bytes starting at the address
of the indicated expression. If n is not specified, it
defaults to the size in bytes of the type of the variable.
By default, each byte displays as two hex digits. The
C, D, H, S, and X specifiers can be used with M to
change the byte formatting.

P Pointers Pointer. Shows pointers in seg:ofs instead of the
default Ptr(seg:ofs). It tells you the region of memory
in which the segment is located and, if appropriate,
the name of the variable at the offset address.

R Structures, unions Structure/Union. Shows field names and values such
as (X:1;Y:10;Z:5) instead of (1,10,5).

S Char, strings String. Shows ASCII 0-31 as C escape sequences.
Use only to modify memory dumps (see nM above).

For example, to display a result in hexadecimal, type ,H after the expression. To see a
floating-point number to 3 decimal places, type ,F3 after the expression.

You can also use a repeat count to reference a specific number of data items in arrays
and structures. To specify a repeat count, follow the expression with a comma and the
number of data items you want to reference. For example, suppose you declared the
following array in your program:

int my_array[10] ;

The following expression evaluates the first 5 elements of this array and displays the
result in hexadecimal:

my_array, 5h

Modifying the values of variables
Once you've evaluated a variable or data structure item, you can modify its value.
Modifying the value of data items during a debugging session lets you test different bug
hypotheses and see how a section of code behaves under different circumstances.

To modify the value of a data item:

1. Open the Expression Evaluator dialog box and enter the name of the variable you
want to modify into the Expression input box.

2. Click Evaluate to evaluate the data item.
3. Type a value into the New Value text box (or choose a value from the drop down

list), then click Modify to update the data item.

When you modify the value of a data item through the debugger, the modification is
effective for that specific program run only; the changes you make through the
Expression Evaluator dialog box do not affect your program source code or the
compiled program. To make your change permanent, you must modify your program
source code in the Edit window, then recompile your program.

☞☞☞☞

Chapter 5, Using the integrated debugger 135

Keep these points in mind when you modify program data values:

You can change individual variables or elements of arrays and data structures, but you
cannot change the entire contents of an array or data structure.

� The expression in the New Value text box must evaluate to a result that is
assignment-compatible with the variable to which you want to assign it. A good
guideline is if that assignment would cause a compile-time or run-time error, it is not
a legal modification value.

Modifying values (especially pointer values and array indexes), can have undesirable
effects because you can overwrite other variables and data structures. Use caution
whenever you modify program values from the debugger.

CPU window

The CPU window consists of five separate panes. Each pane gives you a view into a
specific low-level aspect of your running application:

� The Disassembly pane displays the assembly instructions that have been
disassembled from your application's machine code. In addition, the Disassembly
pane displays the original program source code above the associated assembly
instructions.

� The Dump pane displays a memory dump of any memory accessible to the currently
loaded executable module. By default, memory is displayed as hexadecimal bytes.

� The Stack Pane displays the current contents of the program stack. By default, the
stack is displayed as hexadecimal bytes.

� The Registers pane displays the current values of the CPU registers.
� The Flags pane displays the current values of the CPU flags.

Each pane has an individual SpeedMenu that provides commands specific to the contents
of that pane and the target processor.

Warning!

Paradigm C++ User's Guide136

CPU window

Resizing the CPU window panes

You can customize the layout of the CPU window by resizing the panes within the
window. Drag the pane borders within the window to enlarge or shrink the windows to
your liking.

The Disassembly pane

The left side of the Disassembly pane lists the address of each disassembled instruction.
An arrow to the right of the memory address indicates the location of the current
execution point. To the right of the memory addresses, the Disassembly pane displays
the assembly instructions that have been disassembled from the machine code produced
by the compiler. If you are viewing code that has been linked with a symbol table, the
debugger displays the source code that is associated with the disassembled instructions.

The Disassembly pane SpeedMenu
The Disassembly pane supports the following keyboard commands:

� Press Ctrl-N to set the instruction pointer (the value of IP/EIP register) to the
beginning of the statement that you have highlighted in the Disassembly pane. Note
that this is not the same as stepping through the instructions; the debugger does not
execute any instructions that you might skip.

� Press Ctrl+LeftArrow and Ctrl+RightArrow to shift the starting point of the display up or
down one byte. Beware that changing the starting point of the display in the
Disassembly pane changes where the debugger begins disassembling the machine
code.

Figure 5-9

Chapter 5, Using the integrated debugger 137

The debugger displays dashes if you view a program memory location in which nothing
is loaded.

The Disassembly pane has the following SpeedMenu commands:

� Run To Current
� Set PC To Current
� Toggle Breakpoint
� Go to Address
� Go to Current PC
� Follow jump <address> into Disassembly pane
� Follow address <address> into Memory Dump pane
� Show previous address
� Go to source

The Run To Current command lets you run your program at full speed to the instruction
that you have selected in the Disassembly pane. After your program is paused, you can
use this command to resume debugging at a specific program instruction.

The Set PC to Current command changes the location of the program counter (the value
held in the IP/EIP register) to the currently highlighted line in the Disassembly pane.
When you resume program execution in the debugger, it starts at the new address. This
command is useful when you want to skip certain machine instructions.

Use this command with extreme care; it is easy to place your system in an unstable state
when you skip over program instructions.

When you choose Toggle Breakpoint, the debugger sets an unconditional or "simple"
breakpoint at the instruction which you have selected in the Disassembly pane. A simple
breakpoint has no conditions, and the only action is that it will pause the program's
execution.

If a simple breakpoint exists on the selected instruction, then Toggle Breakpoint will
delete the breakpoint at that code location.

The Go to Address command prompts you for a new area of memory to display in the
Code, Dump, or Machine Stack panes of the CPU window. Enter any expression that
evaluates to a memory location, such as main(). Be sure to precede hexadecimal values
with 0x.

The debugger displays dashes if you try to access an address that is not within the scope
of the application you are debugging.

You can also press Ctrl+LeftArrow and Ctrl+RightArrow to shift the starting point of the
display up or down one byte.

This command positions the Disassembly pane at the location of the current program
counter (the location indicated by the IP/EIP register). This location indicates the next
instruction to be executed by your program.

☞☞☞☞

Run to
Current

Set PC to
current

☞☞☞☞

Toggle
Breakpoint

Go to
Address

☞☞☞☞

Go to
current PC

Paradigm C++ User's Guide138

This command is useful when you have navigated through the Disassembly pane, and
you want to return to the next instruction to be executed.

This command highlights in the Disassembly pane the destination address of the currently
highlighted instruction. Use this command in conjunction with instructions that cause a
transfer of control (such as CALL, JMP, and INT) and with conditional jump
instructions (such as JZ, JNE, LOOP, and so forth). For conditional jumps, the address
is shown as if the jump condition is TRUE. Use the Show Previous Address SpeedMenu
command to return to the origin of the jump.

From the Memory Dump pane, set the display to Longs for best results.

This command highlights in the Memory Dump pane the address of the currently
highlighted address. The Show Previous Address SpeedMenu command returns you to
the address from where you jumped.

This command restores the CPU window to the display it had before you issued the last
Follow Address command. The Follow Address commands are found on the
SpeedMenus of the Disassembly pane, the Machine Stack pane, and the Memory Dump
pane of the CPU window.

The Go to source command activates the Edit window and positions the insertion point
at the source code that corresponds to the disassembled instruction selected in the
Disassembly pane. If there is no corresponding source code (for example, if you're
examining Windows kernel code), this command has no effect.

Memory Dump pane

The Dump pane displays the raw values contained in addressable areas of your program.
The display is broken down into three sections: the memory addresses, the current values
in memory, and an ASCII representation of the values in memory.

By default, the Dump pane displays the memory values in hexadecimal notation. The
leftmost part of each line shows the starting address of the line. Following the address
listing is an 8-byte hexadecimal listing of the values contained at that location in memory.
Each byte in memory is represented by two hexadecimal digits. Following the
hexadecimal display is an ASCII display of the memory. Non-printable values are
represented with a period.

The format of the memory display depends on the format selected with the Display As
SpeedMenu command. If you choose one of the floating-point display formats (Floats or
Doubles), a single floating-point number is displayed on each line. The Bytes format
displays 8 bytes per line, Words displays 4 words per line, and Longs displays 2 long
words per line.

You can press Ctrl+LeftArrow and Ctrl+RightArrow to shift the starting point of the display
up or down one byte. Using these keystrokes is often faster than using the Go to
Address command to make small adjustments to the display.

The Dump pane SpeedMenu
The Dump pane has the following SpeedMenu commands:

Follow
jump into

Disassembly
pane

Follow
address into
Dump pane

Show
previous
address

Go to source

☞☞☞☞

Chapter 5, Using the integrated debugger 139

� Go to Address
� Display As
� Follow address <address> into Disassembly pane
� Follow address <address> into Memory Dump pane
� Follow address <address> into Machine Stack pane
� Show previous address

You can change the values of memory displayed in the Dump pane by pressing the Ins
key and typing into the display (when you press Ins, the insertion point in the pane
shrinks to highlight a single nibble in memory). Be extremely careful when changing
program memory values; even small changes in program values can have disastrous
effects on your running program.

Use the Display As command to format the data that’s listed in the Dump or Stack pane
of the CPU window. You can choose any of the data formats listed in the following
table:

Data type Display format

Bytes Displays data in hexadecimal bytes

Words Displays data in 2-byte hexadecimal numbers

Longs Displays data in 4-byte hexadecimal numbers

Floats Displays data in 4-byte floating-point numbers using scientific notation

Doubles Displays data in 8-byte floating-point numbers using scientific notation

This command highlights in the Disassembly pane the address of the currently
highlighted address. The Show Previous Address SpeedMenu command returns you to
the address from where you jumped.

From the Memory Dump pane, set the display to Longs for best results.

This command highlights in the Machine Stack pane the address of the currently
highlighted address. The Show Previous Address SpeedMenu command returns you to
the address from where you jumped.

Set the display to Longs for best results.

Machine Stack pane

The Stack pane displays the raw values contained in the your program stack. The display
is broken down into three sections: the memory addresses, the current values on the
stack, and an ASCII representation of the stack values.

By default, the Machine Stack pane displays the memory values in hexadecimal notation.
The leftmost part of each line shows the starting address of the line. Following the
address listing is a 4-byte listing of the values contained at that memory location. Each
byte is represented by two hexadecimal digits. Following the hexadecimal display is an
ASCII display of the memory; non-printable values are represented with a period.

The format of the memory display depends on the format selected with the Display As
SpeedMenu command. If you choose one of the floating-point display formats (Floats or
Doubles), a single floating-point number is displayed on each line. The Bytes format

☞☞☞☞

Display as

Table 5-2
Data formats

Follow
address into
Disassembly

pane

Follow
address into

Stack pane

The
debugger

displays dashes
if you view an

unloaded
program
memory
location.

Paradigm C++ User's Guide140

displays 4 bytes per line, Words displays 2 words per line, and Longs (the default)
displays 1 long word per line.

You can press Ctrl+LeftArrow and Ctrl+RightArrow to shift the starting point of the display
up or down one byte. Using these keystrokes is often faster than using the Go to
Address command to make small adjustments to the display.

The Stack pane SpeedMenu
The Stack pane has the following SpeedMenu commands:

� Go to Address
� Go to Top Frame
� Go to Top of Stack
� Display As
� Follow address <address> into Disassembly pane
� Follow address <address> into Memory Dump pane
� Follow address <address> into Machine Stack pane
� Show previous address

You can change the values of memory displayed in the Stack pane by pressing the Ins
key and typing into the display (when you press Ins, the insertion point in the pane
shrinks to highlight a single nibble in memory). Be extremely careful when changing
program memory values; even small changes in program values can have disastrous
effects on your running program.

Positions the insertion point in the Stack pane at the address of the frame pointer (the
address held in the BP/EBP register).

Positions the insertion point in the Stack pane at the address of the stack pointer (the
address held in the SP/ESP register).

Registers pane

The Registers pane displays the contents of the CPU registers of the 8086 and greater
processors. These registers consist of eight 32-bit general purpose registers, six 16-bit
segment registers, and the 32-bit program counter (EIP), and the 32-bit flags register
(EFL).

After you execute an instruction, the Registers pane highlights in red any registers that
have changed value since the program was last paused.

The Registers pane SpeedMenu
The Registers pane has the following SpeedMenu commands:

� Increment Register
� Decrement Register
� Zero Register
� Change Register
� Show Old Registers/Show Current Registers'

☞☞☞☞

☞☞☞☞

Go to top
frame

Go to top of
stack

Chapter 5, Using the integrated debugger 141

Increment Register adds 1 to the value in the currently highlighted register. This lets you
test “off-by-one” bugs by making small adjustments to the register values.

Decrement Register subtracts 1 from the value in the currently highlighted register. This
lets you test “off-by-one” bugs by making small adjustments to the register values.

The Zero Register command sets the value of the currently highlighted register to 0.

Lets you change the value of the currently highlighted register. This command opens the
Change Register dialog box where you enter a new value. You can make full use of the
expression evaluator to enter new values. Be sure to precede hexadecimal values with
0x.

This command toggles between Show old Registers and Show current registers. When
you select Show old registers, the Registers pane displays the values which the registers
had before the execution of the last instruction. The menu command then changes to
Show current registers, which changes the display back to the current register values.

You can change the values of memory displayed in the Registers pane by pressing the Ins
key and typing into the display (when you press Ins, the insertion point in the pane
shrinks to highlight a single nibble in memory). Be extremely careful when changing
register values; even small changes can have disastrous effects on your running program.

Flags pane

The Flags pane shows the current state of the flags and information bits contained in the
processor flags register. After you execute an instruction, the Flags pane highlights in red
any flags that have changed value since the program was last paused.

The processor uses the following bits in this register to control certain operations and
indicate the state of the processor after it executes certain instructions:

Letters in pane Flag/bit name EFL register bit number

CF Carry flag 0

PF Parity flag 2

AF Auxiliary carry 4

ZF Zero flag 6

SF Sign flag 7

TF Trap flag 8

IF Interrupt flag 9

DF Direction flag 10

OF Overflow flag 11

IO I/O privilege level 12 and 13

NF Nested task flag 14

RF Resume flag 16

VM Virtual mode 17

AC Alignment check 18

Increment
register

Decrement
register

Zero register

Change
register

Show old
registers

☞☞☞☞

Table 5-3
Flags pane

indicators

Paradigm C++ User's Guide142

The Flags pane SpeedMenu
The Flag pane has the following SpeedMenu commands:

� Toggle Flag

You can change the values of memory displayed in the Flags pane by pressing the Ins key
and typing into the display (when you press Ins, the insertion point in the pane shrinks to
highlight a single binary value in memory).

The flag and information bits in the Flags pane can each hold a binary value of 0 or 1.
This command toggles the selected flag or bit between these two binary values.

Viewing function calls

While debugging, it can be useful to know the order of function calls that brought you to
your current program location. Using the Call Stack window, you can view the current
sequence of function calls. The Call Stack window is also helpful when you want to view
the arguments passed to a function call; each function listing in the window is followed
by a listing that details the arguments with which the call was made. Use View|Call Stack
to display the Call Stack window.

Call Stack window

In the Call Stack window, the function that is currently executing is listed on top, with all
previously called functions listed in sequence below. The bottom of the list always shows
the first function in the calling sequence.

The call stack is particularly useful if you accidentally step through code that you wanted
to step over. Using the Call Stack window, you can return to the point where the current
function was called from, and then resume debugging from there:

☞☞☞☞

Toggle flag

Figure 5-10

Chapter 5, Using the integrated debugger 143

1. In the Call Stack window, double-click the function that called the function you
accidentally stepped into (it will be the second function listed in the Call Stack
window). The Edit window becomes active with the cursor positioned at the location
of the function call.

2. In the Edit window, move the cursor to the statement following the function call.
3. Choose Run to Cursor on the Edit window SpeedMenu (or press F4).

Navigating to function calls

Using the Call Stack window, you can view or edit the source code located at a
particular function call. Right-clicking a function in the Call Stack window displays the
SpeedMenu, from where you can choose either View Source or Edit Source. Each of
these commands causes the Edit window to display the selected function; however, Edit
Source gives focus to the Edit window so you can modify the source code at that
function location.

If you select the top function in the Call Stack window, these commands cause the Edit
window to display the location of the execution point in the current function. Selecting
any other function call causes the debugger to display the actual function call in the Edit
window.

Summary of Emulator .EMU file commands

The .EMU files loaded by the integrated debugger of Paradigm C++ can be used to
automatically save and restore emulator memory map configurations, chip select and
DRAM refresh values, and emulator control values. An .EMU file specific to a particular
debugging interface (such as PCWPDREM.EMU when debugging with
PDREMOTE/ROM) can be placed into the \PARADIGM\BIN directory to be loaded
before debugging any application. The .EMU can also be placed into the application's
directory to be loaded before the application is loaded, automatically.

The .EMU files are currently in standard text format, and can be created or modified
with a text editor. In most cases this is not necessary and also not recommended, as the
integrated debugger expects a specific syntax. These files are generated/loaded from
save/restore menu entries of buttons within the memory map, chip select, or debug
control viewer. There are some commands supported in a .EMU file that are NOT
automatically generated by the integrated debugger.

The .EMU files are subdivided by the following bracketed commands.

[IDENT] Debugger identifier that created the .EMU file

[MAP] Memory map settings

[CONTROLS] Debugger and emulator controls

[REGISTER] Chip selects and DRAM refresh values

[USER] Custom user commands

To add custom EMU commands to the .EMU file, edit the .EMU file in your text editor,
and add the [USER] bracketed command followed by the desired custom EMU
command.

For example:
[USER]

outport 0x100:0x0=0xffff

Below is a summary of EMU commands that are supported by Paradigm C++.

Paradigm C++ User's Guide144

Command Command Function Abbreviated
Mnemonic Arguments Commands

file filename Paradigm C++ identifier file

map saddr eaddr type set up memory mapping map

control variable value set control variable to value c

register regname value set peripheral register to value reg

read address read word from memory r

readb address read byte from memory rb

write address value(s) write word to memory w

writeb address value(s) write byte to memory wb

inport ioport read word from port in

inportb ioport input byte from port inb

outport ioport value output word to port out

outportb ioport value output byte to port outb

fill saddr eaddr value fill memory block f

copy saddr eaddr byte count copy memory block copy

Abbreviated commands can be used in the .EMU file to save keystrokes. For example,
"inb" and "inportb" are equivalent. Abbreviated commands are listed in Table 5-4.

Standard EMU file commands

The following list contains detailed descriptions of the EMU commands. The first four
commands (file, map, control, and register) are standard .EMU file commands. These
commands are automatically saved when Paradigm C++ is instructed to save the .EMU
file. An example of how each command can be used follows its description.

file This command contains the name of the debugger that created the .EMU
file.

file PCWPDREM

map This command sets up the memory map. SADDR and EADDR are hex
start and end addresses for the memory map command, and TYPE can be
one of the following:

RESERVED Maps memory as guarded (no access)

RDWR Maps memory as overlay read/write

RDONLY Maps memory as overlay read-only

TARGET Maps memory as target read/write

ROM Maps memory as target read-only

In automatically generated .EMU files, the first memory map command
will always map the entire memory space out of emulator memory. This
allows emulator memory reallocation without worrying about the
previous map state setup.

map 0 fffff reserved 0 0

control This command sets the debug control variables. Most debug control
values are specified with a "1" to enable the control and a "0" to disable

Table 5-4
Summary of

.EMU file
commands

Chapter 5, Using the integrated debugger 145

the control. Some may take a numeric value, hex address, or a string. If
you have any doubt about what value string to use, save an example
.EMU file and take a look - the formats should be easy to understand.

control cache 1

register This command is used to set up peripheral control block registers. While
Paradigm C++ will automatically save the chip select and DRAM refresh
registers; all peripheral control block registers can be specified in this
fashion. REGNAME is the name of the register to be modified, and
VALUE is the hex value to be written. Register names are the same as
the ones listed in the View|Target peripherals.

register relreg 0xff

Custom [USER] EMU commands

The following list contains a detailed description of the custom EMU commands. These
commands will not be saved by Paradigm C++ unless they are manually added to the
.EMU file and preceded by the [USER] bracketed identifier. Once added, the debugger
will save the custom commands each time the .EMU file is saved.

Examples follow each description.

read This command causes a single word to be read from the specified
ADDRESS. Since the read value is discarded, this command is useful
only for memory-mapped I/O accesses.

read 0x0ff0:0x0

readb This command causes a single byte to be read from ADDRESS. Since the
read value is discarded, this command is useful only for memory-mapped
I/O accesses.

readb 0x0ff0:0x0

write This command causes one or more word values to be written at
ADDRESS. Multiple values will be written to sequential locations in
memory.

write 0x0ff0:0x0 0x1234

writeb This command causes one or more word values to be written at
ADDRESS. Multiple values will be written to sequential locations in
memory.

writeb 0x0ff0:0x0 0x11

inport This command reads a single word from IOPORT. The read value is
discarded.

inport 0x1000

inportb This command reads a single byte from IOPORT. The read value is
discarded.

inportb 0x1010

outport This command causes a single word to be output to IOPORT.

outport 0xff0a=0x0f00

outportb This command causes a single byte to be output to IOPORT.

Paradigm C++ User's Guide146

outportb 0xff04=0x19

fill This command fills a block of memory with a byte value.

fill 0x0ff1:0x0 0x0ff3:0x0 0xcc

copy This command copies a memory range from target memory space to
emulator overlay memory space.

copy 0x1000 0x2000 0x16

Chapter 6, Paradigm C++ compiler 147

C h a p t e r

6

Paradigm C++ compiler

If you prefer to develop your applications outside of the Paradigm C++ IDE, you can
compile and link your programs from the command line using the Paradigm command-
line tools. When you develop applications using this method, you must first write your
program source code using a text editor, then compile the code into an object (.OBJ) file
using the appropriate command-line compiler. After the .OBJ file is generated, you must
link all the necessary files to create the final executable program.

Using the command-line compiler

Paradigm C++ includes the following compilers:

� PCC.EXE is the real mode and extended mode compiler.
� PCC32.EXE is the 32-bit protected mode compiler.

In general, these two compilers work the same, but have different defaults and generate
different code.

Command-line compiler syntax

The general syntax for the Paradigm C++ command-line compiler is:
PCC | PCC32 [option [option...]] filename [filename...]

Items enclosed in brackets are optional. The option items refer to the command-line
options and filename refers to the source-code files you want to compile. A complete
summary of command-line options can be found under "command-line options" in the
online Help index. A list of command-line options is also on page 3-91.

To see a list of the commonly used compiler options, type PCC or PCC32 at the
command line (without any options or file names), then press Enter. This list displays the
options that are enabled by default.

The command-line compiler name and each option and file name must be separated by at
least one space. Precede each option by either a hyphen (-) or a forward slash (/); for
example:

PCC -Ic:\code\hfiles

Options and file names entered on the command line override settings in configuration
files.

You can use PCC to send files to PLINK (.OBJ files) or PASM (.ASM). PCC32 sends
.OBJ files to PLINK32.

Default settings
PCC.EXE and PCC32.EXE each have options that are on by default. To turn off a
default option or to override options in a configuration file, follow the option with a
minus (-) sign.

☞☞☞☞

Paradigm C++ User's Guide148

Files without extensions and files with the .CPP extension compile as C++ files. Files
with a .C extension or with extensions other than .CPP, .OBJ, .LIB, or .ASM compile as
C files.

Compiler configuration files

If you repeatedly use a certain set of options, you can list them in a configuration file
instead of continually typing them on the command line. A configuration file is a
standard ASCII text file that contains one or more command-line options. Each option
must be separated by a space or a new line.

Whenever you issue a compile command, PCC.EXE searches for a configuration file
called PCC.CFG, and PCC32.EXE searches for PCC32.CFG. The compilers look for the
.CFG files first in the directory where you issue the compile command, then in the
directory where the compilers are located.

You can create and use multiple configuration files in addition to using the default .CFG
file. To use a configuration file, use the following syntax where you would place the
compiler options:

+[path]filename

For example, you could use the following command line to use a configuration file called
MYCONFIG.CFG:

PCC +C:\MYPROJ\MYCONFIG.CFG mycode.cpp

Options typed on the command line override settings stored in configuration files.

Compiler response files

Response files let you list both compiler options and file names in a single file (unlike
configuration files, which accept only compiler options). A response file is a standard
ASCII text file that contains one or more command-line options and/or file names, with
each entry in the file separated by a space or a new line. In addition to simplifying your
compile commands, response files let you issue a longer command line than most
operating systems allow.

The syntax for using a single response file is:
PCC @[path]respfile.txt

The syntax for using multiple response files is:
PCC @[path]respfile.txt @[path]otheresp.txt

Response files shipped with Paradigm C++ have an .RSP extension.

Options typed at the command line override any option or file name in a response file.

Compiler-option precedence rules
The command-line compilers evaluate options from left to right, and follows these rules:

� If you duplicate any option except -D, -U, -I, or -L, the last option typed overrides
any earlier one. (-D, -U, -I, and -L are cumulative.)

� Options typed at the command line override configuration and response file options.

Chapter 6, Paradigm C++ compiler 149

Entering directories for command-line options

Paradigm C++ can search multiple directories for include and library files. This means
that the syntax for the library directories (-L) and include directories (-I) command-line
options, like that of the #define option (-D), allows multiple listings of a given option.
Here is the syntax for these options:

-Ldirname[;dirname;...]
-Idirname[;dirname;...]

The parameter dirname used with -L and -I can be any directory or directory path. You
can enter these multiple directories on the command line in the following ways:

� You can stack multiple entries with a single -L or -I option by using a semicolon:
PCC.EXE -Ldirname1;dirname2;dirname3 -Iinc1;inc2;inc3 myfile.c

� You can place more than one of each option on the command line, like this:
PCC.EXE -Ldirname1;dirname2;dirname3 -Iinc1;inc2;inc3 myfile.c

� You can mix listings:
PCC.EXE -Ldirname1;dirname2;dirname3 -Iinc1;inc2 -Iinc3
myfile.c

If you list multiple -L or -I options on the command line, the result is cumulative: The
compiler searches all the directories listed, in order from left to right.

PLINK uses a configuration file called PLINK.CFG (PLINK32 uses PLINK32.CFG), a
response file (optional), and command-line options to link object modules, libraries, and
resources into a relocatable load module.

Using PLINK and PLINK32

PLINK and PLINK32 are command-line tools that combines object modules (.OBJ
files), library modules (.LIB files), and resources to produce relocatable load modules
(.ROM and .DLL files).

PLINK and PLINK32 are invoked from the command line to link a configuration file
called PLINK.CFG, (PLINK32 uses PLINK32.CFG), an optional response file, and
command-line options to link object modules, libraries, and resources into a relocatable
load module.

PLINK and PLINK32 command-line syntax

The linker syntax controls how the linkers work. Linker command-line options are case-
sensitive. Unless specified, instructions and options for PLINK also apply to PLINK32.

The linker can also use a configuration file called PLINK.CFG (or PLINK32.CFG) for
options that you’d normally type at the command-line.

Syntax
PLINK | PLINK32 [@respfile][options] startup myobjs, [relfile],

[mapfile], [libraries], [deffile]

Where items enclosed in brackets are optional.

[@respfile] A response file is an ASCII file that lists linker options
and file names that you would normally type at the
command line. By placing options and files names in a
response file, you can save the amount of keystrokes
you need to type to link your application.

Paradigm C++
also supports

multiple library
directories.

Paradigm C++ User's Guide150

[options] Linker options that control how the linker works. For example,
options specify whether to produce a .ROM or DLL file. Linker
options must be preceded by either a slash (/) or a hyphen (-).

startup A Paradigm initialization module for executable and DLLs that
arranges the order of the various segments of the program. Failure
to link in the correct initialization module usually results in a long
list of error messages telling you that certain identifiers are
unresolved, or that no stack has been created.

myobjs The .OBJ files you want linked. Specify the path if the
files aren’t in the current directory. (The linker appends
an .OBJ extension if no extension is present.)

[relfile] The name you want given to the executable file (relocatable load
module). If you don’t specify an executable file name, PLINK
derives the name of the executable by appending .EXE to the first
object file name listed. (The linker assumes or appends an .EXE
extension for executable files if no extension is present.

[mapfile] Is the name you want given to the map file. If you
don’t specify a name, the map file name is given the
same as exefile (but with the .MAP extension). (The
linker appends a .MAP extension if no extension is
present.)

[libraries] The library files you want included at link time. Do not
use commas to separate the libraries listed. If a file is
not in the current directory or the search path (see the
/L option) then you must include the path in the link
statement. (The linker appends a .LIB extension if no
extension is present.)

The order in which you list the libraries is very important; be sure to use the order
defined in this list:

� List any of your own user libraries, noting that if a function is defined more than
once, the linker uses the first definition encountered

� Math libraries (if needed)
� Run-time libraries associated with your memory model and platform

[deffile] The module definition file for a 32-bit executable. If you
don't specify a module definition (.DEF) file, and you have
have used the /Twe or /Twd option, the linker creates an
application based on default settings (the linker appends a .DEF
extension if no extension is present).

PLINK.CFG file

PLINK uses a configuration file called PLINK.CFG (or PLINK32.CFG) for options that
you would normally type at the command line (note that configuration files can contain
only options, not file names). Configuration files let you save options you use frequently,
so you do not have to continually retype them.

PLINK looks for PLINK.CFG in the current directory, then in the directory from which
it was loaded.

Chapter 6, Paradigm C++ compiler 151

The following PLINK.CFG file tells PLINK to:

� Look for libraries first in the directory C:\PARADIGM\LIB
� Include debug information in the executables it creates
� Create a detailed segment map.

PLINK.CFG

/Lc:\PARADIGM\LIB

/v /s

/Twe ;/Tpe for 32-bit links

If you specify command-line options in addition to those recorded in a configuration file,
the command-line options override any conflicting configuration options.

Linker response files

You can use response files with the command-line linkers to specify linker options.

Response files are ASCII files that list linker options and file names that you would
normally type at the command line. Response files allow you longer command lines than
most operating systems support, plus you don’t have to continually type the same
information. Response files can include the same information as configuration files, but
they also support the inclusion of file names.

Unlike the command line, a response file can be several lines long. To specify an added
line, end a line with a plus character (+) and continue the command on the next line.
Note that if a line ends with an option that uses the plus to turn it on (such as /v+), the +
is not treated as a line continuation character (to continue the line, use /v+ +).

If you separate command-line components (such as .OBJ files from .LIB files) by lines in
a response file, you must leave out the comma used to separate them on the command
line. For example,

/c c0ws+
myprog,myexe +
mymap +
mylib cws

leaves out the commas you’d have to type if you put the information on the command
line:

PLINK /c c0ws myprog,myexe,mymap,mylib cws

To use response files,

1. Type the command-line options and file names into an ASCII text file and save the
file. Response files shipped with Paradigm C++ have the .RSP extension.

2. Type
PLINK @[path]RESFILE.RSP

� where RESFILE.RSP is the name of your response file.

You can specify more than one response file as follows:
plink /c @listobjs.rsp,myexe,mymap,@listlibs.rsp

You can add comments to response files using semicolons; the linker ignores any text on
a line that follows a semicolon.

☞☞☞☞

☞☞☞☞

Paradigm C++ User's Guide152

Using PLINK with PCC.EXE

You can pass options and files to PLINK through the command-line compiler
(PCC.EXE and PCC32.EXE) by typing file names on the command line with explicit
.OBJ and .LIB extensions. For example,

PCC mainfile.obj sub1.obj mylib.lib

links MAINFILE.OBJ, SUB1.OBJ, and MYLIB.LIB to produce the executable
MAINFILE.EXE.

By default, PCC starts PLINK with the files C0S.OBJ and CS.LIB (initialization module,
and run-time library). PCC32 starts PLINK32 with the files C0X32.OBJ, CW32.LIB and
IMPORT32.LIB (Windows import library). In addition, the compiler always passes the
linker the /c (case-sensitive link) option.

Linking libraries

You must always link the Paradigm C++ run-time library that contains the standard C
and C++ library functions for the type of application you are linking. The following
tables show the different .OBJ and .LIB files you need to use when linking 16-bit
executables. In addition to the files listed, you'll also need to link:

� FP87.LIB or EMU.LIB for DOS applications that use floating-point math.

Model Regular Math library Run-time Noexception
startup module library (RTL) RTL

Small C0S.OBJ MATHS.LIB CS.LIB NOEHS.LIB

Compact C0C.OBJ MATHC.LIB CC.LIB NOEHC.LIB

Medium C0M.OBJ MATHM.LIB CM.LIB NOEHM.LIB

Large C0L.OBJ MATHL.LIB CL.LIB NOEHL.LIB

Huge C0H.OBJ MATHH.LIB CH.LIB NOEHH.LIB

Builds with exception handling include regular startup module, math library and run-time
library. Builds without exception handling include regular startup module, math library,
noexception RTL module and run-time library.

File Description

C0D32.OBJ DLL startup code

C0X32.OBJ Regular startup code

C0E16.OBJ Protected mode executable boot code

C0E32.OBJ Protected mode executable startup code

CW32.LIB Run-time library

CW32MT.LIB Multi-threaded run-time library

EMBED32.LIB Import library for embedded applications

IMPORT32.LIB Import library for Win32 native applications

NOEH32.LIB No exception run-time library

☞☞☞☞

Table 6-1
Library and

startup files for
16-bit

applications

☞☞☞☞

Table 6-2
Startup files for

32-bit
applications

Chapter 6, Paradigm C++ compiler 153

Module definition file reference

The module definition file is an ASCII text file that provides information to PLINK and
PLINK32 about the contents and system requirements of a Windows application. You
can create a module definition file using IMPDEF, and you can create import libraries
from module definition files using IMPLIB.

The module definition file

� Names the relocatable load module or .DLL
� Identifies the application type
� Lists imported and exported functions
� Describes the code and data segment attributes, and lets you specify attributes for

additional code and data segments
� Specifies the size of the stack
� Provides for the inclusion of a stub program.

This section describes module definition files and the statements that appear in them. An
example module definition file is provided at the end of the chapter.

Module definition file defaults

If no module definition file is specified, the following defaults are assumed:
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE ; (for applications)

PRELOAD MOVEABLE SINGLE ; (for DLLs)
HEAPSIZE 4096
STACKSIZE 5120 ; (1048576 for PLINK32)

To change an applications attributes from these defaults, you will need to create a
module definition file.

To replace the EXETYPE statement, the Paradigm C++ linker can discover what kind of
executable you want to produce by checking settings in the IDE or options on the
command line.

You can include an import library to substitute for the IMPORTS section of the module
definition.

You can use the _export keyword in the definitions of export functions in your C and
C++ source code to remove the need for an EXPORTS section.

If _export is used to export a function, that function is exported by name rather than by
ordinal (ordinal is usually more efficient).

CODE statement

CODE defines the default attributes of code segments. Code segments can have any
name, but must belong to segment classes whose name ends in CODE (such as CODE or
MYCODE). The 32-bit syntax is:

CODE [PRELOAD | LOADONCALL]
[EXECUTEONLY | EXECUTEREAD]

The 16-bit syntax is:
CODE [FIXED | MOVEABLE]

[DISCARDABLE | NONDISCARDABLE]
[PRELOAD | LOADONCALL]

☞☞☞☞

Paradigm C++ User's Guide154

� PRELOAD means code is loaded when the calling program is loaded.
� LOADONCALL (the default) means the code is loaded when called by the program.
� EXECUTEONLY means a code segment can only be executed.
� EXECUTEREAD (the default) means the code segment can be read and executed.
� FIXED (the default) means the segment remains at a fixed memory location.
� MOVEABLE means the segment can be moved.
� DISCARDABLE means the segment can be discarded if it is no longer needed (this

implies MOVEABLE).
� NONDISCARDABLE (the default) means the segment can not be discarded.

DATA statement

DATA defines attributes of data segments. The syntax is:
DATA [NONE | SINGLE | MULTIPLE]

[READONLY | READWRITE]
[PRELOAD | LOADONCALL]
[SHARED | NONSHARED]

� NONE means that there is no data segment created. This option is available only for
libraries.

� SINGLE (the default for .DLLs) means a single data segment is created and shared
by all processes.

� MULTIPLE (the default for relocatable load modules) means that a data segment is
created for each process.

� READONLY means the data segment can be read only.
� READWRITE (the default) means the data segment can be read and written to.
� PRELOAD means the data segment is loaded when a module that uses it is first

loaded.
� LOADONCALL (the default) means the data segment is loaded when it is first

accessed (this is ignored for 32-bit applications).
� SHARED means one copy of the data segment is shared among all processes.
� NONSHARED (the default for programs and 32-bit .DLLs) means a copy of the

data segment is loaded for each process needing to use the data segment.

DESCRIPTION statement

DESCRIPTION (optional) inserts text into the application module and is typically used
to embed author, date, or copyright information. The syntax is:

DESCRIPTION 'Text'

Text is an ASCII string delimited with single quotes.

EXETYPE statement

EXETYPE defines the default executable file (.EXE) header type for 16-bit applications.
You can leave this section in for 32-bit applications for backward compatibility, but if
you need to change the EXETYPE, see the NAME statement. The syntax for
EXETYPE is:

EXETYPE [WINDOWAPI] | [WINDOWCOMPAT] | [NOTWINDOWCOMPAT]

� WINDOWAPI is a Windows executable, and is equivalent to the PLINK option /aa.

Chapter 6, Paradigm C++ compiler 155

� WINDOWCOMPAT is a Windows-compatible character-mode executable, and is
equivalent to the PLINK option /ap.

� NOTWINDOWCOMPAT is a character-mode application which won't run under
Windows. It is equivalent to the PLINK option /ai.

EXPORTS statement

EXPORTS defines the names and attributes of functions to be exported. The EXPORTS
keyword marks the beginning of the definitions. It can be followed by any number of
export definitions, each on a separate line. The syntax is:

EXPORTS
ExportName [Ordinal]
[RESIDENTNAME] [Parameter]

� ExportName specifies an ASCII string that defines the symbol to be exported as
follows:

EntryName [=InternalName]

InternalName is the name used within the application to refer to this entry.

EntryName is the name listed in the executable file's entry table and is externally
visible.

� Ordinal defines the function's ordinal value as follows:

@ordinal

where ordinal is an integer value that specifies the function's ordinal value.

When an application or DLL module calls a function exported from a DLL, the
calling module can refer to the function by name or by ordinal value. It's faster to
refer to the function by ordinal because string comparisons aren't required to locate
the function. To use less memory, export a function by ordinal (from the point of
view of that function's DLL) and import/call a function by ordinal (from the point of
view of the calling module).

When a function is exported by ordinal, the name resides in the nonresident name
table. When a function is exported by name, the name resides in the resident name
table. The resident name table for a module is in memory whenever the module is
loaded; the nonresident name table isn't.

� RESIDENTNAME specifies that the function's name must be resident at all times.
This is useful only when exporting by ordinal (when the name wouldn't be resident by
default).

� Parameter is an optional integer value that specifies the number of words the
function expects to be passed as parameters.

HEAPSIZE statement

HEAPSIZE defines the number of bytes the application needs for its local heap. An
application uses the local heap whenever it allocates local memory. The support for
HEAPSIZE is slightly different for 16-bit or 32-bit applications.

The 16-bit syntax for HEAPSIZE is:

HEAPSIZE Allocate

Paradigm C++ User's Guide156

� Allocate is an integer value which specifies the amount of heap allocated at program
startup. For 16-bit applications, this size cannot exceed the physical segment size of
65,535 bytes (64K).

The 32-bit syntax for HEAPSIZE is:

HEAPSIZE Reserve[, Commit]

� Reserve can be a decimal or hex value, the default of which is 1MB. To help with
backward (16-bit) compatibility, the linker uses the default value of 1MB if you
specify in the .DEF file a reserve value less than 64K.

� Commit is a decimal or hex value. The commit size is optional, and if not specified
defaults to 4K. The minimum commit size you can specify is 0. In addition, the
specified or default commit size must always be smaller or equal to the reserve size.

Reserved memory refers to the maximum amount of memory that can be allocated either
in physical memory or in the paging file. In other words, reserved memory specifies the
maximum possible heap size. The operating system guarantees that the specified amount
of memory will be reserved and, if necessary, allocated.

The meaning of committed memory varies among operating systems. In Windows NT,
committed memory refers to the amount of physical memory allocated for the heap at
application load/initialization time. Committed memory causes space to be allocated
either in physical memory or in the paging file. A higher commit value saves time when
the application needs more heap space, but increases memory requirements and possible
startup time.

You can override any heap reserve or commit size specified in the .DEF file with the /H
or /Hc command-line options. /H lets you specify a heap reserve size less than the 64K
minimum allowed in the .DEF file.

IMPORTS statement

IMPORTS defines the names and attributes of functions to be imported from DLLs.
Instead of listing imported DLL functions in the IMPORTS statement, you can do either
of the following:

� Specify an import library for the DLL in the PLINK command line
� Include the import library for the DLL in the project manager in the IDE.

If you are programming for 32 bits, you must use _ _import to import any function,
class, or data you want imported. For 16 bits, you must use _ _import with the classes
you want imported.

The IMPORTS keyword marks the beginning of the definitions followed by any number
of import definitions, each on a separate line. The syntax is:

IMPORTS
[InternalName=]ModuleName.Entry

� InternalName is an ASCII string that specifies the unique name the application uses
to call the function.

� ModuleName specifies one or more uppercase ASCII characters that define the name
of the executable module containing the function. The module name must match the
name of the executable file. For example, the file SAMPLE.DLL has the module
name SAMPLE.

Chapter 6, Paradigm C++ compiler 157

� Entry specifies the function to be imported--either an ASCII string that names the
function or an integer that gives the function's ordinal value.

LIBRARY statement

LIBRARY defines the name of a DLL module. A module definition file can contain
either a LIBRARY statement to indicate a .DLL or a NAME statement to indicate a
relocatable load module.

A library's module name must match the name of the executable file. For example, the
library MYLIB.DLL has the module name MYLIB. The syntax is:

LIBRARY LibraryName [INITGLOBAL | INITINSTANCE]

� LibraryName (optional) is an ASCII string that defines the name of the library
module. If you don't include a LibraryName, PLINK uses the file name with the
extension removed. If the module definition file includes neither a NAME nor a
LIBRARY statement, PLINK assumes a NAME statement without a ModuleName
parameter

� INITGLOBAL means the library-initialization routine is called only when the library
module is first loaded into memory.

� INITINSTANCE means the library-initialization routine is called each time a new
process uses the library

NAME statement

NAME is the name of the application's executable module. The module name identifies
the module when exporting functions. For 32-bit applications, NAME must appear
before EXETYPE. If NAME and EXETYPE don’t specify the same target type, the
linker uses the type listed with NAME. The syntax is:

NAME ModuleName [WINDOWSAPI] | [WINDOWCOMPAT]

� ModuleName (optional) specifies one or more uppercase ASCII characters that name
the executable module. The name must match the name of the executable file. For
example, an application with the executable file SAMPLE.EXE has the module name
SAMPLE.

If ModuleName is missing, PLINK assumes that the module name matches the file
name of the executable file. For example, if you do not specify a module name and
the executable file is named MYAPP.EXE, PLINK assumes that the module name is
MYAPP.

If the module definition file includes neither a NAME nor a LIBRARY statement,
PLINK assumes a NAME statement without a ModuleName parameter.

� WINDOWSAPI specifies a Windows executable, and is equivalent to the PLINK32
option /aa.

� WINDOWCOMPAT specifies a Windows-compatible character-mode executable,
and is equivalent to the PLINK32 option /ap.

SECTIONS statement

The SECTIONS statement lets you set attributes for one or more section in the image
file. You can use this statement to override the default attributes for each different type
of section. The syntax for SECTIONS is:

Paradigm C++ User's Guide158

SECTIONS
<section_name> (CLASS 'classname'] attributes

� SECTIONS marks the beginning of a list of section definitions.
� After the SECTIONS keyword, each section definition must be listed on a separate

line. Note that the SECTIONS keyword can be on the same line as the first definition
or on a preceding line. In addition, the .DEF file can contain one or more
SECTIONS statements. The SEGMENTS keyword is supported as a synonym for
SECTIONS. The syntax for the individual section listings is as follows:
� In this syntax, section_name is case sensitive.
� The CLASS keyword is supported for compatibility but is ignored.
� The attributes argument can be one or more of the following:

EXECUTE, READ, SHARED, and WRITE.

SEGMENTS statement

SEGMENTS defines the segment attributes of additional code and data segments. The
syntax is:

SEGMENTS
SegmentName [CLASS 'ClassName']
[MinAlloc]
[SHARED | NONSHARED]
[PRELOAD | LOADONCALL]
[MIXED1632]

� SegmentName is a character string that names the new segment. It can be any name,
including the standard segment names _TEXT and _DATA, which represent the
standard code and data segments.

� ClassName (optional) is the class name of the specified segment. If no class name is
specified, PLINK uses the class name CODE.

� MinAlloc (optional) is an integer that specifies the minimum allocation size for the
segment. PLINK and PLINK32 ignore this value.

� SHARED means one copy of the segment is shared among all processes.
� NONSHARED (the default for relocatable load modules and 32-bit .DLLs) means a

copy of the segment is loaded for each process needing to use the data segment.
� PRELOAD means that the segment is loaded immediately.
� LOADONCALL means that the segment is loaded when it is accessed or called (this

is ignored by PLINK32). The Resource Compiler may override the LOADONCALL
option and preload segments instead.

� MIXED1632 (optional) is supported by the 16-bit linker only, and lets you link 32-
bit modules with your 16-bit Windows 95 applications. The Windows 95 16-bit
loader supports 32-bit segments when the 2000H bit is set in the segment table of the
application.

STACKSIZE statement

STACKSIZE defines the number of bytes the application needs for its local stack. An
application uses the local stack whenever it makes function calls. The support for
STACKSIZE is slightly different for 16-bit or 32-bit applications.

The 16-bit syntax for STACKSIZE is:

STACKSIZE Allocate

Chapter 6, Paradigm C++ compiler 159

� Allocate is an integer value which specifies the amount of stack allocated at program
startup. For 16-bit applications, this size cannot exceed the physical segment size of
65,535 bytes (64K).

The 32-bit syntax for STACKSIZE is:

STACKSIZE Reserve[, Commit]

� Reserve can be a decimal or hex value, the default of which is 1MB. To help with
backward (16-bit) compatibility, the linker uses the default value of 1MB if you
specify in the .DEF file a reserve value less than 64K.

� Commit is a decimal or hex value. The commit size is optional, and if not specified
defaults to 8K. The minimum commit size you can specify is 4K. In addition, the
specified or default commit size must always be smaller or equal to the reserve size.

Reserved memory refers to the maximum amount of memory that can be allocated either
in physical memory or in the paging file. In other words, reserved memory specifies the
maximum possible stack size. The operating system guarantees that the specified amount
of memory will be reserved and, if necessary, allocated.

The meaning of committed memory varies among operating systems. In Windows NT,
committed memory refers to the amount of physical memory allocated for the stack at
application load/initialization time. Committed memory causes space to be allocated
either in physical memory or in the paging file. A higher commit value saves time when
the application needs more stack space, but increases memory requirements and possible
startup time.

You can override any stack reserve or commit size specified in the .DEF file with the /S
or /Sc command-line options. /S lets you specify a stack reserve size less than the 64K
minimum allowed in the .DEF file.

Do not use the STACKSIZE statement when compiling .DLLs.

STUB statement

STUB appends an executable file specified by FileName to the beginning of the module.
The executable stub displays a warning message and terminates if the user attempts to
run the executable stub in the wrong environment (running a Windows application under
DOS, for example).

Paradigm C++ adds a built-in stub to the beginning of a Windows application unless a
different stub is specified with the STUB statement. You should not use the STUB
statement to include WINSTUB.EXE because the linker does this automatically.

The syntax is:

STUB 'FileName'

FileName is the name of the executable file to be appended to the module. The name
must have the file name format.

If the file named by FileName is not in the current directory, PLINK searches for the file
in the directories specified by the PATH environment variable.

SUBSYSTEM statement

SUBSYSTEM lets you specify the Windows subsystem and subsystem version number
for the application being linked. The syntax for SUBSYSTEM is:

SUBSYSTEM [subsystem,]subsystemID

☞☞☞☞

Paradigm C++ User's Guide160

� The optional parameter subsystem can be any one of the following values:
WINDOWS, WINDOWAPI, WINDOWCOMPAT, NOTWINDOWCOMPAT. If
you do not specify a subsystem, the linker defaults to a WINDOWS subsystem.

� You must specify the subsystemID parameter using the format d.d where d is a
decimal number. For example, if you want to specify Windows 4.0, you could use
either one of the following two SUBSYSTEM statements:
SUBSYSTEM 4.0
SUBSYSTEM WINDOWS,4.0

You can override any SUBSYSTEM statement in a .DEF file using the /a and /V
command-line options.

Example module definition file

Following is an example module definition file.
NAME WHELLO
DESCRIPTION 'C++ Windows Hello World'
EXETYPE WINDOWS
CODE MOVEABLE
DATA MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 5120
EXPORTS MainWindowProc

Let's describe this file statement by statement:

� NAME specifies a name for an application. If you want to build a .DLL instead of an
application, you would use LIBRARY instead of NAME. Every module definition
file should have either a NAME or a LIBRARY statement, but never both. The name
specified must be the same name as the executable file.

� DESCRIPTION lets you specify a string that describes your application or library.

� EXETYPE can be either WINDOWS or OS2. Only WINDOWS is supported in this
version of Paradigm C++.

� CODE defines the default attributes of code segments. The MOVEABLE option
means that the code segment can be moved in memory at run time.

� DATA defines the default attributes of data segments. MOVEABLE means that it
can be moved in memory at run time. Windows lets you run more than one instance
of an application at the same time. In support of that, the MULTIPLE options
ensures that each instance of the application has its own data segment.

� HEAPSIZE specifies the size of the application's local heap.

� STACKSIZE specifies the size of the application's local stack. You can't use the
STACKSIZE statement to create a stack for a .DLL.

� EXPORTS lists those functions in the WHELLO application that can be called by
other applications or by Windows. Functions that are intended to be called by other
modules are called callbacks, callback functions, or export functions.

� To help you avoid the necessity of creating and maintaining long EXPORTS
sections, Paradigm C++ provides the _export keyword. Functions flagged with
_export are identified by the linker and entered into an export table for the module.

If the Smart Callbacks option is used at compile time (/WS on the PCC command-
line, or Options|Compiler|Entry/Exit Code|Windows Smart Callbacks), then callback

Chapter 6, Paradigm C++ compiler 161

functions do not need to be listed either in the EXPORTS statement or flagged with
the _export keyword. Paradigm C++ compiles them in such a way so that they can
be callback functions.

� This application doesn't have an IMPORTS statement, because the only functions it
calls from other modules are those from the Windows API; those functions are
imported via the automatic inclusion of the IMPORT.LIB import library. When an
application needs to call other external functions, these functions must be listed in the
IMPORTS statement, or included via an import library.

This application doesn't include a STUB statement. Paradigm C++ uses a built-in stub
for Windows applications. The built-in stub simply checks to see if the application was
loaded under Windows, and, if not, terminates the application with a message that
Windows is required. If you want to write and include a custom stub, specify the name
of that stub with the STUB statement.

Paradigm C++ tools overview

Paradigm C++ includes many tools to help you create C++ programs. While you can
access many of these tools through the Paradigm C++ IDE, you can also run the tools
from the command line. See “Running the command-line tools,” page 6-162, for more
details.

The following table lists the Paradigm tools that come with your Paradigm C++ package:

File Description

32RTM.EXE 32-bit run-time manager

CAPDOS32.EXE Utility used by the IDE to interface with transfer macros

CPP.EXE C preprocessor (16-bit)

CPP32.EXE C preprocessor (32-bit)

GREP.COM File search utility

IMPDEF.EXE Utility used when building apps with Libraries

IMPLIB.EXE Utility used when building apps with Libraries

MAKE.EXE Make utility

MAKER.EXE Real-mode MAKE utility

MAKESWAP.EXE Creates swap file to use with 32-bit command-line tools

OBJXREF.EXE Utility to examine contents of .OBJ and .LIB files

PASM.EXE Paradigm Assembler

PCC.EXE Paradigm C++ 16-bit command-line compiler

PCC32.EXE Paradigm C++ 32-bit command-line compiler

PCW.EXE Paradigm C++ IDE

PDADDREG.EXE Enables, disables, installs and deletes Paradigm C++ add-on .DLLs

PLIB.EXE Utility for maintaining static-link libraries

PLINK.EXE Paradigm 16-bit linker

PLINK32.EXE Paradigm 32-bit linker

RTM.EXE 16-bit run-time manager

TOUCH.COM Change files stamps to current date/time

Table 6-1
Paradigm C++

tools

Paradigm C++ User's Guide162

Running the command-line tools

Many Paradigm command-line tools (such as the command-line compiler) use DPMI
(DOS Protected Mode Interface) to run in protected mode. Protected mode tools run on
80386 and greater machines with at least 640K conventional RAM and at least 4MB
extended memory.

Although the compilers run in protected mode, they generate applications that run in real
mode. Protected-mode tools have the advantage that they can access more memory than
real-mode tools. This helps to compile large projects at faster speeds, without the cost of
extensive disk-swapping.

Memory and MAKESWAP.EXE

If you get “Out of Memory” errors from DOS when running Paradigm command-line
tools (or if you have 8MB of RAM and are running the 32-bit command-line tools),
create a swap file with the MAKESWAP utility. Describe the size of the swap file in
kilobytes. For example, the following command creates a 12MB swap file:

MAKESWAP 12000

In addition, MAKESWAP supports the following syntax:
MAKESWAP 12M

Both commands create a 12MB swap file in the current directory (named EDPMI.SWP)
which the Paradigm command-line tools use when they need additional memory. To
enable the swap file, use the DPMI32 environment variable at the DOS prompt, or add
this line to your AUTOEXEC.BAT file:

set DPMI32=SWAPFILE <SwapFilePath>EDPMI.SWP

You must clear the DPMI32 environment variable before you use any 16-bit DPMI-
hosted tools with the following command:

set DPMI32=

The run-time manager and tools

The Paradigm C++ protected-mode tools (such as PCC and PCC32) use the run-time
managers RTM.EXE and 32RTM.EXE. The tools that use run-time managers first load
the run-time manager if needed, then do their work, and then unload the run-time
manager.

MAKESWAP
applies to DOS

only, not to DOS
boxes opened

under Windows.

☞☞☞☞

Chapter 7, Using MAKE 163

C h a p t e r

7

Using MAKE

MAKE.EXE is a command-line utility that helps you manage project compilation and
link cycles. MAKE helps you quickly build projects by compiling only the files you have
modified since the last compilation. In addition, you can set up rules that specify how
MAKE should deal with the special circumstances in your builds.

This chapter covers the following topics:

� MAKE basics
� Makefile contents
� Using explicit and implicit rules
� Using MAKE macros
� Using MAKE directives

MAKE basics

MAKE uses rules you write along with its default settings to determine how it should
compile the files in your project. For example, you can specify when to build your
projects with debug information and to compile your .OBJ files only if the date/time
stamps of a source file is more recent than the .OBJ itself. If you need to force the
compilation of a module, use TOUCH.EXE to modify the time stamp of one of the
module’s dependents.

In an ASCII makefile, you write explicit and implicit rules to tell MAKE how to treat the
files in your project; MAKE determines if it should execute a command on a file or set of
files using the rules you set up. Although your commands usually tell MAKE to compile
or link a set of files, you can specify nearly any operating system command with MAKE.

The general syntax for MAKE is
MAKE [options...] [target[targets]]

where options are MAKE options that control how MAKE works and targets are
the names of the files in the makefile that you want to build.

You must separate the MAKE command and the options and target arguments with
spaces. When specifying targets, you can use wildcard characters (such as * and ?) to
indicate multiple files. To get command-line help for MAKE, type MAKE -?.

Default MAKE actions

When you issue a MAKE command, MAKE looks in the current directory for the file
BUILTINS.MAK, which contains the default rules for MAKE (use the -r option to
ignore this set of default rules). After loading BUILTINS.MAK, MAKE looks for a file
called MAKEFILE or MAKEFILE.MAK (use the -f option to specify a file other than
MAKEFILE). MAKE looks for these files first in the current directory, then in the
directory where MAKE.EXE is stored. If MAKE can’t find either of these files, it
generates an error message.

If you need to
compile in real
mode, use the

program
MAKER.EXE.

Paradigm C++ User's Guide164

1. After loading the makefile, MAKE tries to build only the first target listed in the
makefile by checking the time and date of the dependent files of the first target. If the
dependent files are more recent than the target file, MAKE executes the commands
to update the target.

2. If one of the first target’s dependent files as a target elsewhere in the makefile,
MAKE checks that target’s dependencies and builds it before building the first target.
This chain reaction is called a linked dependency.

3. If something during the build process fails, MAKE deletes the target file it was
building. Use the .precious directive if you want MAKE to keep a target after a build
fails.

You can stop MAKE after issuing the make command by pressing Ctrl+Break or Ctrl+C.

To place MAKE instructions in a file other than MAKEFILE, see the section titled
"MAKE options."

BUILTINS.MAK

The file BUILTINS.MAK contains standard rules and macros that MAKE uses when it
builds the targets in a makefile. To ignore this file, use the -r MAKE option.

Here is the default text of BUILTINS.MAK:
#
<Default ¶ Font>Paradigm C++ - © Copyright 1997 by Paradigm Systems
#

default is to target 16BIT
#pass -DWIN32 to make to target 32BIT

!if !$d(WIN32)
CC = pcc
AS = pasm
!else
CC = pcc32
AS = pasm32
!endif
.asm.obj:

$(AS) $(AFLAGS) $&.asm
.c.exe:

$(CC) $(CFLAGS) $&.c
.c.obj:

$(CC) $(CFLAGS) /c $&.c
.cpp.exe:

$(CC) $(CFLAGS) $&.cpp
.cpp.obj:

$(CC) $(CPPFLAGS) /c $&.cpp

.SUFFIXES: .exe .obj .asm .c

!if !$d(PARADIGMEXAMPLEDIR)
PARADIGMEXAMPLEDIR = $(MAKEDIR)\..\EXAMPLES
!endif

Using TOUCH

TOUCH.EXE updates a file’s date stamp so that it reflects your system’s current time
and date.

Chapter 7, Using MAKE 165

Sometimes you might need to force a target to be recompiled or rebuilt even though you
haven’t changed its source files. One way to do this is to use the TOUCH utility to
update the time stamp of one or more of the target’s dependency files. To touch a file (or
files), type the following at the command prompt:

touch [options] filename [filename...]

Because TOUCH is a 32-bit executable, it accepts long file names. In addition, you can
use file names that contain the wildcard characters * and ? to “touch” more than a single
file at a time.

Before you use TOUCH, make sure your system’s internal clock is set correctly.

TOUCH.EXE supports several command-line options:

Option Description

dmm-dd-yy Sets the date of the file to the specified date

ffilename Sets the time and date of files to match those of filename

h Displays help information (same as typing TOUCH without options or file names)

thh:mm:ss Sets the time of the file to the specified time

v Verbose mode, shows each file TOUCHed

MAKE options

You can use command-line options to control the behavior of MAKE. MAKE options
are case-sensitive and must be preceded with either a hyphen (-) or slash (/). For
example, to use a file called PROJECTA.MAK as the makefile, type MAKE -
fPROJECTA.MAK. Many of the command-line options have equivalent directives that
you can use within the makefile.

Option Description

-a Checks dependencies of include files and nested include files associated with .OBJ
files and updates the .OBJ if the .h file changed. See also -c.

-B Builds all targets regardless of file dates.

-c Caches autodependency information, which can improve MAKE’s speed. Use with
-a. Do not use this option if MAKE modifies include files (which can happen if
you use TOUCH in the makefile or if you create header or include files during the
MAKE process).

-Dmacro Defines macro as a single character, causing an expression !ifdef macro written
in the makefile to return true.

[-D]macro=[string] Defines macro as string. If string contains any spaces or tabs, enclose string in
quotation marks. The -D is optional.

-ddirectory Use this option with -S to specify the drive and directory that MAKER (the real
mode version of MAKE) uses when it swaps out of memory. MAKE ignores this
option.

-e Ignores a macro if its name is the same as an environment variable (MAKE uses
the environment variable instead of the macro).

-ffilename Uses filename or filename.MAK instead of MAKEFILE (a space after -f is
optional).

-h or -? Displays MAKE options. Default settings are shown with a trailing plus sign.

-Idirectory MAKE searches for include files in the current directory first, then in directory you
specify with this option.

☞☞☞☞

Table 7-1
TOUCH options

Use the -W
option to set

default MAKE
options.

Table 7-2
MAKE options

Paradigm C++ User's Guide166

-i MAKE ignores the exit status of all programs run from the makefile and continues
the build process.

-K Keeps temporary files that MAKE creates (MAKE usually deletes them). See also
“KEEP,” page 7-167.

This may be helpful during debugging of your makefiles.

-m Displays the date and time stamp of each file as MAKE processes it.

-N Causes MAKE to mimic Microsoft’s NMAKE.

-n Prints the MAKE commands but does not perform them, this is helpful for
debugging makefiles.

-p Displays all macro definitions and implicit rules before executing the makefile.

-q Returns 0 if the target is up-to-date and nonzero if it is not (for use with batch
files).

-r Ignores any rules defined in BUILTINS.MAK.

-S Swaps MAKER out of memory while commands are executed, reducing memory
overhead and allowing compilation of large modules. MAKE ignores this option.

-s Suppresses onscreen command display.

-Umacro Undefines the previous macro definition of macro.

-W Writes the specified non-string options to MAKE.EXE, making them defaults.

Setting default MAKE options
The -W option lets you set the default options for MAKE. Use the following syntax to
set the default options:

make [-option[-] ...] -W

For example, you could type MAKE -m -W to turn the -m option on by default (which
causes MAKE to always display file dates and times). When you use the -W option,
MAKE asks you to write changes to MAKE.EXE. Type Y to accept the new defaults.
To turn off an option that’s on by default, follow the option with a hyphen. For example,
to undo the -m option change, type

MAKE -m- -W

The -W option doesn’t work with the following MAKE options:

-Dmacro -Dmacro=string

-ddirectory -Usymbol

-ffilename -? or -h

-Idirectory

If you attempt to use the -W option when the real address mode SHARE program is
loaded, MAKE displays the message Fatal: unable to open file
MAKE.EXE.

Compatibility with Microsoft’s NMAKE
Use the -N option if you want to use a makefile that was originally created for
Microsoft’s NMAKE. The following changes occur when you use -N:

� The $d macro is treated differently-use !ifdef or !ifndef instead.
� Macros that return paths won’t return the last \. For example, if $(<D) normally

returns C:\CPP\, the -N option causes MAKE to return C:\CPP.

Warning!

☞☞☞☞

Chapter 7, Using MAKE 167

� Unless there is a matching .suffixes directive, MAKE begins searching for rules from
the bottom of the makefile and works its way to the top.

� In implicit rules, MAKE expands $* macros to the target name instead of to the
dependent name.

� MAKE interprets the << operator as if it were the && operator; MAKE uses
temporary files as response files. These files are then deleted. To keep a file, either
use the -K MAKE command-line option or use KEEP in the makefile.

MAKE usually deletes temporary files it creates.
<<FileName.Ext
text
...
<<KEEP

If you don’t want to keep a temporary file, type NOKEEP or type only the temporary
(optional) file name. If you don’t type a file name, MAKE creates a name for you. If you
use NOKEEP, it will override the -K command-line option.

Using makefiles

A makefile is an ASCII file that contains the set of instructions that MAKE uses to build
a certain project. Although MAKE assumes your makefile is called MAKEFILE or
MAKEFILE.MAK, you can specify a different makefile name with the -f option (see
page 7-165).

MAKE either builds the target(s) you specify at the MAKE command or it builds only
the first target it finds in the makefile (to build more than one target, see the section
"Symbolic targets"). Makefiles can contain:

� Comments
� Explicit rules
� Implicit rules
� Macros
� Directives

Symbolic targets

A symbolic target forces MAKE to build multiple targets in a makefile. When you
specify a symbolic target, the dependency line lists all the targets you want to build (a
symbolic target basically uses linked dependencies to build more than one target).

For example, the following makefile uses the symbolic target allFiles to build both
FILE1.EXE and FILE2.EXE:

AllFiles: file1.exe file2.exe
file1.exe: file1.obj

pcc file1.obj
file2.exe: file2.obj

pcc file2.obj

Rules for symbolic targets
Observe the following rules when you use symbolic targets:

� Do not type a line of commands following the symbolic target line.
� A symbolic target must have a unique name; it cannot be the name of a file in your

current directory.

The AllFiles
target has no

commands.

Paradigm C++ User's Guide168

� Symbolic target names must follow the operating system rules for naming files.

Explicit and implicit rules

You write explicit and implicit rules to instruct MAKE how build the targets in your
makefile. In general, these rules are defined as follows:

� Explicit rules are instructions for specific files.
� Implicit rules are general instructions for files that don’t have explicit rules.

All the rules you write follow this general format:
Dependency line

Commands
?

While the dependency line uses a different syntax for explicit and implicit rules, the
command line syntax stays the same for both rule types. For more information on linked
dependencies see page 7-164.

MAKE supports multiple dependency lines for a single target, and a single target can
have multiple command lines. However, only one dependency line should contain a
related command line. For example:

Target1: dependent1 dep2 dep3 dep4 dep5
Target1: dep6 dep7 dep8

pcc -c $**

Explicit rule syntax

Explicit rules specify the instructions that MAKE must follow when it builds specific
targets. Explicit rules name one or more targets followed by one or two colons. One
colon means one rule is written for the target(s); two colons mean that two or more rules
are written for the target(s).

Explicit rules follow this syntax:
target [target...]:[:][{path}] [dependent[s]...]

[commands]
?

target The name and extension of the file to be built (a target must begin a line
in the makefile - you cannot precede the target name with spaces or tabs).
To specify more than one target, separate the target names with spaces or
tabs. Also, you cannot use a target name more than once in the target
position of an explicit rule.

path A list of directories that tells MAKE where to find the dependent files.
Separate multiple directories with semicolons and enclosed the entire path
specification in braces.

dependent The file (or files) whose date and time MAKE checks to see if it is newer
than target. Each dependent file must be preceded by a space. If a
dependent appears elsewhere in the makefile as a target, MAKE updates
or creates that target before using the dependent in the original target
(this in known as a linked dependency).

commands Any operating system commands. You must indent the command line by
at least one space or tab, otherwise they are interpreted as a target.
Separate multiple commands with spaces (see the section on commands,
page 7-170)

Chapter 7, Using MAKE 169

If a dependency or command line continues on the following line, use a backslash (\) at
the end of the first line to indicate that the line continues. For example,

MYSOURCE.EXE: FILE1.OBJ\ #Dependency line
FILE3.OBJ #Dependency line continued

pcc file1.obj file3.obj #Command line

Single targets with multiple rules
A single target can have more than one explicit rule. To specify more than a single
explicit rule, use a double colon (::) after the target name. The following example shows
targets with multiple rules and commands.

cpp.obj:
pcc -c -ncobj $<

.asm.obj:
pasm /mx $<, asmobj\

mylib.lib :: f1.obj f2.
echo Adding C files
plib mylib -+cobjf1 -+cobjf2

mylib.lib :: f3.obj f4.obj
echo Adding ASM files
plib mylib -+asmobjf3 -+asmobjf4

Implicit rule syntax

An implicit rule specifies a general rule for how MAKE should build files that end with
specific file extensions. Implicit rules start with either a path or a period. Their main
components are file extensions separated by periods. The first extension belongs to the
dependent, the second to the target.

If implicit dependents are out-of-date with respect to the target, or if the dependents
don’t exist, MAKE executes the commands associated with the rule. MAKE updates
explicit dependents before it updates implicit dependents.

Implicit rules follow this basic syntax:
[source_dir].source_ext[target_dir].target_ext:

[commands]

{source_dir} The directory (or directories) where MAKE can find the dependent files.
Separate multiple directories with a semicolon.

.source_ext The dependent filename extension.

{target_dir} The directory where MAKE places the target files. Separate multiple
directories with a semicolon.

.target_ext The target filename extension. Macros are allowed here.

: Marks the end of the dependency line.

commands Any operating system command or commands. You must indent the
command line by at least one space or tab, otherwise they are interpreted
as a target. Separate multiple commands with spaces (see the section on
commands, page 7-170)

If two implicit rules match a target extension but no dependent exists, MAKE uses the
implicit rule whose dependent’s extension appears first in the .SUFFIXES list. See
“suffixes,” page 7-178.

Paradigm C++ User's Guide170

Explicit rules with implicit commands
A target in an explicit rule can get its command line from an implicit rule. The following
example shows an implicit rule followed by an explicit rule without a command line.

.c.obj:
pcc -c $< #This command uses a macro $< described

later

myprog.obj: #This explicit rule uses the command: pcc
-c myprog.c

The implicit rule command tells MAKE to compile MYPROG.C (the macro $< replaces
the name myprog.obj with myprog.c).

Command syntax

Commands immediately follow an explicit or implicit rule and must begin on a new line
with a space or tab.

Commands can be any operating system command, but they can also include MAKE
macros, directives, and special operators that your operating system won’t recognize
(however, note that | can’t be used in commands). Here are some sample commands:

cd..

pcc -c mysource.c

COPY *.OBJ C:PROJECTA

pcc -c $(SOURCE) #Macros are explained later in the
chapter.

Commands follow this general syntax:
[prefix...] commands

Command prefixes
Commands in both implicit and explicit rules can have prefixes that modify how MAKE
treats the commands. Table 7-3 lists the prefixes you can use in makefiles:

Prefix Description

@ Don’t display the command while it’s being executed.

-num Stop processing commands in the makefile when the exit code returned from command
exceeds the integer num. Normally, MAKE aborts if the exit code is nonzero. No white space
is allowed between - and num.

- Continue processing commands in the makefile, regardless of the exit codes they return.

& Expand either the macro $**, which represents all dependent files, or the macro $?, which
represents all dependent files stamped later than the target. Execute the command once for
each dependent file in the expanded macro.

Using @
The following command uses the @ prefix, which prevents MAKE from displaying the
command onscreen.

diff.exe : diff.obj
@pcc diff.obj

See page 7-173
for information

on default
macros.

Table 7-3
Command

prefixes

Chapter 7, Using MAKE 171

Using -num and -
The -num and - prefixes control the makefile processing when errors occur. You can
choose to continue with the MAKE process if an error occurs or you can specify a
number of errors to tolerate.

In the following example, MAKE continues processing if PCC returns errors:
target.exe : target.obj
target.obj : target.cpp

pcc -c target.cpp

Using &
The & prefix issues a command once for each dependent file. It is especially useful for
commands that don’t take a list of files as parameters. For example,

copyall : file1.cpp file2.cpp
© $** c:\temp

results in COPY being invoked twice as follows:
copy file1.cpp c:\temp
copy file2.cpp c:\temp

Without the & modifier, MAKE would call COPY only once.

Command operators
While you can use any operating system command in a MAKE command section, you
can also use special operators. MAKE supports the normal operators (such as +, -, and
so on) as well as the following special operators:

Operator Description

< Use input from a specified file rather than from standard input

> Send the output from command to file

>> Append the output from command to file

<< Create a temporary inline file and use its contents as standard input to command

&& Create a temporary response file and insert its name in the makefile

delimiter Use delimiters with temporary response files. You can use any character other than # as a
delimiter. Use << and && as a starting and ending delimiter for a temporary file. Any
characters on the same line and immediately following the starting delimiter are ignored.
The closing delimiter must be written on a line by itself.

Debugging with temporary files
MAKE can create temporary response files when your command lines become too long
to place on a single line.

To begin writing to a response file, place the MAKE operator && followed by a
delimiter of your choice (| makes a good delimiter) in the makefile. To finish writing to
the file, repeat your delimiter.

The following example shows &&| instructing MAKE to create a file for the input to
PLINK.

Table 7-4
Command
operators

Paradigm C++ User's Guide172

prog.exe: A.obj B.obj
PLINK /c @&&| # &&| opens temp file, @ for PLINK
c0s.obj $**
prog.exe
prog.map
maths.lib cs.lib
| # | closes temp file, must be on first column

The response file created by &&| contains these instructions:
c0s.obj a.obj b.obj
prog.exe
prog.map
maths.lib cs.lib

MAKE names temporary file starting at MAKE0000.MAK where the 0000 increments
by one with each temporary file you create. MAKE then deletes the temporary file when
it terminates.

Using MAKE macros

A macro is a variable that MAKE expands into a string whenever MAKE encounters the
macro in a makefile. For example, you can define a macro called LIBNAME that
represents the string “mylib.lib.” To do this, type the line LIBNAME = mylib.lib at
the beginning of your makefile. Then, when MAKE encounters the macro
$(LIBNAME), it substitutes the string mylib.lib. Macros let you create template
makefiles that you can change to suit different projects.

To use a macro in a makefile, type $(MacroName) where MacroName is a defined
macro. You can use braces or parentheses to enclose MacroName.

MAKE expands macros at various times depending on where they appear in the
makefile:

� Nested macros are expanded when the outer macro is invoked.
� Macros in rules and directives are expanded when MAKE first looks at the makefile.
� Macros in commands are expanded when the command is executed.

If MAKE finds an undefined macro in a makefile, it looks for an operating-system
environment variable of that name (usually defined with SET) and uses its definition as
the expansion text. For example, if you wrote $(PATH) in a makefile and never defined
PATH, MAKE would use the text you defined for PATH in your AUTOEXEC.BAT.
See your operating system manuals for information on defining environment variables.

Defining MAKE macros

The general syntax for defining a macro in a makefile is:
MacroName = expansion_text.

� MacroName is case-sensitive (MACRO1 is different from Macro1).
� MacroName is limited to 512 characters.
� expansion_text is limited to 4096 characters. Expansion characters may be

alphanumeric, punctuation, or whitespace.

You must define each macro on a separate line in your makefile and each macro
definition must start on the first character of the line. For readability, macro definitions
are usually put at the top of the makefile. If MAKE finds more than one definition for
macroName, the new definition overwrites the old one.

Chapter 7, Using MAKE 173

You can also define macros using the -D command-line option (see page 7-165). No
spaces are allowed before or after the equal sign (=), however, you can define more than
one macro can by separating the definitions with spaces. The following examples show
macros defined at the command line:

make -Dsourcedir=c:projecta
make -Dcommand=”pcc -c”
make -Dcommand=pcc option=-c

Macros defined in makefiles overwrite those defined on the command line.
The following differences in syntax exist between macros entered on the command line
and macros written in a makefile.

Syntax Makefile Command line

Spaces allowed before and after = Yes No

Spaces allowed before macroName No Yes

String substitutions in MAKE macros

MAKE lets you temporarily substitute characters in a previously defined macro. For
example, if you defined the macro

SOURCE = f1.cpp f2.cpp f3.cpp

you could substitute the characters .obj for the characters .cpp by using the make
command $(SOURCE:.cpp=.obj). This substitution does not redefine the macro.

Rules for macro substitution:

� Syntax: $(MacroName:original_text=new_text)
� No whitespace before or after the colon
� Characters in original_text must exactly match the characters in the macro definition

(text is case-sensitive)

MAKE also lets you use macros within substitution macros. For example,
MYEXT=.C
SOURCE=f1.cpp f2.cpp f3.cpp
$(SOURCE:.cpp=$(MYEXT)) #Changes f1.cpp to f1.C, etc.

Default MAKE macros

MAKE contains several default macros you can use in your makefiles. Table 7-6 lists the
macro definition and what it expands to in explicit and implicit rules.

Macro Expands in implicit Expands in explicit

$* path\dependent file path\target file

$< path\dependent file+ext path\target file+ext

$: path for dependents path for target

$. dependent file+ext target file + ext

$& dependent file target file

$@ path\target file+ext path\target file+ext

$** path\dependent file+ext all dependents file+ext

$? path\dependent file+ext old dependents

☞☞☞☞

Table 7-5
Command line

vs. makefile
macros

Table 7-6
Default macros

Paradigm C++ User's Guide174

Macro Expands to Comment

_ _MAKE_ _ 0x0370 MAKE’s hex version number

MAKE make MAKE’s executable file name

MAKEFLAGS options The options typed at the command line

MAKEDIR directory Directory where MAKE.EXE is located

PCPPROOT Will be defined to be the Paradigm C++ root directory if this can
be determined by MAKE.

If PCPPROOT is defined, you will find the following BIN, INCLUDE, and LIB
directories:
$(PCPPROOT)\BIN
$(PCPPROOT)\INCLUDE
$(PCPPROOT)\LIB

Modifying default MAKE macros

When the default macros listed in Table 7-6, page 7-173 don’t give you the exact string
you want, macro modifiers let you extract parts of the string to suit your purpose.

To modify a default macro, use this syntax:
$(MacroName [modifier])

Table 7-8 lists macro modifiers and provides examples of their use.

Modifier Part of file name expanded Example Result

D Drive and directory $(<D) C:\PROJECTA\

F Base and extension $(<F) MYSOURCE.C

B Base only $(<B) MYSOURCE

R Drive, directory, and base $(<R) C:\PROJA\SOURCE

Using MAKE directives

MAKE directives resemble directives in languages such as C and Pascal. In MAKE, they
perform various control functions, such as displaying commands onscreen before
executing them. MAKE directives begin either with an exclamation point or a period,
and the override any options given on the command line.

Table 7-9 lists the MAKE directives and their corresponding command-line options
(directives override command-line options). Each directive is described in more detail
following the table.

Directive Option Description

.autodepend -a Turns on autodependency checking

.cacheautodepend -c Turns on autodependency caching

!elif Acts like a C else if

!else Acts like a C else

!endif Ends an !if, !ifdef, or !ifndef statement

!error Stops MAKE and prints an error message

!if Begins a conditional statement

Table 7-7
Other default

macros

☞☞☞☞

Table 7-8
Filename macro

modifiers

Table 7-9
MAKE directives

Chapter 7, Using MAKE 175

!ifdef Acts like a C #ifdef, testing whether a given macro has
been defined

!ifndef Acts like a C #ifndef, testing whether a given macro is undefined

.ignore -i MAKE ignores the return value of a command

!include Acts like a C #include, specifying a file to include in the makefile

!message Prints a message to stdout while MAKE runs the makefile

.noautodepend -a- Turns off autodependency checking

.nocacheautodepend -c- Turns off autodependency caching

.noIgnore -i- Turns off .Ignore

.nosilent -s- Displays commands before MAKE executes them

.noswap -S- Tells MAKE not to swap itself out of memory before executing a
command

.path.ext Tells MAKE to search for files with the extension .ext in path
directories

.precious Saves the target or targets even if the build fails

.silent -s MAKE executes commands without printing them first

.suffixes Determines the implicit rule for ambiguous dependencies

.swap -S Tells MAKE to swap itself out of memory before executing a
command

!undef Clears the definition of a macro. After this, the macro is undefined

.autodepend

Autodependencies are the files that are automatically included in the targets you build,
such as the header files included in your C++ source code. With .autodepend on,
MAKE compares the dates and times of all the files used to build the .OBJ, including the
autodependency files. If the dates or times of the files used to build the .OBJ are newer
than the date/time stamp of the .OBJ file, the .OBJ file is recompiled. You can use
.autodepend (or -a) in place of forming linked dependencies (see page 7-164 for
information on linked dependencies).

!error

The syntax of the !error directive is:
!error message

MAKE stops processing and prints the following string when it encounters this directive:
Fatal makefile exit code: Error directive: message

Embed !error in conditional statements to abort processing and print an error message,
as shown in the following example:

!if !$d(MYMACRO)
#if MYMACRO isn’t defined
!error MYMACRO isn’t defined
!endif

If MYMACRO isn’t defined, MAKE terminates and prints:
Fatal makefile 4: Error directive: MYMACRO isn’t defined

Paradigm C++ User's Guide176

Error-checking controls

MAKE offers four different controls to control error checking:

� The .ignore directive turns off error checking for a selected portion of the makefile.
� The -i command-line option turns off error checking for the entire makefile.
� The -num prefix, which is entered as part of a rule, turns off error checking for the

related command if the exit code exceeds the specified number.
� The - prefix turns off error checking for the related command regardless of the exit

code.

!if and other conditional directives

The !if directive works like C if statements. As shown here, the syntax of !if and the
other conditional directives resembles compiler conditionals:

!if condition !if condition !if condition !ifdef macro

!endif !else !elif condition !endif

!endif !endif

The following expressions are equivalent:
!ifdef macro and !if $d(macro)
ifndef macro and !if !$d(macro)

These rules apply to conditional directives:

� One !else directive is allowed between !if, !ifdef, or !ifndef and !endif directives.
� Multiple !elif directives are allowed between !if, !ifdef, or !ifndef, !else and !endif.
� You can’t split rules across conditional directives.
� You can nest conditional directives.
� !if, !ifdef, and !ifndef must have matching !endif directives within the same file.

The following information can be included between !if and !endif directives:

� Macro definition
� !include directive
� Explicit rule
� !error directive
� Implicit rule
� !undef directive

Condition in if statements represents a conditional expression consisting of decimal,
octal, or hexadecimal constants and the operators shown in Table 7-10.

Operator Description Operator Description

- Negation ?: Conditional expression

~ Bit complement ! Logical NOT

+ Addition >> Right shift

- Subtraction << Left shift

* Multiplication & Bitwise AND

/ Division | Bitwise OR

% Remainder ^ Bitwise XOR

&& Logical AND >= Greater than or equal*

Table 7-10
Conditional

operators

Chapter 7, Using MAKE 177

|| Logical OR <= Less than or equal*

> Greater than = = Equality*

< Less than != Inequality*

*Operator also works with string expressions.

MAKE evaluates a conditional expression as either a 32-bit signed integer or as a
character string.

!include

This directive is like the #include preprocessor directive for the C or C++ language-it
lets you include the text of another file in the makefile:

!include filename

You can enclose filename in quotation marks (“ “) or angle brackets (< >) and nest
directives to unlimited depth, but writing duplicate !include directives in a makefile isn’t
permitted-you’ll get the error message cycle in the include file.

Rules, commands, or directives must be complete within a single source file; you can’t
start a command in an !include file, then finish it in the makefile.

MAKE searches for !include files in the current directory unless you’ve specified
another directory with the -I command-line option.

!message

The !message directive lets you send messages to the screen from a makefile. You can
use these messages to help debug a makefile that isn’t working properly. For example, if
you’re having trouble with a macro definition, you could put this line in your makefile:

!message The macro is defined here as: $(MacroName)

When MAKE interprets this line, it will print onscreen The macro is defined
here as: .CPP (assuming the macro expands to .CPP). Using a series of !message
directives, you can debug your makefiles.

.path.ext

The .path.ext directive tells MAKE where to look for files with a certain extension. The
following example tells MAKE to look for files with the .c extension in C:SOURCE or
C:CFILES and to look for files with the .obj extension in C:OBJS.

.path.c = C:CSOURCE;C:CFILES

.path.obj = C:OBJS

.precious

If a MAKE build fails, MAKE deletes the target file. The .precious directive prevents
the file deletion, which you might desire for certain kinds of targets. For example, if your
build fails to add a module to a library, you might not want the library to be deleted.

The syntax for .precious is
.precious: target [target ...]

Paradigm C++ User's Guide178

.suffixes

The .suffixes directive tells MAKE the order (by file extensions) for building implicit
rules.

The syntax of .suffixes is
.suffixes: .ext [.ext ...]

where .ext represents the dependent file extensions you list in your implicit rules. For
example, you could include the line .suffixes: .asm .c .cpp to tell MAKE to
interpret implicit rules beginning with the ones dependent on .ASM files, then .C files,
then .CPP files, regardless of what order they appear in the makefile.

The following .suffixes example tells MAKE to look for a source file first with an .ASM
extension, next with a .C extension, and finally with a .CPP extension. If MAKE finds
MYPROG.ASM, it builds MYPROG.OBJ from the assembler file by calling PASM.
MAKE then calls PLINK; otherwise, MAKE searches for MYPROG.C to build the .OBJ
file or it searches for MYPROG.CPP.

.suffixes: .asm .c .cpp

myprog.exe: myprog.obj
plink myprog.obj

.cpp.obj:
pcc -P $<

.asm.obj:
pasm /mx $<

.c.obj:
pcc -P- $<

!undef

!undef (undefine) clears the given macro, causing an !ifdef MacroName test to fail.

The syntax of the !undef directive is
!undef MacroName

Using macros in directives

You can use the $d macro with the !if conditional directive to perform some processing
if a specific macro is defined. Follow the $d with macro name enclosed in parentheses or
braces, as shown in the following example:

!if $d(DEBUG) #If DEBUG is defined,

pcc -v f1.cpp f2.cpp #compile with debug information;

!else #otherwise (else)

pcc -v- f1.cpp f2.cpp #don’t include debug information.

!endif

Null macros

While an undefined macro causes an !ifdef MacroName test to return false, MacroName
defined as null will return true. You define a null macro by following the equal sign in the
macro definition with either spaces or a return character. For example, the following line
defines a null macro in a makefile:

NULLMACRO =

Chapter 7, Using MAKE 179

Either of the following lines can define a null macro on the MAKE command line:
NULLMACRO=””
-DNULLMACRO

Paradigm C++ User's Guide180

Chapter 8, PLIB.EXE 181

C h a p t e r

8

PLIB.EXE

PLIB.EXE is a utility that manages libraries of individual .OBJ (object module) files. A
library is a convenient tool for dealing with a collection of object modules as a single
unit.

This chapter covers the basics of using the PLIB library utility including:

� PLIB options
� Operation list
� Response files
� PLIB examples

PLIB basics

The libraries included with Paradigm C++ were built with the PLIB.EXE library utility.
You can use PLIB to build your own libraries, or to modify the Paradigm C++ libraries,
your libraries, libraries furnished by other programmers, or commercial libraries you’ve
purchased.

When PLIB modifies an existing library, it always creates a copy of the original library
with a .BAK extension.

You can use PLIB to:

� Create a new library from a group of object modules.
� Add object modules or other libraries to an existing library.
� Remove object modules from an existing library.
� Replace object modules from an existing library.
� Extract object modules from an existing library.
� List the contents of a new or existing library.

PLIB can also create (and include in the library file) an extended dictionary, which can be
used to speed up linking.

Although PLIB is not essential for creating executable programs with Paradigm C++, it
is a useful programming productivity tool that can be indispensable for large
development projects.

PLIB options

The PLIB command line takes the following general form, where items listed in square
brackets are optional:

plib [@respfile] [option] libname [operations] [, listfile]

Table 8-1, page 8-182 lists the command-line options available in PLIB. Each is
described in detail following the table.

For an online summary of PLIB command-line options, type PLIB and press Enter.☞☞☞☞

Paradigm C++ User's Guide182

Option Description

@respfile The path and name of the response file you want to include. You can specify more
than one response file.

libname The DOS path name of the library you want to create or manage. Every PLIB
command must be given a libname. Wildcards are not allowed. PLIB assumes
an extension of .LIB if none is given. Use only the .LIB extension because both
PCC and the Paradigm C++ IDE require the .LIB extension in order to recognize
library files. Note: If the named library does not exist and there are add operations,
PLIB creates the library.

/C The case-sensitive flag. This option is not normally used.

/E Creates extended dictionary

/Psize Sets the library page size to size.

/0 Purges comment records.

operations The list of operations PLIB performs. Operations can appear in any order. If you
only want to examine the contents of the library, don’t give any operations.

listfile The name of the file that lists library contents. The listfile name (if given) must be
preceded by a comma. No listing is produced if you don’t give a file name. The
listing is an alphabetical list of each module. The entry for each module contains
an alphabetical list of each public symbol defined in that module. The default
extension for the listfile is .LST. You can direct the listing to the screen by using
the listfile name CON, or to the printer by using the name PRN.

PLIB /C option
Using case-sensitive symbols in a library

When you add a module to a library, PLIB maintains a dictionary of all public symbols
defined in the modules of the library. All symbols in the library must be distinct. If you
try to add a module to the library that duplicates a symbol, PLIB displays an error
message and doesn’t add the module.

Normally, when PLIB checks for duplicate symbols in the library, uppercase and
lowercase letters are not treated differently (for example, the symbols lookup and
LOOKUP are treated as duplicates). You can use the /C option to add a module to a
library that includes symbols differing only in case.

Don’t use /C if you plan to use the library with other linkers or let other people use the
library.

PLIB normally rejects symbols that differ only in case because some linkers aren’t case-
sensitive. PLINK has no problem distinguishing uppercase and lowercase symbols. As
long as you use your library only with PLINK, you can use the PLIB /C option without
any problems.

PLIB /E option
Creating an extended dictionary

To increase the capacity of PLINK for large links, you can use PLIB to create an
extended dictionary and append it to the library file. This dictionary contains, in a
compact form, information that is not included in the standard library dictionary and that
lets PLINK process library files so that those modules not needed in the link are not
processed.

To create an extended dictionary for a library that is being modified, use the /E option
when you start PLIB to add, remove, or replace modules in the library. To create an

Table 8-1
PLIB options

Chapter 8, PLIB.EXE 183

extended dictionary for an existing library that you don’t want to modify, use the /E
option. For example, if you type the following text, PLINK appends an extended
dictionary to the specific library:

plib /E mylib

If you get the message “Table limit exceeded”, use /E to see if it helps. If you use /E to
add a library module containing a C++ class with a virtual function, you’ll get the error
message, Library contains COMDEF records—extended dictionary not created.

PLIB /P option
Setting the page size to create a large library

Every real address mode library file contains a dictionary that appears at the end of the
.LIB file, following all of the object modules. For each module in the library, the
dictionary contains a 16-bit address of that particular module within the .LIB file; this
address is given in terms of the library page size (it defaults to 16 bytes).

The library page size determines the maximum combined size of all object modules in the
library, which cannot exceed 65,536 pages. The default (and minimum) page size of 16
bytes allows a library of about 1 MB in size. To create a larger library, use the /P option
to increase the page size. The page size must be a power of 2, and it cannot be smaller
than 16 or larger than 32,768.

All modules in the library must start on a page boundary. For example, in a library with a
page size of 32 (the lowest possible page size higher than the default 16), an average of
16 bytes will be lost per object module in padding. If you attempt to create a library that
is too large for the given page size, PLIB will issue an error message and suggest that
you use /P with the next available higher page size.

Using PLIB response files

When you use a large number of operations, or if you find yourself repeating certain sets
of operations over and over, you will probably want to use response files. A response file
is an ASCII text file (which can be created with the Paradigm C++ editor) that contains
all or part of a PLIB command. Using PLIB response files, you can build PLIB
commands larger than would fit on one command line. Response files can

� Contain more than one line of text; use the ampersand character (&) at the end of a
line to indicate that another line follows.

� Include a partial list of commands. You can combine options from the command line
with options in a response file.

� be used with other response files in a single PLIB command line.

Operation list

The operation list describes what actions you want PLIB to do and consists of a
sequence of operations given one after the other. Each operation consists of a one- or
two-character action symbol followed by a file or module name. You can put whitespace
around either the action symbol or the file or module name, but not in the middle of a
two-character action or in a name.

You can put as many operations as you like on the command line, up to DOS’s
COMMAND.COM-imposed line-length limit of 127 characters. The order of the
operations is not important. PLIB always applies the operations in a specific order:

Paradigm C++ User's Guide184

To replace a module, first remove it, then add the replacement module. The following
shows the order in which PLIB handles these operations:

1. All extract operations are done first.
2. All remove operations are done next.
3. All add operations are done last.
4. Wildcards are never allowed in file or module names.

See Table 8-3 for more information on Add, Remove and Extract.
PLIB finds the name of a module by stripping any drive, path, and extension information
from the given file name.

PLIB always assumes reasonable defaults. For example, to add a module that has an
.OBJ extension from the current directory, you need to supply only the module name,
not the path and .OBJ extension.

PLIB recognizes three action symbols (*, +, *), which you can use singly or combined in
pairs for a total of five distinct operations. Table 8-2 summarizes these three action
symbols. The order of the characters is not important for operations that use a pair of
characters. The action symbols and what they do are listed here:

Symbol Name Description

-* Extract & PLIB copies the named module to the corresponding file name and then
removes it from the library.

*- Remove Removes named module from library.

-+ Replace PLIB replaces the named module with the corresponding file.

Option Description

Add PLIB adds the named file to the library. If the file has no extension, PLIB assumes an
extension of .OBJ. If the file is itself a library (with a .LIB extension), then the operation
adds all of the modules in the named library to the target library.

If a module being added already exists, PLIB displays a message and does not add the new
module.

Remove PLIB removes the named module from the library. If the module does not exist in the library,
PLIB displays a message.

A remove operation needs only a module name. PLIB lets you enter a full path name with
drive and extension included, but ignores everything except the module name.

Extract PLIB creates the named file by copying the corresponding module from the library to the file.
If the module does not exist, PLIB displays a message and does not create a file. If the named
file already exists, it is overwritten.

You can’t directly rename modules in a library. To rename a module, extract and remove it,
rename the file just created, then add it back into the library.

PLIB examples

These simple examples demonstrate some of the different things you can do with PLIB:

Example 1

To create a library named MYLIB.LIB with modules X.OBJ, Y.OBJ, and Z.OBJ, type:
plib mylib +x +y +z.

☞☞☞☞

☞☞☞☞

To create a
library, add

modules to a
library that does

not yet exist.

Table 8-2
PLIB action

symbols

Table 8-3
PLIB operations

Chapter 8, PLIB.EXE 185

Example 2

To create a library named MYLIB.LIB and get a listing in MYLIB.LST too, type:
plib mylib +x +y +z, mylib.lst.

Example 3

To get a listing in CS.LST of an existing library CS.LIB, type:
plib cs, cs.lst.

Example 4

To replace module X.OBJ with a new copy, add A.OBJ and delete Z.OBJ from
MYLIB.LIB, type:

plib mylib -+x +a -z.

Example 5

To extract module Y.OBJ from MYLIB.LIB and get a listing in MYLIB.LST, type:
plib mylib *y, mylib.lst.

Example 6

To create a new library named ALPHA, with modules A.OBJ, B.OBJ, ..., G.OBJ using a
response file:

1. First create a text file, ALPHA.RSP, with
+a.obj +b.obj +c.obj &
+d.obj +e.obj +f.obj &
+g.obj

2. Then use the PLIB command, which produces a listing file named ALPHA.LST:
plib alpha @alpha.rsp, alpha.lst

Paradigm C++ User's Guide186

Chapter 9, Exception handling 187

C h a p t e r

9

Exception handling

This chapter describes the Paradigm C++ error-handling mechanisms generally referred
to as exception handling. The Paradigm C++ implementation of C++ exception
handling is consistent with the proposed ANSI specification. The exception-handling
mechanisms that are available in C programs are referred to as structured exceptions.
Paradigm C++ provides full compiling, linking, and debugging support for C programs
with structured exceptions. See the section “C-based structured exception,” page 9-194,
and “Setting exception handling options,” page 9-193 for a discussion of compiler
options for programming with exceptions.

C++ exception handling

The C++ language defines a standard for exception handling. The standard insures that
the power of object-oriented design is supported throughout your program.

In accordance with the ANSI/ISO C++ working paper specification, Paradigm C++
supports the termination exception-handling model. When an abnormal situation arises
at run-time, the program could terminate. However, throwing an exception allows you
to gather information at the throw point that could be useful in diagnosing the causes
that led to failure. You can also specify in the exception handler the actions to be taken
before the program terminates. Only synchronous exceptions are handled, meaning that
the cause of failure is generated from within the program. An event such as Ctrl-C
(which is generated from outside the program) is not considered to be an exception.

C++ exceptions can be handled only in a try/catch construct.

Syntax:

try-block:
try compound-statement handler-list

handler-list:
handler handler-list opt

handler:
catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-list declarator
type-specifier-list abstract-declarator
type-specifier-list
…

throw-expression:
throw assignment-expression opt

The catch and throw keywords are not allowed in a C program.

The try-block is a statement that specifies the flow of control as the program executes.
The try-block is designated by the try keyword. After the keyword, braces surround a
program block that can generate exceptions. The language structure specifies that any

☞☞☞☞

Paradigm C++ User's Guide188

exceptions that occur should be raised within the try-block. See "statements" in the
online Help index for more information.

The handler is a block of code designed to handle an exception. The C++ language
requires that at least one handler be available immediately after the try-block. There
should be a handler for each exception that the program can generate.

When the program encounters an abnormal situation for which it is not designed, you
can transfer control to some other part of the program that is designed to deal with the
problem. This is done by throwing an exception.

The exception-handling mechanism requires the use of three keywords: try, catch, and
throw. The try-block specified by try must be followed immediately by the handler
specified by catch. If an exception is thrown in the try-block, program control is
transferred to the appropriate exception handler. The program should attempt to catch
any exception that is thrown by any function. Failure to do so could result in abnormal
termination of the program.

Exception declarations

Although C++ allows an exception to be of any type, it is useful to make exception
classes. The exception object is treated exactly the way any object would be treated. An
exception carries information from the point where the exception is thrown to the point
where the exception is caught. This is information that the program user will want to
know when the program encounters some anomaly at run-time.

Predefined exceptions, specified by the C++ language, are documented in the online
Help Book Shelf index under "Run-time support", "operator new" or "xalloc". To get to
the Book Shelf index, choose Help|Keyboard and click the Book Shelf menu tab.
Paradigm C++ provides additional support for exceptions. These extensions are also
documented under "classes" in the online Help index.

Throwing an exception

A block of code in which an exception can occur must be prefixed by the keyword try.
Following the try keyword is a block of code enclosed by braces. This indicates that the
program is prepared to test for the existence of exceptions. If an exception occurs, the
program flow is interrupted. The sequence of steps taken is as follows:

1. The program searches for a matching handler
2. If a handler is found, the stack is unwound to that point
3. Program control is tranferred to the handler

If no handler is found, the program will call the terminate function. If no exceptions are
thrown, the program executes in the normal fashion.

A throw expression is also referred to as a throw-point. You can specify whether an
exception can be thrown by using one of the following syntax specifications:

☞☞☞☞

Chapter 9, Exception handling 189

1. throw throw_expression ;
2. throw ;
3. void my_func1() throw (A, B)

{
// Body of function.
}

4. void my_func2 () throw ()
{
// Body of this function.
}

The first case specifies that throw_expression is to be passed to a handler.

The second case specifies that the exception currently being handler is to be thrown
again. An exception must currently exist. Otherwise, terminate is called.

The third case specifies a list of exceptions that my_func1 can throw. No other
exceptions should propagate out of my_func1. If an exception other than A or B is
generated within my_func1, it is considered to be an unexpected exception and program
control will be transferred to the unexpected function. By default, the unexpected
function ends with a call to abort but it can throw an exception. For more information,
see "unexpected" in the online Help Book Shelf index. The Book Shelf index is
accessed by choosing Help|Keyboard and clicking on the Book Shelf menu tab.

The final case specifies that my_func2 should throw no exceptions. If some other
function (for example, operator new) in the body of my_func2 throws an exception,
such an exception should be caught and handled within the body of my_func2.
Otherwise, such an exception is a violation of my_func2 exception specification. The
unexpected function is then called.

When an exception occurs, the throw expression initializes a temporary object of the
type T (to match the type of argument arg) used in throw(T arg). Other copies can be
generated as required by the compiler. Consequently, it can be useful to define a copy
constructor for the exception object.

Handling an exception

The exception handler is indicated by the catch keyword. The handler must be placed
immediately after the try-block. The keyword catch can also occur immediately after
another catch. Each handler will only evaluate an exception that matches, or can be
converted to, the type specified in its argument list. The possible conversions are listed
after the try-block syntaxes.

The following syntaxes, following the try-block, are valid:

Try {
// Include any code that might throw an exception

}
1. catch (T X)

{
// Take some actions
}

2. catch (…)
{
// Take some actions
}

The first statement is specifically defined to handle an object of type T. If the argument
is T, T&, const T, or const T&, the handler will accept an object of type X if any of the
following are true:

☞☞☞☞

Paradigm C++ User's Guide190

� T and X are of the same type
� T is an accessible base class for X in the throw expression
� T is a pointer type and X is a pointer type that can be converted to T by a standard

pointer conversion at the throw point

The statement catch (…) will handle any exception, regardless of type. This statement,
if used, must be the last handler for its try-block.

Every exception thrown by the program must be caught and processed by the exception
handler. If the program fails to provide an exception handler for a thrown exception, the
program will call terminate.

Exception handlers are evaluated in the order that they are encountered. An exception is
caught when its type matches the type in the catch statement. Once a type match is
made, program control is transferred to the handler. The stack will have been unwound
upon entering the handler. The handler specifies what actions should be taken to deal
with the program anomaly.

A goto statement can be used to transfer program control out of a handler but such a
statement can never be used to enter a handler or try-block.

After the handler has executed, the program can continue at the point after the last
handler for the current try-block. No other handlers are evaluated for the current
exception.

Exception specifications
The C++ language makes it possible for you to specify any exceptions that a function
can throw. This exception specification can be used as a suffix to the function
declaration. The syntax for exception specification is as follows:

exception-specification:
throw (type-id-listopt)
type-id-list:
type-id
type-id-list, type-id

The function suffix is not considered to be part of the function's type. Consequently, a
pointer to a function is not affected by the function's exception specification. Such a
pointer checks only the function's return and argument types. Therefore, the following is
legal:

void f2(void) throw() ; // Should not throw exceptions
void f3(void) throw (BETA) ; // Should only throw BETA objects
void (* fptr)() ; // Pointer to a function returning void
fptr = f2 ;
fptr = f3 ;

Extreme care should be taken when overriding virtual functions. Again, because the
exception specification is not considered part of the function type, it is possible to
violate the program design. In the following example, the derived class BETA:vfunc is
defined so that it throws an exception – a departure from the original function
declaration.

Class ALPHA {
public:

virtual void vfunc(void) throw () { }; // Exception specification
};
class BETA : public ALPHA {

Chapter 9, Exception handling 191

struct BETA_ERR { };
void vfunc(void) throw(BETA_ERR) { }; // Exception specification

is
// changed

};

The following are examples of functions with exception specifications.

void f1(); // The function can throw any exception
void f2(); throw (); // Should not throw any exceptions
void f3(); throw (A, B*); // Can throw exceptions publicly derived

// from A, or a pointer to publicly
derived B

The definition and all declarations of such a function must have an exception
specification containing the same set of type-id's. If a function throws an exception not
listed in its specification, the program will call unexpected. This is a run-time issue – it
will not be flagged at compile time. Therefore, care must be taken to handle any
exceptions that can be thrown by elements called within a function.

Example 2
// HOW TO MAKE EXCEPTION-SPECIFICATIONS AND HANDLE ALL EXCEPTIONS
#include <iostream.h>

// EXCEPTION DECLARATIONS
class Alpha {

// Include something that shows why you chose to throw this
exception.
};
Alpha alpha_inst;

class Beta {
// Include something that shows why you chose to throw this

exception.
};
Beta beta_inst;

// THROW ONLY Alpha OR Beta TYPE OBJECTS
void f3(char c) throw (Alpha, Beta) {

cout << "f3() was called" << endl;
if (c = = 'a').

throw(alpha_inst);
if (c = = 'b')

throw(beta_inst);
else ; // DO NOTHING WITH OTHER CHARACTERS
}

// SHOULD NOT THROW EXCEPTIONS
void f2 (char ch) throw() {

try { // WRAP ALL CODE IN A TRY-BLOCK
cout << "f2() was called" << endl;
f3(ch);
}

// HERE ARE HANDLERS FOR THE EXCEPTIONS WE KNOW COULD BE THROWN
catch (Alpha& alpha_inst) { cout << "Caught Alpha exception.";}
catch (Beta& beta_inst) { cout << "Caught Beta exception.";}

// IF THE CODE IS MODIFIED LATER SO THAT SOME OTHER EXCEPTION IS
// THROWN, IT IS HANDLED HERE AND WE AVOID VIOLATING THE f2() THROW

Paradigm C++ User's Guide192

// SPECIFICATION
catch (…) {

// BUT, WE POST OURSELVES A WARNING MESSAGE.
cout << "Warning: f2() has elements with exceptions!" << endl;
}

}

int main(void) {
char trigger;

try {
cout << "Input a character:";
cin >> trigger;
f2(trigger);
cout << "\nSuccess.";
return 0; //WE GET HERE ONLY IF EVERYTHING EXECUTES WELL.
}

catch (…) {
cout << "Need more handlers!";
return 1;
}

}

Sample output when 'a' is the input
Input a character: a
f2() was called
f3() was called
Caught Alpha exception.
Success.

If an exception is thrown which is not listed in the exception specification, the
unexpected function will be called. The following diagrams illustrate the sequence of
events that can occur when unexpected is called. See "Run-time support" in the online
Help Book Shelf index, for a description of the "set_terminate", "set_unexpected", and
"unexpected" functions. The Book Shelf index is accessed by choosing Help|Keyboard
and clicking on the Book Shelf menu tab.

Program behavior when a function is registered with set_unexpected ();

unexpected() // CALLED AUTOMATICALLY
|
|
| // DEFINE YOUR UNEXPECTED HANDLER
| unexpected_function my_unexpected(void)
| {
| //DEFINE ACTION TO TAKE POSSIBLE MAKE ADJUSTMENTS
| }
|
| // REGISTER YOUR HANDLER
| set_unexpected(my_unexpected);
|

my_unexpected();

Program behavior when no function is registered with set_unexpected() but there is a
function registered with set_terminate():

☞☞☞☞

Chapter 9, Exception handling 193

unexpected() // CALLED AUTOMATICALLY
|

terminate()
|
| // DEFINE YOUR TERMINATION SCHEME
| terminate_function my_terminate(void)
| {
| // TAKE ACTIONS BEFORE TERMINATING
| // SHOULD NOT THROW EXCEPTIONS
| exit(1); // MUST END SOMEHOW.
| }
|
| // REGISTER YOUR TERMINATION FUNCTION
| set_terminate(my_terminate)
|
|

my_terminate()
// PROGRAM ENDS.

Constructors and destructors
When an exception is thrown, the copy constructor is called for the thrown value. The
copy constructor is used to initialize a temporary object at the throw point. Other copies
can be generated by the program. See "copy constructor" in the online Help index for
more information.

When program flow is interrupted by an exception, destructors are called for all
automatic objects that were constructed since the beginning of the try-block was
entered. If the exception was thrown during construction of some object, destructors
will be called only for those objects that were fully constructed. For example, if an array
of objects was under construction when an exception was thrown, destructors will be
called only for the array elements which were already fully constructed.

Destructors are called by default. See “Exception handling/RTTI,” for information
about exception-handling switches.

When a C++ exception is thrown, the stack is unwound. By default, during stack
unwinding, destructors are called by automatic objects. You can use the –xd compiler
option to switch the default off.

Setting exception handling options
The following command-line options can be used to set exception handling:

Setting Command-line option

Enable exception handling -x

Enable destructor cleanup -xd

Enable throwing exceptions from a DLL -xds

Enable exception location information -xp

Unhandled exceptions
If an exception is thrown and no handler is found it, the program will call the terminate
function. This following diagram illustrates the series of events that can occur when the
program encounters an exception for which no handler can be found. See "Run-time
support" in the online Help Book Shelf index for a description of the terminate function.
The Book Shelf index is accessed by choosing Help|Keyboard and clicking on the Book
Shelf menu tab.

☞☞☞☞

☞☞☞☞

☞☞☞☞

Paradigm C++ User's Guide194

Default program behavior for unhandled exceptions:

terminate();
|
|

abort();
// PROGRAM ENDS.

C-based structured exceptions

Paradigm C++ provides support for program development that makes use of structured
exceptions. You can compile and link a C source file that contains an implementation of
structured exceptions. In a C program, the ANSI-compatible keywords used to
implement structured exceptions are _ _except, _ _finally, and _ _try. Note that the
_ _finally and _ _try keywords can appear only in C programs.

For portability, you can use the try and except macros defined in excpt.h.

For try-except exception-handling implementations the syntax is as follows:

try-block:
_ _try compound-statement (in a C module)
try compound-statement (in a C++ module)

handler:
_ _except (expression) compound-statement

For try-finally termination implementations the syntax is as follows:

try-block:
_ _try compound-statement

termination:
_ _finally compound-statement

Using C-based exceptions in C++

Paradigm C++ allows substantial interaction between C and C++ error handling
mechanisms. The implementation of exception handling mechanisms lets you port code
across platforms. The following interactions are supported:

� C structured exceptions can be used in C++ programs.
� C++ exceptions cannot be used in a C module because C++ exceptions require that

their handler be specified by the catch keyword and catch is not allowed in a C
program.

� An exception generated by a call to the RaiseException function is handled by a
try/_ _except or _ try/ _except block. All handlers of try/catch blocks are ignored
when RaiseException is called.

The following C exception support functions can be used in a C and C++ programs:

� GetExceptionCode
� GetExceptionInformation
� SetUnhandledExceptionFilter
� UnhandledExceptionFilter

Paradigm C++ does not require that the UnhandledExceptionFilter function be used
only in the except filter of _ try/ except or try/ _except blocks. However, program

☞☞☞☞

☞☞☞☞

Chapter 9, Exception handling 195

behavior is undefined when this function is called outside of the _ _try/_except or
try/_ _except block.

Handling C-based exceptions

The full functionality of an _ _except block is allowed in C++. If an exception is
generated in a C module, it is possible to provide a handler-block in a separate calling
C++ module.

If a handler can be found for the generated structured exception, the following actions
can be taken:

� Execute the actions specified by the handler
� Ignore the generated exception and resume program execution
� Continue the search for some other handler (regenerate the exception)

These actions are consistent with the design of structured exceptions. The following
example shows how to mix C and C++ exceptions. Note that the C mechanism uses the
try and _ _except keywords. The C++ mechanism uses the required try and catch
keywords.

/* In PROG.C */
void func(void) {

…
/* generate an exception */

RaiseException(/* specify your arguments */);
…

}
// In CALLER.CPP
// How to test for C++ or C-based exceptions.
#include <excpt.h>
#include <iostream.h>

int main(void) {
try
{ // test for C++ exceptions

try
{ // test for C-based structured exceptions

func();
}
_ _except(/* filter-expression */)
{
cout << "A structured exception was generated.";
…
/* specify action to take for this structured exception */
return –1;
}
return 0;

}
catch (…)
{
// handler for any C++ exception
cout << "A C++ exception was thrown.";
return 1;
}

}

Paradigm C++ User's Guide196

Structured exceptions also allow you to program a termination handler. The termination
handler can be used only in a C module and is specified by the _ _finally keyword. The
termination handler ensures that the code in the _ _finally block is executed no matter
how the flow within the _ _try exits. The _ _finally keyword is not allowed in a C++
program. Consequently, the _ try/ _ finally block is not supported in a C++ program.

Even though the _ try/ _finally block is not supported in a C++ program, a C-based
exception generated by the operating system or the program will still result in proper
stack unwinding of objects with destructors. You can use this to emulate a _ _finally
block by creating a local object whose destructor does the necessary cleanup. Any
module compiled with the -xd compiler option (this option is on by default) will have
destructors invoked for all objects with auto storage. Stack unwinding occurs from the
point where the exception is thrown to the point where the exception is caught.

Destructors are called by default. See “Exception handling/RTTI,” page 3-51 for
information about exception-handling switches.☞☞☞☞

Chapter 10, Using the inline assembly 197

C h a p t e r

10

Using inline assembly

Inline assembly is assembly-language instructions embedded within your C and C++
code. Inline assembly instructions are compiled and assembled along with your code
rather than being assembled in separate assembly modules.

This chapter describes how to use inline assembly with Paradigm C++. The following
topics are discussed:

� Inline assembly syntax and usage
� Using the asm keyword to place an assembly instruction within your C/C++

code
� Using C symbols in your asm statement to reference data and functions
� Using register variables, offsets, and size overrides
� Using C structure members
� Using jump instructions and labels

� Using the -B compiler option and #pragma inline statement to compile inline
assembly

� Using the built-in assembler (PASM)

See Paradigm C++ equivalents of command-line options on page 3-91.

Inline assembly syntax and usage

This section describes inline assembly syntax, and how to use inline assembly
instructions with C++ structures, pointers, and identifiers.

To place an assembly instruction in your C/C++ code, use the asm keyword. The format
is

asm opcode operands ; or newline

where:

� opcode is valid 80x86 instruction.
� operands contains the operand(s) acceptable to the opcode, and can reference C

constants, variables, and labels.
� The end of the asm statement is signaled by either ; (semicolon) or by newline (a

new line).

A new asm statement can be placed on the same line, following a semicolon, but no
asm statement can continue to the next line. To include multiple asm statements,
surround them with braces. The initial brace must appear on the same line as the asm
keyword.

Three asm statements are shown here; two on one line, and one below them.

asm {
pop ax; pop ds
iret

}

☞☞☞☞

Paradigm C++ User's Guide198

Semicolons are not used to start comments (as they are in PASM). When commenting
asm statements, use C-style comments, like this:

asm mov ax,ds; /* This comment is OK */
asm {pop ax; pop ds; iret;} /* This comment is also legal */
asm push ds ;THIS COMMENT IS INVALID!!

The assembly-language portion of the statement is copied straight to the output,
embedded in the assembly language that Paradigm C++ is generating from your C or
C++ instructions. Any C symbols are replaced with appropriate assembly language
equivalents.

Each asm statement is considered to be a C statement. For example, the following
construct is a valid C if statement:

myfunc()
{

int i;
int x;
if (i > 0)

asm mov x,4
else

i = 7;
}

A semicolon isn't needed after the move x,4 instruction. asm statements are the only
statements in C that depend on the occurrence of a new line to indicate that they have
ended. Although this isn't in keeping with the rest of the C language, it is the convention
adopted by several UNIX-based compilers.

An asm statement can be used as an executable statement inside a function, or as an
external declaration outside of a function. asm statements located inside functions are
placed in the code segment, and asm statements located outside functions are placed in
the data segment.

Inline assembly references to data and functions

You can use any C symbol in your asm statements, including automatic (local)
variables, register variables, and function parameters. Paradigm C++ automatically
converts these symbols to the appropriate assembly-language operands and appends
underscores onto identifier names.

In general, you can use a C symbol in any position where an address operand would be
legal. Of course, you can use a register variable wherever a register would be a legal
operand.

If the assembler encounters an identifier while parsing the operands of an inline-
assembly instruction, it searches for the identifier in the C symbol table. The names of
the 80x86 registers are excluded from this search. Either uppercase or lowercase forms
of the register names can be used.

Inline assembly and register variables
Inline assembly code can freely use SI or DI as scratch registers. If you use SI or DI in
inline assembly code, the compiler won't use these registers for register variables.

In 16-bit code BX is available for use as a scratch register.In 32-bit code, the
corresponding EBX is not available for use as a scratch register.

☞☞☞☞

Chapter 10, Using the inline assembly 199

When you use PCC32 or PCC32A to compile a C or C++ source file, including files
with inline assembly, the compiler preserves the EBX register. However, when you
compile an assembly .ASM source file, you are responsible for preserving the EBX
register. This is true whether you compile the .ASM source file with a 32-bit compiler
or use PASM32.Inline assembly, offsets, and size overrides
When programming, you don’t need to be concerned with the exact offsets of local
variables: using the variable name will include the correct offsets.

It might be necessary, however, to include appropriate WORD PTR, BYTE PTR, or
other size overrides on assembly instruction. A DWORD PTR override is needed on
LES or indirect far call instructions.

Using C structure members

You can reference structure members in an inline-assembly statement in the usual way
(that is, with variable.member). When you do this, you are working with variables, and
you can store or retrieve values in these structure members. However, you can also
directly reference the member name (without the variable name) as a form of numeric
constant. In this situation, the constant equals the offset (in bytes) from the start of the
structure containing that member. Consider the following program fragment:

struct myStruct {
int a_a;
int a_b;
int a_c;

} myA ;

myfunc ()
{

. . .
asm {mov ax, WORD PTR myA.a_b

mov bx, WORD PTR myA.a_c
}

. . .
}

This fragment declares a structure type named myStruct with three members:a_a, a_b,
and a_c. It also declares a variable myA of type myStruct. The first inline-assembly
statement moves the value contained in myA.a_b into the register AX. The second
moves the value at the address [di] + ofset(a_c) into the register BX (it takes the
address stored in DI and adds to it the offset of a_c from the start of myStruct). In this
sequence, these assembler statements produce the following code:

move ax, DGROUP : myA+2
move bx, [di+4]

This way, if you load a register (such as DI) with the address of a structure of type
myStruct, you can use the member names to directly reference the members. The
member name can be used in any position where a numeric constant is allowed in an
assembly-statement operand.

The structure member must be preceded by a dot (.) to signal that a member name,
rather than a normal C symbol, is being used. Member names are replaced in the
assembly output by the numeric offset of the structure member (the numeric offset of
a_c is 4), but no type information is retained. Thus members can be used as compile-
time constants in assembly statements.

There is one restriction, however: if two structures that you're using in inline assembly
have the same member name, you must distinguish between them. Insert the structure

Paradigm C++ User's Guide200

type (in parentheses) between the dot and the member name, as if it were a cast. For
example,

asm mov bx,[di].(struct tm)tm_hour

Using jump instructions and labels

You can use any of the conditional and unconditional jump instructions, plus the loop
instructions, in inline assembly. These instructions are valid only inside a function.
Since no labels can be defined in the asm statements, jump instructions must use C goto
labels as the object of the jump. If the label is too far away, the jump will not be
automatically converted to a long-distance jump. For this reason, you should be careful
when inserting conditional jumps. You can use the -B switch to check your jumps.
Direct far jumps cannot be generated.

In the following code, the jump goes to the C goto label a.

int x()
{
a: /* This is the goto label "a" */

. . .
asm jmp a /* Goes to label "a" */
. . .

}

Indirect jumps are also allowed. To use an indirect jump, use a register name as the
operand of the jump instruction.

Compiling with inline assembly

There are two way Paradigm C++ can handle inline assembly code in your C or C++
code.

� Paradigm C++ can convert your C or C++ code into assembly language, then
transfer to PASM to produce an .OBJ file. (This method is described in this section.)

� Paradigm C++ can use its built-in assembler (PASM) to insert your assembly
statements directly into the compiler's instruction stream (16-bit compiler only).
(This method is described in the following section.)

You can use the -B compiler option for inline assembly in your C or C++ program. If
you can use this option, the compiler first generates an assembly file, then invokes
PASM on that file to produce the .OBJ file.

By default, -B invokes PASMor PASM32. You can override it with -Exxx, where xxx is
another assembler.

You can invoke PASM while omitting the -B option if you include the #pragma inline
statement in your source code. This statement enables the -B option for you when the
compiler encounters it. You will save compile time if you put #pragma inline at the top
of your source file.

The -B option and #pragma inline tell the compiler to produce an .ASM file, which
might contain your inline assembly instructions, and then transfer to PASM to assemble
the .OBJ file. The 16-bit Paradigm C++ compiler has another method, PASM, that
allows the compiler, not PASM, to assemble your inline assembly code.

☞☞☞☞

Chapter 10, Using the inline assembly 201

Using the built-in assembler

The 16-bit compiler can assemble your inline assembly instructions using the built-in
assembler. This assembler is part of the compiler, and can do most of the things PASM
can do, with the following restrictions:

� It can't use assembler macros.
� It can't handle 80386 or 80486 instruction.
� It doesn’t permit Ideal mode syntax.
� It allows only a limited set of assembler directives (see page 10-203)

Because the built-in assembler isn't a complete assembler, it might not accept some
assembly-language constructs. If this happens, Paradigm C++ will issue an error
message. You then have two choices: you can simplify your inline assembly-language
code so the assembler will accept it, or you can use the -B option to invoke PASM to
catch whatever errors there might be. PASM might not identify the location of errors,
however, because the original C source line number is lost.

Opcodes

You can include any of the 80x86 instruction opcodes as inline-assembly statements.
There are four classes of instructions allowed by the Paradigm C++ compiler:

� Normal instructions - the regular 80x86 opcode set
� String instructions - special string-handling codes
� Jump instructions - various jump opcodes
� Assembly directives - data allocation and definition

All operands are allowed by the compiler, even if they are erroneous or disallowed by
the assembler. The exact format of the operands is not enforced by the compiler.

Table 10-1 lists all allowable PASM opcodes. For 80286 instruction, use the -2
command-line compiler option.

If you're using inline assembly in routines that use floating-point emulation (the
command-line compiler option -f), the opcodes marked with * aren't supported.

PASM opcode mnemonics

aaa fdivrp fpatan lsl

aad feni fprem mov

aam ffree* fptan mul

aas fiadd frndint neg

adc ficom frstor nop

add ficomp fsave not

and fidiv fscale or

bound fidivr fsqrt out

call fild fst pop

cbw fimul fstcw popa

clc fincstp* fstenv popf

cld finit fstp push

cli fist fstsw pusha

cmc fistp fsub pushf

☞☞☞☞

Table 10-1
PASM opcode

mnemonics

Paradigm C++ User's Guide202

cmp fisub fsubp rcl

cwd fisubr fsubr rcr

daa fld fsubrp ret

das fld1 ftst rol

dec fldcw fwait ror

div fldenv fxam sahf

enter fldl2e fxch sal

f2xm1 fldl2t fxtract sar

fabs fldlg2 fyl2x sbb

fadd fldln2 fyl2xp1 shl

faddp fldpi hlt shr

fbld fldz idiv smsw

fbstp fmul imul stc

fchs fmulp in std

fclex fnclex inc sti

fcom fndisi int sub

fcom fndisi int sub

fcomp fneni into test

fcompp fninit iret verr

fdecstp fnop lahf verw

fdisi fnsave lds wait

fdiv fnstcw lea xchg

fdivp fnstenv leave xlat

fdivr fnstsw les xor

* Not supported if you're using inline assembly in routines that use floating-point emulation (the command-
line compiler option -f).

When using 80186 instruction mnemonics in your inline-assembly statements, you must
include the -1 command-line option. This forces appropriate statements into the
assembly-language compiler output so that the assembler will expect the mnemonics. If
you're using an older assembler, these mnemonics might not be supported.

String instructions
In addition to the opcodes listed in Table 10-1, page 10-201, the string instructions
given in Table 10-2 can be used alone or with repeat prefixes.

PASM string instructions

cmps insw movsb outsw stos

cmpsb lods movsw scas stosb

cmpsw lodsb scasb stosw

lodsw outsb scasw

insb movs

The following prefixes can be used with the string instructions:
lock rep repe repnz repz

Table 10-2
PASM string
instructions

Chapter 10, Using the inline assembly 203

Jump instructions
Jump instructions are treated specially. Because a label can't be included on the
instruction itself, jumps must go to C labels (see “Using jump instructions and labels,”
page 10-200). The allowed jump instructions are given in the next table.

Jump instructions

ja jge jnc jns loop

jae jl jne jnz loope

jb jle jng jo loopne

jbe jmp jnge jp loopnz

jc jna jnl jpe loopz

jcxz jnae jnle jpo

je jnb jno js

jg jnbe jnp jz

Assembly directives
The following assembly directives are allowed in Paradigm C++ inline-assembly
statements:
db dd dw extrn

Table 10-3
Jump

instructions

Paradigm C++ User's Guide204

Chapter 11, Header files summary 205

C h a p t e r

11

Header files summary

Header files, also called include files, provide function prototype declarations for
library functions. Data types and symbolic constants used with the library functions are
also defined in them, along with global variables defined by Paradigm C++ and by the
library functions. The Paradigm C++ library follows the ANSI C standard on names of
header files and their contents.

The middle column indicates C++ header files and header files defined by ANSI C.

alloc.h Declares memory-management functions (allocation, deallocation, and so

on).

assert.h ANSI C Defines the assert debugging macro.

bcd.h C++ Declares the C++ class bcd and the overloaded operators for bcd and bcd

math functions.

checks.h C++ Contains the declarations and prototypes for the class diagnostic macros.

complex.h C++ Declares the C++ complex math functions.

conio.h Declares various functions used in calling the operating system console I/O
routines.

cstring.h C++ Contains the declarations and prototypes for the string and exception classes,

their data members, and member functions.

ctype.h ANSI C Contains information used by the character classification and character

conversion macros (such as isalpha and toascii).

date.h C++ Defines the date class.

_defs.h Defines the calling conventions for different application types and memory

models.

dir.h C++ Contains structures, macros, and functions for working with directories and

path names. (RTFiles32 only)

direct.h C++ Defines structures, macros, and functions for dealing with directories and

path names. (RTFiles32 only)

dirent.h C++ Declares functions and structures for POSIX directory operations.

(RTFiles32 only)

dos.h Defines various constants and gives declarations needed for DOS and

8086-specific calls.

embedded.h Defines various constants and gives declarations needed for embedded systems

8086-specific calls.

errno.h ANSI C Defines constant mnemonics for the error codes.

except.h C++ Declares the exception-handling classes and functions.

excpt.h Declares C structured exception support.

fcntl.h Defines symbolic constants used in connection with the library routine open.

file.h C++ Contains the declarations and prototypes for the file class,

their data members, and member functions.

float.h ANSI C Contains parameters for floating-point routines.

☞☞☞☞

Paradigm C++ User's Guide206

fstream.h C++ Declares the C++ stream classes that support file input and output.

generic.h C++ Contains macros for generic class declarations.

io.h Contains structures and declarations for low-level input/output routines.

iomanip.h C++ Declares the C++ streams I/O manipulators and contains templates for

creating parameterized manipulators.

iostream.h C++ Declares the basic C++ streams (I/O) routines.

limits.h ANSI C Contains environmental parameters, information about compile-time

limitations, and ranges of integral quantities.

malloc.h Declares memory-management functions and variables.

math.h ANSI C Declares prototypes for the math functions and math error handlers.

mem.h Declares the memory-manipulation functions. (Many of these are also
defined in string.h.)

new.h C++ Access to _new_handler, and set_new_handler.

_nfile.h Defines the maximum number of open files.

_null.h Defines the value of NULL.

process.h Contains structures and declarations for terminating a program.

promice.h Contains processor definitions for the Grammar Engine PROMICE

ROM emulator. (Only available when ROM emulator support is installed)

rtk32.h Contains all visible declarations of the Paradigm C++ real time kernel,
RTKernel-32, for protected mode applications.

rtkernel.h Contains all visible declarations of the Paradigm C++ real time kernel,
RTKernel-16, for real and extended mode applications.

setjmp.h ANSI C Declares the functions longjmp and setjmp and defines a type jmp_buf that

these functions use.

share.h Defines parameters used in functions that make use of file-sharing.

signal.h ANSI C Defines constants and declarations for use by the signal and raise functions.

stdarg.h ANSI C Defines macros used for reading the argument list in functions declared to

accept a variable number of arguments (such as vprintf, vscanf, and so on).

stddef.h ANSI C Defines several common data types and macros.

stdio.h ANSI C Defines types and macros needed for the standard I/O package defined in

Kernighan and Ritchie and extended under UNIX System V. Defines the

standard I/O predefined streams stdin, stdout, stdprn, and stderr and

declares stream-level I/O routines.

stdiostr.h C++ Declares the C++ stream classes for use with stdio FILE structures.

You should use iostream.h for new code.

stdlib.h ANSI C Declares several commonly used routines such as conversion routines and

search/sort routines.

string.h ANSI C Declares several string-manipulation and memory-manipulation routines.

strstrea.h C++ Declares the C++ stream classes for use with byte arrays in memory.

sys\types.h Declares the type time_t used with time functions.

thread.h C++ Contains the declarations and prototypes for the thread classes,

their data members, and member functions.

time.h ANSI C Defines a structure filled in by the time-conversion routines asctime,

localtime, and gmtime, and a type used by the routines ctime, difftime,

gmtime, localtime, and stime. It also provides prototypes for these routines.

timer.h, itimer.h Defines a high level protected mode floating point interface to the

Paradigm C++ RTKernel and RTKernel-32 timer devices.

typeinfo.h C++ Declares the run-time type information classes.

Chapter 11, Header files summary 207

values.h Defines important constants, including machine dependencies; provided for

UNIX System V compatibility.

Using precompiled headers

Paradigm C++ can generate (and subsequently use) precompiled headers to speed up
your project compile times.

Precompiled headers are header files that are compiled once, then used over and over
again in their compiled state.

You can use a precompiled header if a compilation uses one or more of the same header
files, the same compiler options, the same macro defines, and so on, as is contained in
the precompiled header file.

To control the use of precompiled headers, do one of the following:

� From within the IDE, turn on the Precompiled Headers option in the Compiler
settings page of the Project Options dialog box. The IDE bases the name of the
precompiled header file on the project name, creating<PROJECT_NAME>.CSM.

� From the command line, use the following command-line options:
-H=<filename>, -Hc, -H<filename>, and -Hu.

� From within your code, use the hdrfile and hdrstop pragmas.

Setting file names

Paradigm C++ stores all precompiled headers in one file, using the following naming
convention:

� The 16-bit command-line compiler names the precompiled header file PCDEF.CSM
� The 32-bit command-line compiler names the precompiled header file

PC32DEF.CSM
� The IDE names the precompiled header file <PROJECT_NAME>.CSM.

To explicitly set the precompiled file name from the command line, use the
-H=<filename> option or the #pragma hdrfile directive.

Precompiled header file overview

When compiling C and C++ programs, the compiler can spend up to half its time
parsing header files. When the compiler parses a header file, it enters declarations and
definitions into its symbol table.

Precompiled headers cut this process short by creating and storing a binary image of the
symbol table on disk. By directly loading a binary image of the symbol table, the
compiler can increase the speed of this step by over ten times. The disadvantage is that
precompiled header files can become quite large because they can contain the symbol
table images for all the #include files encountered in your sources.

If, while compiling a source file, Paradigm C++ discovers that the first #include files
are identical to those of a previous compilation (of either the same or different source),
it loads the binary image for those #include files and parses the remaining #include
files.

☞☞☞☞

Paradigm C++ User's Guide208

For a given module, either all or none of the precompiled headers are used--if
compilation of any included header file fails, the precompiled header file isn't updated
for that module.

Precompiled header limits

When using precompiled headers, PCDEF.CSM can become very large because it
contains symbol table images for all sets of includes encountered in your sources. If you
don't have sufficient disk space, you'll get a warning saying the write failed because of
the precompiled headers. To fix this, you must provide more disk space and retry the
compile. For information on reducing the size of the PCDEF.CSM file, see “Optimizing
precompiled headers,” page 11-209.

If you're using large macros in a makefile in addition to using precompiled headers,
there is a limit on the macro size: 4K for 16-bit applications.and 16K for 32-bit
applications.

If a header file contains any code, it can't be precompiled. For example, although C++
class definitions can appear in header files, you should ensure that only inline member
functions are defined in the header and heed warnings such as Functions
containing reserved word are not expanded inline.

Precompiled header rules

The following rules apply when you create and use precompiled headers:

1. A header that contains code can't be precompiled. For example, although C++ class
definitions can appear in header files, make sure that only inline member functions
are defined in the header. Heed warnings such as Functions containing
'for' are not expanded inline.

2. In order to use a previously generated precompiled header, the source file must:
� Have the same set of include files, in the same order, as the precompiled header
� Have the same macros defined with identical values as the precompiled header
� Use the same language (C or C++) as the precompiled header
� Use header files with identical time stamps as the precompiled header

3. In addition, the following option settings must be identical to those used when you
generated the precompiled header:
� Memory model, including SS != DS (-mx)M
� Underscores on externs (-u)
� Maximum identifier length (-iL)
� Target real address mode or Windows (-W or -Wx)
� Generate word alignment (-a)
� Pascal calls (-p)
� Treat enums as integers (-b)
� Default char is unsigned (-K)
� Virtual table control (-Vx and -Vmx)
� Expand intrinsic functions inline (-Oi)
� Templates (-Jx)
� String literals in code segment (-dc, 16-bit)
� Debugging information (-v, -vi, and -R)

Chapter 11, Header files summary 209

� Far variables (-Fx)
� Language compilance (-A)
� C++ compile (-P)
� Real address mode overlay-compatible code (-Y)

4. If you're using large macros in addition to using precompiled headers, the compiler
limits the size of the macros as following:
� 4K macros for 16-bit applications
� 16K macros for 32-bit applications

Optimizing precompiled headers

For the most efficiently compiled precompiled headers, follow these rules:

� Arrange your header files in the same sequence in all source files.
� Put the largest header files first.
� Prime the precompiled header file with often-used initial sequences of header files.
� Use #pragma hdrstop to terminate the list of header files at well-chosen places.

This lets you make the list of header files in different sources look similar to the
compiler.

For example, suppose you have the following two source files (A_SOURCE.CPP and
B_SOURCE.CPP), which both include windows.h and myhdr.h:

/* A_SOURCE.CPP */
#include <windows.h>
#include "myhdr.h"
#include "xxx.h"
// ...

/* B_SOURCE.CPP */
#include "yyy.h
#include <string.h>
#include "myhdr.h"
#include <windows.h>
// ...

To optimize the precompiled headers for these source files, you would rearrange the
beginning of B_SOURCE.CPP as follows:

/* Revised B_SOURCE.CPP */
#include <windows.h>
#include "myhdr.h"
#include "yyy.h"
#include <string.h>
// ...

Now, windows.h and myhdr.h are in the same order in both A_SOURCE.CPP and
B_SOURCE.CPP, and they are both located at the beginning of the #include list.

In addition, you could also create a new source file called PREFIX.CPP which contains
only the matching header files, like this:

/* PREFIX.CPP */
#include <windows.h>
#include "myhdr.h"

If you compile PREFIX.CPP first (or insert a #pragma hdrstop in both
A_SOURCE.CPP and B_SOURCE.CPP), the net effect is that after the initial
compilation of PREFIX.CPP, both A_SOURCE.CPP and B_SOURCE.CPP will be able

Paradigm C++ User's Guide210

to load the symbol table produced by PREFIX.CPP. The compiler will then need to
parse only xxx.h for A_SOURCE.CPP, and yyy.h and strings.h for B_SOURCE.CPP.

alloc.h

Declares memory-management functions (allocation, deallocation, and so on).

Functions

� calloc
� farcalloc
� farfree
� farmalloc
� farrealloc
� free
� heapcheck
� heapcheckfree
� heapchecknode
� heapfillfree
� heapwalk
� malloc
� realloc

Constants, data types and global variables

� NULL
� ptrdiff_t
� size_t

assert.h

Defines the assert debugging macro.

Functions

� assert

bcd.h

Declares the C++ class bcd, plus the overloaded operators for class bcd and for BCD
math functions.

Functions

� abs
� acos
� asin
� atan
� cos
� cosh
� exp
� log

Chapter 11, Header files summary 211

� log10
� pow
� pow10
� real
� sin
� sinh
� sqrt
� tan
� tanh

Constants, data types and global variables

� _BCD_H
� _BcdMaxDecimals
� bcdexpo (enum)
� __cplusplus

checks.h

The checks.h header file contains the declarations and prototypes for the class
diagnostic macros.

Includes

� CSTRING.H
� EXCEPT.H
� STRSTREA.H
� SYS\TYPES.H

Macros

� CHECK
� CHECKX
� PRECONDITION
� PRECONDITIONX
� TRACE
� TRACEX
� WARN
� WARNX

complex.h

Declares the C++ complex math functions.

All function names, member names, and operators are identical with the AT&T C++
implementation, except for the addition of acos, asin, atan, log10, tan, and tanh.

Includes

� MATH.H

Functions

� abs

Paradigm C++ User's Guide212

� acos
� arg
� asin
� atan
� conj
� cos
� cosh
� exp
� imag
� log
� log10
� norm
� polar
� pow
� pow10
� real
� sin
� sinh
� sqrt
� tan
� tanh

Constants, data types and global variables

� _COMPLEX_H
� __cplusplus

cstring.h

The cstring.h header file contains the declarations and prototypes for the string and
exception classes, their data members, and member functions.

If you are using cstring.h in a Windows program, you must either #define STRICT
before you include windows.h or include cstring.h before you include windows.h
(STRICT is defined in cstring.h).

Includes

� CTYPE.H
� EXCEPT.H
� REF.H
� STDDEF.H
� STRING.H
� WINDOWS.H

Classes

� string
� TSubstring

Chapter 11, Header files summary 213

ctype.h

Contains information used by the character classification and character conversion
macros.

Functions and macros

� isalnum
� isalpha
� isascii
� iscntrl
� isdigit
� isgraph
� islower
� isprint
� ispunct
� isspace
� isupper
� isxdigit
� toascii
� _tolower
� tolower
� _toupper
� toupper

Constants, data types and global variables

� _IS_CTL
� _IS_DIG
� _IS_HEX
� _IS_LOW
� _IS_PUN
� _IS_SP
� _IS_UPP

date.h

The date.h header file contains the declarations and prototypes for the date class, their
data members, and member functions.

Includes

� _DEFS.H

Classes

� TDate class

dir.h

Contains structures, macros, and functions for working with directories and path names.
This header file is only available via RTFiles32.

Paradigm C++ User's Guide214

Functions

� chdir
� findfirst
� findnext
� fnmerge
� fnsplit
� getcurdir
� getcwd
� getdisk
� mkdir
� mktemp
� rmdir
� searchpath
� setdisk

Constants, data types and global variables

� DIRECTORY
� DRIVE
� EXTENSION
� ffblk
� FILENAME
� MAXDIR
� MAXDRIVE
� MAXEXT
� MAXFILE
� MAXPATH

direct.h

Defines structures, macros, and functions for dealing with directories and path names.
This header file is only available via RTFiles32.

Includes

� DIR.H

Functions

� _chdrive
� _getdcwd

dirent.h

Declares functions and structures for POSIX directory operations. This header file is
only available via RTFiles32.

Functions

� closedir
� opendir

Chapter 11, Header files summary 215

� readdir
� rewinddir

dos.h

Defines various constants and gives declarations needed for real address mode and
8086-specific calls.

Functions and macros

� _chain_intr
� disable
� _emit_
� enable
� FP_OFF
� FP_SEG
� getvect
� inport
� inportb
� int86
� in86x
� intr
� MK_FP
� outport
� outportb
� peek
� peekb
� poke
� pokeb
� segread
� setvect

Constants, data types and global variables

� errno
� SREGS

embedded.h

Defines various constants and gives declarations needed for embedded systems 8086-
specific calls.

Functions and macros

� _addr_mode
� _chain_intr
� disable
� _emit_
� enable
� FP_OFF

Paradigm C++ User's Guide216

� FP_SEG
� _fptr_to_linear
� getvect
� inp
� inport
� inportb
� inpw
� int86
� int86x
� intr
� _linear_to_fptr
� MK_FP
� outp
� outport
� outportb
� outpw
� peek
� peekb
� poke
� pokeb
� segread
� setvect

Constants, data types and global variables

� SREGS

errno.h

Defines constant mnemonics for the error codes.

Constants, data types and global variables

� _doserrno
� errno
� _sys_errlist
� _sys_nerr
� error number definitions

except.h

The except.h header file contains the declarations and prototypes for exception-handling
functions and classes, their data members, and member functions.

Includes

� STDLIB.H
Classes

� xalloc class

Chapter 11, Header files summary 217

� xmsg class

Functions

� set_terminate
� set_unexpected
� terminate
� unexpected

fcntl.h

Defines open flags for open and similar library functions.

Functions

� _fmode

Constants

� O_APPEND
� O_BINARY
� O_CHANGED
� O_CREAT
� O_DENYALL
� O_DENYNONE
� O_DENYREAD
� O_DENYWRITE
� O_DEVICE
� O_EXCL
� O_NOINHERIT
� O_RDONLY
� O_RDWR
� O_TEXT
� O_TRUNC
� O_WRONLY

file.h

The file.h header file contains the declarations and prototypes for the file class, their
data members, and member functions.

Includes

� DATE.H
� _DEFS
� FCNTL.H
� STDLIB.H
� STDIO.H
� SHARE.H
� SYS\STAT.H
� SYS\TYPES.H

Paradigm C++ User's Guide218

� THREAD.H
� TIME.H

Classes

� TFile class

float.h

Contains parameters for floating-point routines.

Functions

� _clear87
� _fpreset
� _status87

Constants, data types and global variables

� CW_DEFAULT
� FPE_EXPLICITGEN
� FPE_INEXACT
� FPE_INTDIV0
� FPE_INTOVFLOW
� FPE_INVALID
� FPE_OVERFLOW
� FPE_UNDERFLOW
� FPE_ZERODIVIDE
� ILL_EXECUTION
� ILL_EXPLICITGEN
� SEGV_BOUND
� SEGV_EXPLICITGEN

fstream.h

Declares the C++ stream classes that support file input and output. Replaces the older,
now outdated stdiostr.h.

Includes

� IOSTREAM.H

See also

� filebuf
� fstream
� fstreambase
� ifstream
� ofstream

generic.h

Contains macros for generic class declarations.

Chapter 11, Header files summary 219

io.h

Contains structures and declarations for low-level input/output routines.

Functions

� setmode

Constants, data types and global variables

� HANDLE_MAX

iomanip.h

Declares the C++ streams I/O manipulators and contains macros for creating
parameterized manipulators.

Includes

� iostream.h

Classes

� iapply
� imanip
� ioapp
� iomanip
� oapp
� omanip
� sapp
� smanip

Overloaded Operators

<< >>

iostream.h

Declares the basic C++ streams (I/O) routines.

Includes

� MEM.H

See also

� ios
� iostream
� iostream_withassign
� istream
� istream_withassign
� ostream
� ostream_withassign
� streambuf

Paradigm C++ User's Guide220

limits.h

Contains environmental parameters, information about compile-time limitations, and
ranges of integral quantities.

Constants, data types and global variables

� CHAR_BIT
� CHAR_MAX
� CHAR_MIN
� INT_MAX
� INT_MIN
� LONG_MAX
� LONG_MIN
� SCHAR_MAX
� SCHAR_MIN
� SHRT_MAX
� SHRT_MIN
� UCHAR_MAX
� UINT_MAX
� ULONG_MAX
� USHRT_MAX

malloc.h

Declares memory-management functions and variables.

Includes

� ALLOC.H

Functions

� _heapchk
� _heapmin
� _heapset
� stackavail

math.h

Declares prototypes for the math functions and math error handlers.

Functions

� abs
� acos, acosl
� asin, asinl
� atan, atanl
� atan2, atan2l
� atof, _atold
� cabs, cabsl
� ceil, ceill

Chapter 11, Header files summary 221

� cos, cosl
� cosh, coshl
� exp, expl
� fabs, fabs
� floor, floorl
� fmod, fmodl
� frexp, frexpl
� hypot, hypotl
� labs
� ldexp, ldexpl
� log, logl
� log10, log101
� _matherr,_matherrl
� modf, modfl
� poly, polyl
� pow, powl
� pow10, pow10l
� sin, sinl
� sinh, sinhl
� sqrt, sqrtl
� tan, tanl
� tanh, tanhl

Constants, data types and global variables

� complex (struct)
� _complexl (struct)
� EDOM
� ERANGE
� exception (struct)
� _exceptionl (struct)
� HUGE_VAL
� M_E
� M_LOG2E
� M_LOG10E
� M_LN2
� M_LN10
� M_PI
� M_PI_2
� M_PI_4
� M_1_PI
� M_2_PI
� M_1_SQRTPI
� M_2_SQRTPI
� M_SQRT2

Paradigm C++ User's Guide222

� M_SQRT_2
� _mexcep

mem.h

Declares the memory-manipulation functions. (Many of these are also defined in
string.h.)

Functions

� _fmemccpy
� _fmemchr
� _fmemcmp
� _fmemcpy
� _fmemicmp
� _fmemmove
� _fmemset
� _fmovmem
� memccpy
� memchr
� memcmp
� memcpy
� memicmp
� memmove
� memset
� movedata
� movmem
� setmem

Constants, data types and global variables

� NULL
� ptrdiff_t
� size_t

new.h

Provides access to the the following functions:

� set_new_handler
� _new_handler (global variable)

process.h

Contains structures and declarations for terminating a program.

Functions

� abort
� _c_exit
� _cexit

Chapter 11, Header files summary 223

� exit
� _exit

promice.h

Processor definition file for the Grammar Engine PROMICE ROM emulator. This file
contains definitions for PDREMOTE/ROM kernels that manipulate the memory-
mapped PROMICE ROMART. This file is available only when ROM emulator support
is installed.

Constants, data types and global variables

� BUS_SIZE
� ROMART
� ROMART_segment

rtk32.h

Contains all visible declarations of the Paradigm C++ real time kernel, RTKernel-32,
for protected mode applications. This file must be included in any file wishing to take
advantage of the services.

Functions

� RTKernelInit
� RTKCreateThread
� RTKRTLCreateThread
� RTKTerminateTask
� RTKSuspend
� RTKResume
� RTKSetPriority
� RTKProtect8087
� RTKFree8087
� RTKAllocUserData
� RTKSetUserData
� RTKGetUserData
� RTKGetLocalData
� RTKCurrentTaskHandle
� RTKGetTaskState
� RTKGetTaskPrio
� RTKGetTaskStack
� RTKGetMinStack
� RTKTaskInfo
� RTKClearStatistic
� RTKSetTime
� RTKGetTime
� RTKDelay
� RTKDelayUntil
� RTKTimeSlice

Paradigm C++ User's Guide224

rtk32.h continued

Functions

� RTKCreateSemaphore
� RTKOpenSemaphore
� RTKDeleteSemaphore
� RTKSemaInfo
� RTKSemaValue
� RTKResourceOwner
� RTKSignal
� RTKPulse
� RTKWait
� RTKWaitCond
� RTKWaitTimed
� RTKResetEvent
� RTKCreateMailbox
� RTKClearMailbox
� RTKDeleteMailbox
� RTKMessages
� RTKPut
� RTKPutFront
� RTKGet
� RTKPutCond
� RTKPutFrontCond
� RTKGetCond
� RTKPutTimed
� RTKPutFrontTimed
� RTKGetTimed
� RTKNextCond
� RTKSend
� RTKReceive
� RTKSendCond
� RTKReceiveCond
� RTKSendTimed
� RTKReceiveTimed
� RTKGetIRQHandler
� RTKSetIRQHandler
� RTKSaveIRQHandlerFar
� RTKRestoreIRQHandlerFar
� RTKCallIRQHandlerFar
� RTKSetIRQStack
� RTKIRQInfo
� RTInstallISR

Chapter 11, Header files summary 225

rtk32.h continued

Functions

� RTKIRQTopPriority
� RTKEnableIRQ
� RTKDisableIRQ
� RTKIRQEnd
� RTKDisableInterrupts
� RTKEnableInterrupts
� RTKAllocMemPool
� RTKGetBuffer
� RTKFreeBuffer
� RTKSetTraceBufferSize
� RTKEnableTrace
� RTKTraceAll
� RTKDisableTrace
� RTKStopTracing
� RTKClearTraceBuffer
� RTKUserTrace
� RTKTraceHeader
� RTKDumpTrace
� RTKDebugVersion
� RTKStackCheck
� RTKCanPreempt
� RTKPreemptionsON
� RTKPreemptionsOFF
� RTKScheduler
� RTKSetMessageHandler
� RTKSetTaskSwitchHook
� RTKSetTaskStartStopHook
� RTKFatalError
� RTKAlloc
� RTKDeallocTerminatedTasks
� RTIn
� RTInW
� RTInD
� RTOut
� RTOutW
� RTOutD

Constants, data types and global variables

� Priority
� Time
� Duration

Paradigm C++ User's Guide226

rtk32.h continued

Constants, data types and global variables

� SemaphoreType
� TaskState
� RTKernelInfo
� RTKResult
� IRQHandle
� TaskHandle
� Semaphore
� Mailbox
� MemoryPool
� UserHandle

rtkernel.h

Contains all visible declarations of the Paradigm C++ real time kernel, RTKernel-16,
for real and extended mode applications. This file must be included in any file wishing
to take advantage of the services.

Functions

� RTKCreateTask
� RTKDeleteTask
� RTKSuspend
� RTKResume
� RTKSetPriority
� RTKAllocUserData
� RTKSetUserData
� RTKGetUserData
� RTKGetLocalData
� RTKProtectMathCoprocessor
� RTKCurrentTask
� RTKGetLastError
� RTKGetTaskState
� RTKGetTaskPrio
� RTKGetTaskStack
� RTKGetMinStack
� RTKSetTime
� RTKGetTime
� RTKDelay
� RTKDelayUntil
� RTKTimeSlice
� RTKCreateSemaphore
� RTKDeleteSemaphore
� RTKSemaValue

Chapter 11, Header files summary 227

rtkernel.h continued

Functions

� RTKSignal
� RTKWait
� RTKWaitCond
� RTKWaitTimed
� RTKResourceOwner
� RTKCreateMailbox
� RTKDeleteMailbox
� RTKClearMailbox
� RTKMessages
� RTKPut
� RTKPutFront
� RTKGet
� RTKPutCond
� RTKPutFrontCond
� RTKGetCond
� RTKNextCond
� RTKPutTimed
� RTKPutFrontTimed
� RTKGetTimed
� RTKSend
� RTKSendCond
� RTKSendTimed
� RTKReceive
� RTKReceiveCond
� RTKReceiveTimed
� RTKAllocMemPool
� RTKGetBuffer
� RTKFreeBuffer
� RTKDeleteMemPool
� RTKSetIRQHandler
� RTKSetTraceBufferSize
� RTKClearTraceBuffer
� RTKTraceEnable
� RTKDeallocTerminatedTasks
� RTKScheduler
� RTKPreemptions
� RTKClearStatistic
� RTKInfo
� Priority
� Time

Paradigm C++ User's Guide228

rtkernel.h continued

Functions

� Duration
� SemaphoreType
� TaskState
� RTKernelInfo
� RTKResult
� IRQHandle
� TaskHandle
� Semaphore
� Mailbox
� MemoryPool
� UserHandle

setjmp.h

Declares the functions longjmp and setjmp and defines a type jmp_bufj that these
functions use.

Functions

� longjmp
� setjmp

Constants, data types and global variables

� jmp_buf

share.h

Defines parameters used in functions that make use of file-sharing.

Constants, data types and global variables

� SH_COMPAT
� SH_DENYNO
� SH_DENYNONE
� SH_DENYRD
� SH_DENYRW
� SH_DENYWR

signal.h

Defines constants and declarations for use by the signal and raise functions.

Functions

� raise
� signal

Constants, data types and global variables

� predefined signal handlers

Chapter 11, Header files summary 229

� sig_atomic_t type
� SIG_DFL
� SIG_ERR
� SIG_IGN
� SIGABRT
� SIGFPE
� SIGILL
� SIGINT
� SIGSEGV
� SIGTERM

stdarg.h

Defines macros used for reading the argument list in functions declared to accept a
variable number of arguments (such as vprintf, vscanf, and so on).

Macros

� va_arg
� va_end
� va_start

Constants, data types and global variables

� va_list

stddef.h

Defines several common data types and macros.

Functions

� offsetof

Constants, data types and global variables

� NULL
� ptrdiff_t
� size_t
� wchar_t

stdio.h

Defines types and macros needed for the standard I/O package defined in Kernighan
and Ritchie and extended under UNIX System V. It defines the standard I/O predefined
streams stdin, stdout, stdprn, and stderr, and declares stream-level I/O routines.

Functions

_fstrncpy setbuf

getc setvbuf

getchar sprintf

gets sscanf

getw _strerror

Paradigm C++ User's Guide230

perror strerror

printf strncpy

putc ungetc

putchar vprintf

puts vscanf

putw vsprintf

scanf vsscanf

Constants, data types and global variables

_F_BIN FILE size_t

_F_BUF FOPEN_MAX stdaux

_F_EOF fpos_t stderr

_F_ERR _IOFBF stdin

_F_IN _IOLBF stdout

_F_LBUF _IONBF stdprn

_F_OUT L_ctermid SYS_OPEN

_F_RDWR NULL TMP_MAX

stdiostr.h

Declares the C++ stream classes for use with stdio FILE structures. You should use
iostream.h for new code.

Includes

� IOSTREAM.H
� STDIO.H

stdlib.h

Declares several commonly used routines such as conversion routines and search/sort
routines.

Functions

abort labs realloc

abs ldiv _rotl

atexit lfind _rotr

atof _lrotl srand

atoi _lrotr strtod

atol lsearch strtol

bsearch ltoa _strtold

calloc malloc strtoul

_crotr max swab

div mblen ultoa

ecvt mbstowcs wcstombs

exit mbtowc wctomb

Chapter 11, Header files summary 231

_exit min

fcvt qsort

free rand

gcvt random

itoa randomize

Constants, data types and global variables

� div_t
� _doserrno
� errno
� EXIT_FAILURE
� EXIT_SUCCESS
� _fmode
� ldiv_t
� NULL
� RAND_MAX
� size_t
� sys_errlist
� sys_nerr
� wchar_t

string.h

Declares several string-manipulation and memory-manipulation routines.

Functions

_fmemccpy _fstrset strdup

_fmemchr _fstrspn strdup

_fmemcmp _fstrstr strerror

_fmemcpy _fstrtok _strerror

_fmemicmp _fstrupr stricmp

_fmemset memccpy strlen

_fstr* memchr strlwr

_fstrcat memcmp strncat

_fstrchr memcpy strncmp

_fstrcmp memicmp strncmpi

_fstrcpy memmove strncpy

_fstrcspn memset strnicmp

_fstrdup movedata strnset

_fstricmp movmem strpbrk

_fstrlen setmem strrchr

_fstrlwr stpcpy strrev

_fstrncat strcat strset

_fstrncmp strchr strspn

Paradigm C++ User's Guide232

_fstrncpy strcmp strstr

_fstrnicmp strcmp strtok

_fstrnset strcmpi strupr

_fstrpbrk strcoll strxfrm

_fstrrchr strcpy

_fstrrev strcspn

Constants, data types and global variables

� size_t

strstrea.h

Declares the C++ stream classes for use with byte arrays in memory.

Includes

� IOSTREAM.H

See also

� istrstream
� ostrstream
� strstream
� strstreambase
� strstreambuf

sys\types.h

Constants, data types and global variables

� time_t

thread.h

The thread.h header file contains the declarations and prototypes for the thread classes,
their data members, and member functions.

Includes

� CSTRING.H
� CHECKS.H
� _DEFS.H

Classes

� TCriticalSection class
� TSync class
� TThread class

time.h

Defines a structure filled in by time-conversion routines asctime, localtime, and
gmtime, and a type used by the routines ctime, difftime, gmtime, localtime and stime. It
also provides prototypes for these routines.

Chapter 11, Header files summary 233

Functions

� asctime
� ctime
� difftime
� gmtime
� localtime
� mktime
� randomize
� stime
� _strdate
� strftime
� _strtime
� time

Constants, data types and global variables

� size_t
� time_t
� tm

timer.h, itimer.h

This file is a high level protected mode floating point interface to the Paradigm C++
RTKernel and RTKernel-32 timer devices. itimer.h returns integer values. See existing
timer example files for more details on how timers are implemented.

Includes

� FINETIME.H

� CLOCK.H

Functions

� ElapsedAndMark
� ElapsedTime
� MarkTime
� SetTimerInterval
� Synchronize
� Ticks
� TIElapsedAndMark
� TIElapsedTime
� TIFineTimeToSeconds
� TimerInit
� TimeSinceTimeInt
� TISecondsToTicks

� TISetTimerInterval
� TITicksToSeconds

Paradigm C++ User's Guide234

typeinfo.h

The typeinfo.h header file contains the declarations and prototypes for the run-time type
information classes, their data members, and member functions.

Classes

� Bad_cast class
� ostrstream
� Bad_typeid class
� typeinfo class

values.h

Defines UNIX compatible constants for limits to float and double values.

Functions

� BITSPERBYTE
� DMAXEXP
� DMAXPOWTWO
� DMINEXP
� DSIGNIF
� FMAXEXP
� FMAXPOWTWO
� FMINEXP
� FSIGNIF
� _FEXPLEN
� HIBITI
� HIBITL
� HIBITS
� _LENBASE
� MAXDOUBLE
� MAXFLOAT
� MAXINT
� MAXLONG
� MAXSHORT
� MINDOUBLE
� MINFLOAT

_defs.h

The _defs.h header file contains common definitions for pointer size and calling
conventions.

Calling Conventions

_RTLENTRY Specifies the calling convention used by the Standard Run-time Library.

_USERENTRY Specifies the calling convention the Standard Run-time Library expects user-

compiled functions to use for callbacks.

Chapter 11, Header files summary 235

Export (and size for real address mode) information

_EXPCLASS Exports the class if you are building a DLL version of a library.

_EXPDATA Exports the data if you are building a DLL version of a library.

_EXPFUNC Exports the function if you are building a DLL version of a library.

These export macros are provided as examples only and should not be used to create
user-defined functions.

excpt.h

The excpt.h header file contains the declarations and prototypes for structured
exception-handling values, types, and routines.

_nfile.h

The _nfile.h header file defines _NFILE_, which specifies the maximum number of
open files you can have.

NFILE is defined as 50 for all applications.

_null.h

The _null.h defines the value of NULL for different memory models and applications
types:

Model Value

Flat ((void *)0) if not C++ or Windows application

Flat 0

Small 0

Medium 0

Large 0L

☞☞☞☞

Paradigm C++ User's Guide236

Chapter 12, Math 237

C h a p t e r

12

Math

This chapter describes the floating-point options and explains how to use complex and
bcd numerical types.

Floating-point I/O

Floating-point output requires linking of conversion routines used by printf, scanf, and
any variants of these functions. To reduce executable size, the floating-point formats are
not automatically linked. However, this linkage is done automatically whenever your
program uses a mathematical routine or the address is taken of some floating-point
number. If neither of these actions occur, the missing floating-point formats can result
in a run-time error.

The following program illustrates how to set up your program to properly execute.

/* PREPARE TO OUTPUT FLOATING-POINT NUMBERS. */
#Include <stdio.h>

#pragma extref _floatconvert

void main() {
printf("d = %f\n", 1.3);
}

Floating-point options

There are two types of numbers you work with in C: integer (int, short, long, and so
on) and floating point (float, double, and long double). Your computer’s processor can
easily handle integer values, but more time and effort are required to handle floating-
point values.

However, the iAPx86 family of processors has a corresponding family of math
coprocessors, the 8087, the 80287, and the 80387. We refer to this entire family of math
coprocessors as the 80x87, or “the coprocessor."

The 80x87 is a special hardware numeric processor that can be installed in your PC. It
executes floating-point instructions very quickly. If you use floating point a lot, you’ll
probably want a coprocessor. The CPU in your computer interfaces to the 80x87 via
special hardware lines.

If you have an 80486 or Pentium processor, the numeric coprocessor is probably
already built in.

Emulating the 80x87 chip

The default Paradigm C++ code-generation option is emulation (the –f command-line
compiler option). This option is for programs that might or might not have floating
point, and for machines that might or might not have an 80x87 math coprocessor.

☞☞☞☞

Paradigm C++ User's Guide238

With the emulation option, the compiler will generate code as if the 80x87 were present,
but will also link in the emulation library (EMU.LIB). When the program runs, it uses
the 80x87 if it is present; if no coprocessor is present at run-time, it uses special
software that emulates the 80x87. This software uses 512 bytes of your stack, so make
allowance for it when using the emulation option and set your stack size accordingly.

Using the 80x87 code

If your program is going to run only on machines that have an 80x87 math coprocessor,
you can save a small amount in your .EXE file size by omitting the 80x87 autodetection
and emulation logic. Choose the 80x87 floating-point code-generation option (the –f87
command-line compiler option). Paradigm C++ will then link your programs with
FP87.LIB instead of with EMU.LIB.

No floating-point code

If there is no floating-point code in your program, you can save a small amount of link
time by choosing None for the floating-point code-generation option (the –f– command-
line compiler option). Then Paradigm C++ will not link with EMU.LIB, FP87.LIB, or
MATHx.LIB.

Fast floating-point option

Paradigm C++ has a fast floating-point option (the –ff command-line compiler option).
It can be turned off with –ff– on the command line. Its purpose is to allow certain
optimizations that are technically contrary to correct C semantics. For example,

double x;
x = (float)(3.5*x);

To execute this correctly, x is multiplied by 3.5 to give a double that is truncated to
float precision, then stored as a double in x. Under the fast floating-point option, the
long double product is converted directly to a double. Since very few programs depend
on the loss of precision in passing to a narrower floating-point type, fast floating point is
the default.

The 87 environment variable

If you build your program with 80x87 emulation, which is the default, your program
will automatically check to see if an 80x87 is available, and will use it if it is.

There are some situations in which you might want to override this default
autodetection behavior. For example, your own run-time system might have an 80x87,
but you might need to verify that your program will work as intended on systems
without a coprocessor. Or your program might need to run on a PC-compatible system,
but that particular system returns incorrect information to the autodetection logic
(saying that a nonexistent 80x87 is available, or vice versa).

Paradigm C++ provides an option for overriding the start-up code’s default
autodetection logic; this option is the 87 environment variable.

You set the 87 environment variable at the DOS prompt with the SET command, like
this:

C> SET 87=N

or like this:

Chapter 12, Math 239

C> SET 87=Y

Don’t include spaces on either side of the =. Setting the 87 environment variable to N
(for No) tells the start-up code that you do not want to use the 80x87, even though it
might be present in the system.

Setting the 87 environment variable to Y (for Yes) means that the coprocessor is there,
and you want the program to use it. Let the programmer beware: If you set 87 = Y
when, in fact, there is no 80x87 available on that system, your system will hang.

If the 87 environment variable has been defined (to any value) but you want to undefine
it, enter the following at the DOS prompt:

C> SET 87=

Press Enter immediately after typing the equal sign.

Registers and the 80x87

When you use floating point, make note of these points about registers:

� In 80x87 emulation mode, register wrap-around and certain other 80x87
peculiarities are not supported.

� If you are mixing floating point with inline assembly, you might need to take special
care when using 80x87 registers. Unless you are sure that enough free registers
exist, you might need to save and pop the 80x87 registers before calling functions
that use the coprocessor.

Disabling floating-point exceptions

By default, Paradigm C++ programs abort if a floating-point overflow or divide-by-zero
error occurs. You can mask these floating-point exceptions by a call to _control87 in
main, before any floating-point operations are performed. For example,

#include <float.h>
main() {

_control87(MCW_EM,MCW_EM);
…

}

You can determine whether a floating-point exception occurred after the fact by calling
_status87 or _clear87. See "Run-time library functions" in the online Help index for
details about these functions.

Certain math errors can also occur in library functions; for instance, if you try to take
the square root of a negative number. The default behavior is to print an error message
to the screen, and to return a NAN (an IEEE not-a-number). Use of the NAN is likely to
cause a floating-point exception later, which will abort the program if unmasked. If you
don’t want the message to be printed, insert the following version of _matherr into your
program:

#include <math.h>
int _matherr(struct _exception *e)
{

return 1; /* error has been handled */
}

Any other use of _matherr to intercept math errors is not encouraged; it is considered
obsolete and might not be supported in future versions of Paradigm C++.

☞☞☞☞

☞☞☞☞

Paradigm C++ User's Guide240

Using complex types

Complex numbers are numbers of the form x + yi, where x and y are real numbers, and i
is the square root of -1. Paradigm C++ as always had a type:

struct complex
{

double x, y;
};

defined in math.h. This type is convenient for holding complex numbers, because they
can be considered a pair of real numbers. However, the limitations of C make arithmetic
with complex numbers rather cumbersome. With the addition of C++, complex math is
much simpler.

A significant advantage to using the Paradigm C++ complex numerical type is that all of
the ANSI C Standard mathematical routines are defined to operate with it. These
mathematical routines are not defined for use with the C struct complex.

See "complex class" in the online Help Book Shelf index for more information. The
Book Shelf index can be accessed by choosing Help|Keyboard and clicking on the Book
Shelf menu tab.

To use complex numbers in C++, all you have to do is to include complex.h. In
complex.h, all the following have been overloaded to handle complex numbers:

� All of the binary arithmetic operators.
� the input and output operators, >> and <<.
� the ANSI C math functions.

The complex library is invoked only if the argument is of type complex. Thus, to get the
complex square root of -1, use

sqrt(complex(-1))

and not

sqrt(-1)

The following functions are defined by class complex:

double arg(complex&); // angle in the plane
complex conj(complex&); // complex conjugate
double imag(complex&); // imaginary part
double norm(complex&); // square of the magnitude
double real(complex&); // real part
// Use polar coordinates to create a complex.
complex polar(double mag, double angle = 0);

Using bcd types

Paradigm C++, along with almost every other computer and compiler, does arithmetic
on binary numbers (that is, base 2). This can sometimes be confusing to people who are
used to decimal (base 10) representations. Many numbers that are exactly representable
in base 10, such as 0.01, can only be approximated in base 2.

See "bcd class" in the online Help Book Shelf index for more information. The Book
Shelf index can be accessed by choosing Help|Keyboard and clicking on the Book Shelf
menu tab.

Binary numbers are preferable for most applications, but in some situations the round-
off error involved in converting between base 2 and 10 is undesirable. The most

☞☞☞☞

☞☞☞☞

Chapter 12, Math 241

common example of this is a financial or accounting application, where the pennies are
supposed to add up. Consider the following program to add up 100 pennies and subtract
a dollar:

#include <stdio.h>
int i;
float x = 0.0;
for (i = 0; i < 100; ++i)

x += 0.01;
x -= 1.0;
printf("100*.01 - 1 = %g\n",x);

The correct answer is 0.0, but the computed answer is a small number close to 0.0. The
computation magnifies the tiny round-off error that occurs when converting 0.01 to base
2. Changing the type of x to double or long double reduces the error, but does not
eliminate it.

To solve this problem, Paradigm C++ offers the C++ type bcd, which is declared in
bcd.h. With bcd, the number 0.01 is represented exactly, and the bcd variable x provides
an exact penny count.

#include <bcd.h>
int i;
bcd x = 0.0;
for (i = 0; i < 100; ++i)

x += 0.01;
x -= 1.0;
cout << "100*.01 - 1 = " << x << "\n";

Here are some facts to keep in mind about bcd:

� bcd does not eliminate all round-off error: A computation like 1.0/3.0 will still have
round-off error.

� bcd types can be used with ANSI C math functions.
� bcd numbers have about 17 decimal digits precision, and a range of about 1 x 10-125

to 1 x 10125.

Converting bcd numbers

bcd is a defined type distinct from float, double, or long double; decimal arithmetic is
performed only when at least one operand is of the type bcd.

The bcd member function real is available for converting a bcd number back to one of
the usual formats (float, double, or long double), though the conversion is not done
automatically. real does the necessary conversion to long double, which can then be
converted to other types using the usual C conversions. For example, a bcd can be
printed using any of the following four output statements with cout and printf.

Paradigm C++ User's Guide242

/* PRINTING bcd NUMBERS */
/* This must be compiled as a C++ program. */
#Include <bcd.h>
#include <iostream.h>
#include <stdio.h>

void main(void) {
bcd a = 12.1;
double x = real(a); // This conversion required for printf().

printf("\na = %g", x);
printf("\na = %Lg", real(a));
printf("\na = %g", (double)real(a));
cout << "\na = " << a; // the preferred method.
}

Since printf doesn’t do argument checking, the format specifier must have the L if the
long double value real(a) is passed.

Number of decimal digits

You can specify how many decimal digits after the decimal point are to be carried in a
conversion from a binary type to a bcd. The number of places is an optional second
argument to the constructor bcd. For example, to convert $1000.00/7 to a bcd variable
rounded to the nearest penny, use

bcd a = bcd(1000.00/7, 2)

where 2 indicates two digits following the decimal point. Thus,

1000.00/7 = 142.85714...
bcd(1000.00/7, 2 = 142.860
bcd(1000.00/7, 1) = 142.900
bcd(1000.00/7, 0) = 143.000
bcd(1000.00/7, -1) = 140.000
bcd(1000.00/7, -2) = 100.000

The number is rounded using banker’s rounding (as specified by IEEE), which rounds
to the nearest whole number, with ties being rounded to an even digit. For example,

bcd(12.335, 2) = 12.34
bcd(12.345, 2) = 12.34
bcd(12.355, 2) = 12.36

☞☞☞☞

Chapter 13, 16-bit memory management 243

C h a p t e r

13

16-bit memory management

This chapter discusses

� What to do when you receive "Out of memory" errors.
� What memory models are: how to choose one, and why you would (or wouldn't)

want to use a particular memory model.

Running out of memory

Paradigm C++ does not generate any intermediate data structures to disk when it is
compiling (Paradigm C++ writes only .OBJ files to disk); instead it uses RAM for
intermediate data structures between passes. Because of this, you might encounter the
message “Out of memory” if there isn’t enough memory available for the compiler.

The solution to this problem is to make your functions smaller, or to split up the file that
has large functions.

Memory models

Paradigm C++ gives you five memory models, each suited for different program and
code sizes. Each memory model uses memory differently. What do you need to know to
use memory models? To answer that question, you need to take a look at the computer
system you’re working on. Its central processing unit (CPU) is a microprocessor
belonging to the Intel iAPx86 family; an 80286, 80386, 80486, or Pentium. For now,
we’ll just refer to it as an 8086.

See page 13-249 for a summary of each memory model.

The 8086 registers

The following figure shows some of the registers found in the 8086 processor. There are
other registers—because they can’t be accessed directly, they aren’t shown here.

☞☞☞☞

Figure 13-1
8086 registers
Paradigm C++ User's Guide244

General-purpose registers
The general-purpose registers are the registers used most often to hold and manipulate
data. Each has some special functions that only it can do. For example,

� Some math operations can only be done using AX.
� BX can be used as an index register.
� CX is used by LOOP and some string instructions.
� DX is implicitly used for some math operations.

But there are many operations that all these registers can do; in many cases, you can
freely exchange one for another.

Chapter 13, 16-bit memory management 245

Segment registers
The segment registers hold the starting address of each of the four segments. As
described in the next section, the 16-bit value in a segment register is shifted left 4 bits
(multiplied by 16) to get the true 20-bit address of that segment.

Special-purpose registers
The 8086 also has some special-purpose registers:

� The SI and DI registers can do many of the things the general-purpose registers can,
plus they are used as index registers. They’re also used by Paradigm C++ for
register variables.

� The SP register points to the current top-of-stack and is an offset into the stack
segment.

� The BP register is a secondary stack pointer, usually used to index into the stack in
order to retrieve arguments or automatic variables.

Paradigm C++ functions use the base pointer (BP) register as a base address for
arguments and automatic variables. Parameters have positive offsets from BP, which
vary depending on the memory model. BP points to the saved previous BP value if there
is a stack frame. Functions that have no arguments will not use or save BP if the
Standard Stack Frame option is Off.

Automatic variables are given negative offsets from BP. The offsets depend on how
much space has already been assigned to local variables.

The flags register
The 16-bit flags register contains all pertinent information about the state of the 8086
and the results of recent instructions.

Flags register of 80x86 processorsFigure 13-2
Paradigm C++ User's Guide246

For example, if you wanted to know whether a subtraction produced a zero result, you
would check the zero flag (the Z bit in the flags register) immediately after the
instruction; if it were set, you would know the result was zero. Other flags, such as the
carry and overflow flags, similarly report the results of arithmetic and logical
operations.

Other flags control the 8086 operation modes. The direction flag controls the direction
in which the string instructions move, and the interrupt flag controls whether external
hardware, such as a keyboard or modem, is allowed to halt the current code temporarily
so that urgent needs can be serviced. The trap flag is used only by software that debugs
other software.

The flags register isn’t usually modified or read directly. Instead, the flags register is
generally controlled through special assembler instructions (such as CLD, STI, and
CMC) and through arithmetic and logical instructions that modify certain flags.
Likewise, the contents of certain bits of the flags register affect the operation of
instructions such as JZ, RCR, and MOVSB. The flags register is not really used as a
storage location, but rather holds the status and control data for the 8086.

Memory segmentation

The Intel 8086 microprocessor has a segmented memory architecture. It has a total
address space of 1 MB, but is designed to directly address only 64K of memory at a
time. A 64K chunk of memory is known as a segment; hence the phrase “segmented
memory architecture."

Chapter 13, 16-bit memory management 247

� The 8086 keeps track of four different segments: code, data, stack, and extra. The
code segment is where the machine instructions are; the data segment is where
information is; the stack is, of course, the stack; and the extra segment is also used
for extra data.

� The 8086 has four 16-bit segment registers (one for each segment) named CS, DS,
SS, and ES; these point to the code, data, stack, and extra segments, respectively.

� A segment can be located anywhere in memory. In real-mode it can be located
almost anywhere. For reasons that will become clear as you read on, a segment must
start on an address that is evenly divisible by 16 (in decimal).

Address calculation
For real-mode applications, a complete address on the 8086 is composed of two 16-bit
values: the segment address and the offset. Suppose the data segment address—the
value in the DS register—is 2F84 (base 16), and you want to calculate the actual
address of some data that has an offset of 0532 (base 16) from the start of the data
segment: how is that done?

Address calculation is done as follows: Shift the value of the segment register 4 bits to
the left (equivalent to one hex digit), then add in the offset.

The resulting 20-bit value is the actual address of the data, as illustrated here:

DS register (shifted): 0010 1111 1000 0100 0000 = 2F840
Offset: 0000 0101 0011 0010 = 00532
______________________ __________________________________
address: 0010 1111 1101 0111 0010 = 2FD72

A chunk of 16 bytes is known as a paragraph, so you could say that a segment always
starts on a paragraph boundary.

The starting address of a segment is always a 20-bit number, but a segment register only
holds 16 bits—so the bottom 4 bits are always assumed to be all zeros. This means
segments can only start every 16 bytes through memory, at an address where the last 4
bits (or last hex digit) are zero. So, if the DS register is holding a value of 2F84, then the
data segment actually starts at address 2F840.

The standard notation for an address takes the form segment:offset; for example, the
previous address would be written as 2F84:0532. Note that since offsets can overlap, a
given segment:offset pair is not unique; the following addresses all refer to the same
memory location:

0000:0123
0002:0103
0008:00A3
0010:0023
0012:0003

Segments can overlap (but don’t have to). For example, all four segments could start at
the same address, which means that your entire program would take up no more than
64K—but that’s all the space you’d have for your code, your data, and your stack.

Pointers

Although you can declare a pointer or function to be a specific type regardless of the
model used, by default the type of memory model you choose determines the default
type of pointers used for code and data. There are four types of pointers: near (16 bits),
far (32 bits), huge (also 32 bits), and segment (16 bits).

☞☞☞☞

Paradigm C++ User's Guide248

Near pointers
A near pointer (16-bits) relies on one of the segment registers to finish calculating its
address; for example, a pointer to a function would add its 16-bit value to the left-
shifted contents of the code segment (CS) register. In a similar fashion, a near data
pointer contains an offset to the data segment (DS) register. Near pointers are easy to
manipulate, since any arithmetic (such as addition) can be done without worrying about
the segment.

Far pointers
A far pointer (32-bits) contains not only the offset within the segment, but also the
segment address (as another 16-bit value), which is then left-shifted and added to the
offset. By using far pointers, you can have multiple code segments; this, in turn, allows
you to have programs larger than 64K. You can also address more than 64K of data.

When you use far pointers for data, you need to be aware of some potential problems in
pointer manipulation. As explained in the section on address calculation, you can have
many different segment:offset pairs refer to the same address. For example, the far
pointers 0000:0120, 0010:0020, and 0012:0000 all resolve to the same 20-bit address.
However, if you had three different far pointer variables—a, b, and c—containing those
three values respectively, then all the following expressions would be false:

if (a == b) · · ·
if (b == c) · · ·
if (a == c) · · ·

A related problem occurs when you want to compare far pointers using the >, >=, <,
and <= operators. In those cases, only the offset (as an unsigned) is used for
comparison purposes; given that a, b, and c still have the values previously listed, the
following expressions would all be true:

if (a > b) · · ·
if (b > c) · · ·
if (a > c) · · ·

The equals (= =) and not-equal (!=) operators use the 32-bit value as an unsigned long
(not as the full memory address). The comparison operators (<=, >=, <, and >) use just
the offset.

The = = and != operators need all 32 bits, so the computer can compare to the NULL
pointer (0000:0000). If you used only the offset value for equality checking, any pointer
with 0000 offset would be equal to the NULL pointer, which is not what you want.

If you add values to a far pointer, only the offset is changed. If you add enough to cause
the offset to exceed FFFF (its maximum possible value), the pointer just wraps around
back to the beginning of the segment. For example, if you add 1 to 5031:FFFF, the
result would be 5031:0000 (not 6031:0000). Likewise, if you subtract 1 from
5031:0000, you would get 5031:FFFF (not 5030:000F).

If you want to do pointer comparisons, it’s safest to use either near pointers—which all
use the same segment address—or huge pointers, described next.

Huge pointers
Huge pointers are also 32 bits long. Like far pointers, they contain both a segment
address and an offset. Unlike far pointers, they are normalized to avoid the problems
associated with far pointers.

☞☞☞☞

Chapter 13, 16-bit memory management 249

A normalized pointer is a 32-bit pointer that has as much of its value in the segment
address as possible. Since a segment can start every 16 bytes (10 in base 16), this means
that the offset will only have a value from 0 to 15 (0 to F in base 16).

To normalize a pointer, convert it to its 20-bit address, then use the right 4 bits for your
offset and the left 16 bits for your segment address. For example, given the pointer
2F84:0532, you would convert that to the absolute address 2FD72, which you would
then normalize to 2FD7:0002. Here are a few more pointers with their normalized
equivalents:

0000:0123 0012:0003
0040:0056 0045:0006
500D:9407 594D:0007
7418:D03F 811B:000F

There are three reasons why it is important to always keep huge pointers normalized:

1. For any given memory address there is only one possible huge address
(segment:offset) pair. That means that the = = and != operators return correct
answers for any huge pointers.

2. in addition, the >, >=, <, and <= operators are all used on the full 32-bit value for
huge pointers. Normalization guarantees that the results of these comparisons will
also be correct.

3. Finally, because of normalization, the offset in a huge pointer automatically wraps
around every 16 values, but—unlike far pointers—the segment is adjusted as well.
For example, if you were to increment 811B:000F, the result would be 811C:0000;
likewise, if you decrement 811C:0000, you get 811B:000F. It is this aspect of huge
pointers that allows you to manipulate data structures greater than 64K in size. This
ensures that, for example, if you have a huge array of structs that is larger than
64K, indexing into the array and selecting a struct field will always work with
structs of any size.

There is a price for using huge pointers: additional overhead. Huge pointer arithmetic is
done with calls to special subroutines. Because of this, huge pointer arithmetic is
significantly slower than that of far or near pointers.

The five memory models

Paradigm C++ gives you five memory models for 16-bit real address mode programs:
small, medium, compact, large, and huge. Your program requirements determine which
one you pick. Here’s a brief summary of each:

� Small. The code and data segments are different and don’t overlap, so you have
64K of code and 64K of data and stack. Near pointers are always used. This is a
good size for average applications.

� Medium. Far pointers are used for code, but not for data. As a result, data plus stack
are limited to 64K, but code can occupy up to 1 MB. This model is best for large
programs without much data in memory.

� Compact. The inverse of medium: Far pointers are used for data, but not for code.
Code is then limited to 64K, while data has a 1 MB range. This model is best if code
is small but needs to address a lot of data.

� Large. Far pointers are used for both code and data, giving both a 1 MB range.
Large and huge are needed only for very large applications.

Paradigm C++ User's Guide250

� Huge. Far pointers are used for both code and data. Paradigm C++ normally limits
the size of all static data to 64K; the huge memory model sets aside that limit,
allowing data to occupy more than 64K.

The following figures show how memory in the 8086 is apportioned for the Paradigm
C++ memory models. To select these memory models, you can either use menu
selections from the IDE or you can type options invoking the Paradigm C++ command-
line compiler.

Figure 13-3
Small model

memory
segmentation

Chapter 13

Figure 13-4
Medium model

memory
segmentation
, 16-bit memory management 251

Paradigm C++ User's Guide252

Figure 13-5
Compact model

memory
segmentation

Chapter 13, 16-bit memory management 253

Figure 13-6
Large model

memory
segmentation

Paradigm C++ User's Guide254

The following table summarizes the different models and how they compare to one
another. The models are often grouped according to whether their code or data models
are small (64K) or large (16 MB); these groups correspond to the rows and columns in
the table.

Data size Code size = 64K Code size = 16MB

64K Small (no overlap; total size = 128K) Medium (small data, large code)

16 MB Compact (large data, small code) Large (large data, code)

Huge (same as large but static data > 64K)

The small and compact models are small code models because, by default, code
pointers are near; likewise, compact, large, and huge are large data models because, by
default, data pointers are far.

When you compile a module (a given source file with some number of routines in it),
the resulting code for that module cannot be greater than 64K, since it must all fit inside

Figure 13-7
Huge model

memory
segmentation

Table 13-1
Comparison of

models

Chapter 13, 16-bit memory management 255

of one code segment. This is true even if you’re using one of the larger code models
(medium, large, or huge). If your module is too big to fit into one (64K) code segment,
you must break it up into different source code files, compile each file separately, then
link them together. Similarly, even though the huge model permits static data to total
more than 64K, it still must be less than 64K in each module.

Mixed-model programming: Addressing modifiers

Paradigm C++ introduces eight new keywords not found in standard ANSI C. These
keywords are _ _near, _ _far, _ _huge, _ _cs, _ _ds, _ _es, _ _ss, and _ _seg. These
keywords can be used as modifiers to pointers (and in some cases, to functions), with
certain limitations and warnings.

In Paradigm C++, you can modify the declarations of pointers, objects, and functions
with the keywords _ _near, _ _far, or _ _huge. The _ _near, _ _far, and _ _huge data
pointers are described in “Pointers,” page 13-247. You can declare far objects using the
_ _far keyword. _ _near functions are invoked with near calls and exit with near
returns. Similarly, _ _far functions are called _ _far and return far values. _ _huge
functions are like _ _far functions, except that _ _huge functions set DS to a new value,
and _ _far functions do not.

There are also four special _ _near data pointers: _ _cs, _ _ds, _ _es, and _ _ss. These
are 16-bit pointers that are specifically associated with the corresponding segment
register. For example, if you were to declare a pointer to be

char _ss *p;

Then p would contain a 16-bit offset into the stack segment.

Functions and pointers within a given program default to near or far, depending on the
memory model you select. If the function or pointer is near, it is automatically
associated with either the CS or DS register.

The following table shows how this works. Note that the size of the pointer corresponds
to whether it is working within a 64K memory limit (near, within a segment) or inside
the general 1 MB memory space (far, has its own segment address).

Memory model Function pointers Data pointers

Small near, _cs near, _ds

Medium far near, _ds

Compact near, _cs far

Large far far

Huge far far

Segment pointers

Use _ _seg in segment pointer type declarators. The resulting pointers are 16-bit
segment pointers. The syntax for _ _seg is:

datatype _seg *identifier;

For example,

int _seg *name;

Any indirection through identifier has an assumed offset of 0. In arithmetic involving
segment pointers the following rules hold true:

Table 13-2
Defaults for

functions and
pointers

Paradigm C++ User's Guide256

1. You can’t use the ++, - -, +=, or -= operators with segment pointers.
2. You cannot subtract one segment pointer from another.
3. When adding a near pointer to a segment pointer, the result is a far pointer that is

formed by using the segment from the segment pointer and the offset from the near
pointer. Therefore, the two pointers must either point to the same type, or one must
be a pointer to void. There is no multiplication of the offset regardless of the type
pointed to.

4. When a segment pointer is used in an indirection expression, it is also implicitly
converted to a far pointer.

5. When adding or subtracting an integer operand to or from a segment pointer, the
result is a far pointer, with the segment taken from the segment pointer and the
offset found by multiplying the size of the object pointed to by the integer operand.
The arithmetic is performed as if the integer were added to or subtracted from the
far pointer.

6. Segment pointers can be assigned, initialized, passed into and out of functions,
compared and so forth. (Segment pointers are compared as if their values were
unsigned integers). In other words, other than the above restrictions, they are
treated exactly like any other pointer.

Declaring far objects

You can declare far objects in Paradigm C++. For example,

int far x = 5;
int far z;
extern int far y = 4;
static long j;

The command-line compiler options –zE, –zF, and –zH (which can also be set using
#pragma option) affect the far segment name, class, and group, respectively. When
you use #pragma option, you can make them apply to any ensuing far object
declarations. Thus you could use the following sequence to create a far object in a
specific segment:

#pragma option -zEmysegment -zHmygroup -zFmyclass
int far x;
#pragma option -zE* -zH* -zF*

This will put x in segment MYSEGMENT ‘MYCLASS’ in the group ‘MYGROUP’,
then reset all of the far object items to the default values. Note that by using these
options, several far objects can be forced into a single segment:

#pragma option -zEcombined -zFmyclass
int far x;
double far y;
#pragma option -zE* -zF*

Both x and y will appear in the segment COMBINED ‘MYCLASS’ with no group.

Declaring functions to be near or far

On occasion, you’ll want (or need) to override the default function type of your memory
model.

For example, suppose you’re using the large memory model, but you have a recursive
(self-calling) function in your program, like this:

Chapter 13, 16-bit memory management 257

double power(double x,int exp) {
if (exp <= 0)

return(1);
else

return(x * power(x, exp-1));
}

Every time power calls itself, it has to do a far call, which uses more stack space and
clock cycles. By declaring power as _ _near, you eliminate some of the overhead by
forcing all calls to that function to be near:

double _ _near power(double x,int exp)

This guarantees that power is callable only within the code segment in which it was
compiled, and that all calls to it are near calls.

This means that if you’re using a large code model (medium, large, or huge), you can
only call power from within the module where it is defined. Other modules have their
own code segment and thus cannot call _ _near functions in different modules.
Furthermore, a near function must be either defined or declared before the first time it is
used, or the compiler won’t know it needs to generate a near call.

Conversely, declaring a function to be far means that a far return is generated. In the
small code models, the far function must be declared or defined before its first use to
ensure it is invoked with a far call.

Look back at the power example at the beginning of this section. It is wise to also
declare power as static, since it should be called only from within the current module.
That way, being a static, its name will not be available to any functions outside the
module.

Declaring pointers to be near, far, or huge

You’ve seen why you might want to declare functions to be of a different model than
the rest of the program. For the same reasons given in the preceding section, you might
want to modify pointer declarations: either to avoid unnecessary overhead (declaring
_ _near when the default would be _ _far) or to reference something outside of the
default segment (declaring _ _far or _ _huge when the default would be _ _near).

There are, of course, potential pitfalls in declaring functions and pointers to be of non-
default types. For example, say you have the following small model program:

void myputs(s) {
char *s;
int i;
for (i = 0; s[i] != 0; i++) putc(s[i]);
}

main() {
char near *mystr;

mystr = "Hello, world\n"
myputs(mystr);
}

This program works fine. In fact, the _ _near declaration on mystr is redundant, since
all pointers, both code and data, will be near.

But what if you recompile this program using the compact (or large or huge) memory
model? The pointer mystr in main is still near (it’s still a 16-bit pointer). However, the
pointer s in myputs is now far, because that’s the default. This means that myputs will

Paradigm C++ User's Guide258

pull two words out of the stack in an effort to create a far pointer, and the address it
ends up with will certainly not be that of mystr.

How do you avoid this problem? If you’re going to explicitly declare pointers to be of
type _ _far or _ _near, be sure to use function prototypes for any functions that might
use them. The solution is to define myputs in ANSI C style, like this:

void myputs(char *s) {
/* body of myputs */
}

Now when Paradigm C++ compiles your program, it knows that myputs expects a
pointer to char; and since you are compiling under the large model, it knows that the
pointer must be _ _far. Because of that, Paradigm C++ will push the data segment (DS)
register onto the stack along with the 16-bit value of mystr, forming a far pointer.

How about the reverse case: arguments to myputs declared as _ _far and compiled with
a small data model? Again, without the function prototype, you will have problems,
because main will push both the offset and the segment address onto the stack, but
myputs will expect only the offset. With the prototype-style function definitions,
though, main will only push the offset onto the stack.

Pointing to a given segment:offset address
You can make a far pointer point to a given memory location (a specific segment:offset
address). You can do this with the macro MK_FP, which takes a segment and an offset
and returns a far pointer. For example,

MK_FP(segment_value, offset_value)

Given a _ _far pointer, fp, you can get the segment component with FP_SEG(fp) and
the offset component with FP_OFF(fp).

Using library files

Paradigm C++ offers a version of the standard library routines for each of the five
memory models. Paradigm C++ is smart enough to link in the appropriate libraries in
the proper order, depending on which model you’ve selected. However, if you’re using
the Paradigm C++ linker, PLINK, directly (as a stand-alone linker), you need to specify
which libraries to use. See "Using PLINK" in the online Help index for instructions on
how to do this.

Linking mixed modules

Suppose you compiled one module using the small memory model and another module
using the large model, then wanted to link them together. This would present some
problems, but they can be solved.

The files would link together fine, but the problems you would encounter would be
similar to those described in the section, “Declaring functions to be near or far,” page
13-256. If a function in the small module called a function in the large module, it would
do so with a near call, which would probably be disastrous. Furthermore, you could face
the same problems with pointers as described in “Declaring pointers to be near, far, or
huge,” page 13-257, since a function in the small module would expect to pass and
receive _ _near pointers, and a function in the large module would expect _ _far
pointers.

The solution, again, is to use function prototypes. Suppose that you put myputs into its
own module and compile it with the large memory model. Then create a header file

☞☞☞☞

☞☞☞☞

Chapter 13, 16-bit memory management 259

called myputs.h (or some other name with a .h extension), which would have the
following function prototype in it:

void far myputs(char far *s);

Now, put main into its own module (called MYMAIN.C), and set things up like this:

#include <stdio.h>
#include "myputs.h"

main() {
char near *mystr;

mystr = "Hello, world\n";
myputs(mystr);
}

When you compile this program, Paradigm C++ reads in the function prototype from
myputs.h and sees that it is a _ _far function that expects a _ _far pointer. Therefore, it
generates the proper calling code, even if it’s compiled using the small memory model.

What if, on top of all this, you need to link in library routines? Your best bet is to use
one of the large model libraries and declare everything to be _ _far. To do this, make a
copy of each header file you would normally include (such as stdio.h), and rename the
copy to something appropriate (such as fstdio.h).

Then edit each function prototype in the copy so that it is explicitly _ _far, like this:

int far cdecl printf(char far * format, ...);

That way, not only will _ _far calls be made to the routines, but the pointers passed will
also be _ _far pointers. Modify your program so that it includes the new header file:

#include <fstdio.h>

void main() {
char near *mystr;
mystr = "Hello, world\n";
printf(mystr);

}

Compile your program with the command-line compiler PCC then link it with PLINK,
specifying a large model library, such as CL.LIB. Mixing models is tricky, but it can be
done; just be prepared for some difficult bugs if you do things wrong.

Paradigm C++ User's Guide260

Chapter 14

C h a p t e r

14

Using iostreams classes

Paradigm provides a full implementation of the C++ input and output classes,
commonly known as iostreams. With the arrival of C++ and object-oriented design,
input and output operations became encapsulated in a series of classes. Each iostreams
class encapsulates some form of input, output, or input and output from low-level
character transfer to higher-level, file-oriented input/output operations.

Stream input/output in C++ (commonly referred to as iostreams, or just streams)
provides all the functionality of the stdio library in ANSI C and much more. Iostreams
are used to convert typed objects into readable text, and vice versa. Streams can also
read and write binary data. The C++ language lets you define or overload I/O functions
and operators that are then called automatically for corresponding user-defined types.

What is a stream?

A stream is an abstraction referring to any flow of data from a source (or producer) to a
sink (or consumer). We also use the synonyms extracting, getting, and fetching when
speaking of inputting characters from a source; and inserting, putting, or storing when
speaking of outputting characters to a sink. Classes are provided that support console
output (constrea.h), memory buffers (iostream.h), files (fstream.h), and strings
(strstrea.h) as sources or sinks (or both).

The iostream library

The iostream library has two parallel families of classes: those derived from streambuf,
and those derived from ios. Both are low-level classes, each doing a different set of
jobs. All stream classes have at least one of these two classes as a base class. Access
from ios-based classes to streambuf-based classes is through a pointer.

The streambuf class

The streambuf class provides an interface to memory and physical devices. streambuf
provides underlying methods for buffering and handling streams when little or no
formatting is required. The member functions of the streambuf family of classes are
used by the ios-based classes. You can also derive classes from streambuf for your own
functions and libraries. The buffering classes conbuf, filebuf, and strstreambuf are
derived from streambuf.

Figure 14-1
Class streambuf

and its dervied
classes
, Using iostreams classes 261

Paradigm C++ User's Guide262

The ios class

The class ios (and hence any of its derived classes) contains a pointer to a streambuf. It
performs formatted I/O with error-checking using a streambuf.

An inheritance diagram for all the ios family of classes is found in Figure 14-2, page
14-263. For example, the ifstream class is derived from the istream and fstreambase
classes, and istrstream is derived from istream and strstreambase. This diagram is not a
simple hierarchy because of the generous use of multiple inheritance. With multiple
inheritance, a single class can inherit from more than one base class. (The C++ language
provides for virtual inheritance to avoid multiple declarations.) This means, for
example, that all the members (data and functions) of iostream, istream, ostream,
fstreambase, and ios are part of objects of the fstream class. All classes in the ios-based
tree use a streambuf (or a filebuf or strstreambuf, which are special cases of a
streambuf) as its source and/or sink.

C++ programs start with four predefined open streams, declared as objects of
withassign classes as follows:

extern istream_withassign cin; // Corresponds to stdin;
file descriptor 0.

extern ostream_withassign cout; // Corresponds to stdout;
file descriptor 1.

extern ostream_withassign cerr; // Corresponds to stderr;
file descriptor 2.

extern ostream_withassign clog; // A buffered cerr;
file descriptor 2.

Class ios and its derived classesFigure 14-2
Chapter 14, Using iostreams classes 263

By accepted practice, the arrows point from the derived class to the base class.

Stream output

Stream output is accomplished with the insertion (or put to) operator, <<. The standard
left shift operator, <<, is overloaded for output operations. Its left operand is an object
of type ostream. Its right operand is any type for which stream output has been defined
(that is, fundamental types or any types you have overloaded it for). For example,

cout << "Hello!\n";

writes the string "Hello!" to cout (the standard output stream, normally your screen)
followed by a new line.

The << operator associates from left to right and returns a reference to the ostream
object it is invoked for. This allows several insertions to be cascaded as follows:

int i = 8;
double d = 2.34;
cout << "i = " << i << ", d = " << d << "\n";

This will write the following to standard output:
i = 8, d = 2.34

Paradigm C++ User's Guide264

Fundamental types

The fundamental data types directly supported are char, short, int, long, char* (treated
as a string), float, double, long double, and void*. Integral types are formatted
according to the default rules for printf (unless you've changed these rules by setting
various ios flags). For example, the following two output statements give the same
result:

int i;
long l;
cout << i << " " << l;
printf("%d %ld", i, l);

The pointer (void *) inserter is used to display pointer addresses:

int i;
cout << &i; // display pointer address in hex

For more information, read the description of "ostream" in the online Help Book Shelf
index. The Book Shelf index can be accessed by choosing Help|Keyboard and clicking
the Book Shelf menu tab.

I/O formatting

Formatting for both input and output is determined by various format state flags
contained in the class ios. The flags are read and set with the flags, setf, and unsetf
member functions.

Output formatting can also be affected by the use of the fill, width, and precision
member functions of class ios.

The format flags are detailed in the description of "ios class" in the online Help Book
Shelf index. The Book Shelf index can be accessed by choosing Help|Keyboard and
clicking the Book Shelf menu tab.

Manipulators

A simple way to change some of the format variables is to use a special function-like
operator called a manipulator. Manipulators take a stream reference as an argument and
return a reference to the same stream. You can embed manipulators in a chain of
insertions (or extractions) to alter stream states as a side effect without actually
performing any insertions (or extractions). Parameterized manipulators must be called
for each stream operation. For example,

#include <iostream.h>
#include <iomanip.h> // Required for parameterized manipulators.

int main(void) {
int i = 6789, j = 1234, k = 10;

cout << setw(6) << i << j << i << k << j;
cout << "\n";
cout << setw(6) << i << setw(6) << j << setw(6) << k;
return(0);
}

produces this output:

678912346789101234
6789 1234 10

☞☞☞☞

☞☞☞☞

Chapter 14, Using iostreams classes 265

setw is a parameterized manipulator declared in iomanip.h. Other parameterized
manipulators, setbase, setfill, setprecision, setiosflags and resetiosflags, work in the
same way. To make use of these, your program must include iomanip.h. You can write
your own manipulators without parameters:

#include <iostream.h>

// Tab and prefix the output with a dollar sign.
ostream& money(ostream& output) {
return output << "\t$";
}

int main(void) {
float owed = 1.35, earned = 23.1;
cout << money << owed << money << earned;
return(0);
}

produces the following output:

$1.35 $23.1

The non-parameterized manipulators dec, hex, and oct (declared in iostream.h) take no
arguments and simply change the conversion base (and leave it changed):

int i = 36;
cout << dec << i << " " << hex << i << " " << oct << i << endl;
cout << dec; // Must reset to use decimal base.
// displays 36 24 44

Manipulator Action

dec Set decimal conversion base format flag.

hex Set hexadecimal conversion base format flag.

oct Set octal conversion base format flag.

ws Extract whitespace characters.

endl Insert newline and flush stream.

ends Insert terminal null in string.

flush Flush an ostream.

setbase(int n) Set conversion base format to base n (0, 8, 10, or 16). 0 means the default:
decimal on output, ANSI C rules for literal integers on input.

resetiosflags(long f) Clear the format bits specified by f.

setiosflags(long f) Set the format bits specified by f.

setfill(int c) Set the fill character to c.

setprecision(int n) Set the floating-point precision to n.

setw(int n) Set field width to n.

The manipulator endl inserts a newline character and flushes the stream. You can also
flush an ostream at any time with

ostream << flush;

Filling and padding

The fill character and the direction of the padding depend on the setting of the fill
character and the left, right, and internal flags.

The default fill character is a space. You can vary this by using the function fill:

Table 14-1
Stream

manipulators

Paradigm C++ User's Guide266

int i = 123;
cout.fill('*');
cout.width(6);
cout << i; // display ***123

The default direction of padding gives right-alignment (pad on the left). You can vary
these defaults (and other format flags) with the functions setf and unsetf:

int i = 56;
.
.
.

cout.width(6);
cout.fill('#');
cout.setf(ios::left,ios::adjustfield);
cout << i; // display 56####

The second argument, ios::adjustfield, tells setf which bits to set. The first argument,
ios::left, tells setf what to set those bits to. Alternatively, you can use the manipulators
setfill, setiosfags, and resetiosflags to modify the fill character and padding mode. See
"ios:adjustfield" in the online Help Book Shelf index, for a list of masks used by setf.
The Book Shelf index can be accessed by choosing Help|Keyboard and clicking the
Book Shelf menu tab.

Stream input

Stream input is similar to output but uses the overloaded right shift operator, >>, known
as the extraction (get from) operator or extractor. The left operand of >> is an object of
type class istream. As with output, the right operand can be of any type for which
stream input has been defined.

By default, >> skips whitespace (as defined by the isspace function in ctype.h), then
reads in characters appropriate to the type of the input object. Whitespace skipping is
controlled by the ios::skipws flag in the format state's enumeration. The skipws flag is
normally set to give whitespace skipping. Clearing this flag (with setf, for example)
turns off whitespace skipping. There is also a special "sink" manipulator, ws, that lets
you discard whitespace.

Consider the following example:

int i;
double d;
cin >> i >> d;

When the last line is executed, the program skips any leading whitespace. The integer
value (i) is then read. Any whitespace following the integer is ignored. Finally, the
floating-point value (d) is read.

For type char (signed or unsigned), the effect of the >> operator is to skip whitespace
and store the next (non-whitespace) character. If you need to read the next character,
whether it is whitespace or not, you can use on of the get member functions. See the
discussion of "istream" in online Help Book Shelf index. The Book Shelf index can be
accessed by choosing Help|Keyboard and clicking the Book Shelf menu tab.

For type char* (treated as a string), the effect of the >> operator is to skip whitespace
and store the next (non-whitespace) characters until another whitespace character is
found. A final null character is then appended. Care is needed to avoid "overflowing" a
string. You can alter the default width of zero (meaning no limit) using width as
follows:

☞☞☞☞

☞☞☞☞

Chapter 14, Using iostreams classes 267

char array[SIZE];
cin.width(sizeof(array));
cin >> array; // Avoids overflow.

For all input of fundamental types, if only whitespace is encountered, nothing is stored
in the target, and the istream state is set to fail. The target will retain its previous value;
if it was uninitialized, it remains uninitialized.

I/O of user-defined types

To input or output your own defined types, you must overload the extraction and
insertion operators. Here is an example:

#include <iostream.h>

struct info {
char *name;
double val;
char *units;
};

// You can overload << for output as follows:
ostream& operator << (ostream& s, info& m) {
s << m.name << " " << m.val << " " << m.units;
return s;
};

// You can overload >> for input as follows:
istream& operator >> (istream& s, info& m) {
s >> m.name >> m.val >> m.units;
return s;
};

int main(void) {
info x;
x.name = new char[15];
x.units = new char[10];

cout << "\nInput name, value and units:";
cin >> x;
cout << "\nMy input:" << x;
return(0);
}

Simple file I/O

The class ofstream inherits the insertion operations from ostream, while ifstream
inherits the extraction operations from istream. The file-stream classes also provide
constructors and member functions for creating files and handling file I/O. You must
include fstream.h in all programs using these classes.

Consider the following example that copies the file FILE.IN to the file FILE.OUT:

#include <fstream.h>

int main(void) {
char ch;
ifstream f1("FILE.IN");
ofstream f2("FILE.OUT");

Paradigm C++ User's Guide268

if (!f1) cerr << "Cannot open FILE.IN for input";
if (!f2) cerr << "Cannot open FILE.OUT for output";
while (f2 && f1.get(ch))
f2.put(ch);

return(0);
}

Note that if the ifstream or ofstream constructors are unable to open the specified files,
the appropriate stream error state is set.

The constructors let you declare a file stream without specifying a named file. Later,
you can associate the file stream with a particular file:

ofstream ofile; // creates output file stream
.
.
.

ofile.open("payroll"); // ofile connects to file "payroll"
// do some payrolling...
ofile.close(); // close the ofile stream
ofile.open("employee"); // ofile can be reused...

By default, files are opened in text mode. This means that on input, carriage-
return/linefeed sequences are converted to the '\n' character. On output, the '\n' character
is converted to a carriage-return/linefeed sequence. These translations are not done in
binary mode. The file-opening mode is set with an optional second parameter to the
open function or in some file-stream constructors. The file opening-mode constrants can
be used alone or they can logically ORed together. See the description of "ios class" in
the online Help Book Shelf index. The Book Shelf index can be accessed by choosing
Help|Keyboard and clicking the Book Shelf menu tab.

String stream processing

The functions defined in strstrea.h support in-memory formatting, similar to sscanf and
sprintf, but much more flexible. All of the istream member functions are available for
class istrstream (input string stream). This is the same for output: ostrstream inherits
from ostream.

Given a text file with the following format:

101 191 Cedar Chest
102 1999.99 Livingroom Set

Each line can be parsed into three components: an integer ID, a floating-point price, and
a description. The output produced is

1: 101 191.00 Cedar Chest
2: 102 1999.99 Livingroom Set

Here is the program:

#include <fstream.h>
#include <strstrea.h>
#include <iomanip.h>
#include <string.h>

☞☞☞☞

Chapter 14, Using iostreams classes 269

int main(int argc, char **argv) {
int id;
float amount;
char description[41];

if (argc == 1) {
cout << "\nInput file name required.";
return (-1);
}

ifstream inf(argv[1]);

if (inf) {
char inbuf[81];
int lineno = 0;

// Want floats to print as fixed point
cout.setf(ios::fixed, ios::floatfield);

// Want floats to always have decimal point
cout.setf(ios::showpoint);

while (inf.getline(inbuf,81)) {
// 'ins' is the string stream:
istrstream ins(inbuf,strlen(inbuf));
ins >> id >> amount >> ws;
ins.getline(description,41); // Linefeed not copied.
cout << ++lineno << ": "

<< id << '\t'
<< setprecision(2) << amount << '\t'
<< description << "\n";

}
}
return(0);

}

Note the use of format flags and manipulators in this example. The calls to setf coupled
with setprecision allow floating-point numbers to be printed in a money format. The
manipulator ws skips whitespace before the description string is read.

Paradigm C++ User's Guide270

Appendix A, Errors and messages 271

A p p e n d i x

A

Errors and messages

This appendix describes the error messages that can be generated by Paradigm C++. It
begins by describing the four types of messages you can receive: fatal errors, errors,
warnings, and informational messages.

Next, it covers the different components that can generate messages: the compiler, the
MAKE utility, the linker (PLINK), the librarian (PLIB), the integrated debugger, and the
Windows Help compiler. This appendix also lists the errors that you can receive when
you run your program (run-time errors).

The remainder of the appendix lists messages in ASCII alphabetic order and provides a
description of each message that includes where the message was generated.

Message categories

Messages are displayed with the message class first, followed by the source file name and
line number where the error was detected, and finally with the text of the message itself.

The following categories of messages can occur:

Category Indicates

Fatal A problem of critical nature that prevents execution from continuing.

Error A problem that should be fixed such as a missing declaration or a type mismatch.

Warning A problem that can be overlooked.

Informational Progress such as build status.

Many of the messages appear in the Message view. For those messages, context-
sensitive help is available. Point to the message and press F1 to display the message
description.

If you are working from the command line or want to look up information on an error
message, refer to the alphabetical list of error and warning messages in "Alphabetical list
of messages" later on in this chapter. A listing is also available in the online Help Book
Shelf under "Paradigm C++ error and warnings". The Book Shelf can be accessed by
choosing Help|Keyboard and clicking the Book Shelf menu tab.

Fatal errors

Fatal errors can be generated by the compiler, the linker, and the MAKE utility. Fatal
errors cause the compilation to stop immediately; you must take appropriate action to fix
the error before you resume compiling.

If the compiler or MAKE utility issues a fatal error, no .AXE files is created. If the linker
issues a fatal error, any .AXE file that might have been created by the linker is deleted
before the linker returns.

Table A-1
Message

categories

☞☞☞☞

Paradigm C++ User's Guide272

Errors

Errors can be generated by the compiler, the linker, and the MAKE utility, and the
librarian. In addition, errors can be generated by your program at run-time.

Errors generated by the compiler indicate program syntax errors, command-line errors,
and disk or memory access errors. Compiler errors don't cause the compilation to stop -
the compiler completes the current phase of the compilation and then stops and reports
the errors encountered. The compiler attempts to find as many real errors in the source
program as possible during each phase (preprocessing, parsing, optimizing, and code-
generating).

Errors generated by the linker don't cause the linker to delete the .AXE or .MAP files.
However, you shouldn't execute any .AXE file that was linked with errors. Linker errors
are treated like fatal errors if you are compiling from the Paradigm C++ IDE.

The MAKE utility generates errors when there is a syntax or semantic error in the source
makefile. You must edit the makefile to fix these types of errors.

Run-time errors are usually caused by logic errors in your program code. If you receive a
run-time error, you must fix the error in your source code and recompile the program for
the fix to take effect.

Warnings

Warnings can be issued by the compiler , the linker, and the librarian. Warnings do not
prevent the compilation from finishing. However, they do indicate conditions that are
suspicious, even if the condition that caused the warnings is legitimate within the
language. The compiler also produces warnings if you use machine-dependent constructs
in your source files.

Informational messages

Informational messages inform you about the progress of tasks such as the status of a
build.

Message generators

The messages in this appendix include messages that can be generated by the compiler,
the MAKE utility, the linker (PLINK), the librarian, (PLIB), the Paradigm C++ IDE, and
the Windows Help compiler. Run-time errors (errors you can receive when you run your
program) are also included.

Compiler errors and warnings

Compile-time error messages indicate errors in program syntax, command-line errors, or
errors in accessing a disk or memory. When most compile-time errors occur, the
compiler completes the current phase (preprocessing, parsing, optimizing, and code-
generating) of the compilation and stops. But when fatal compile-time errors happen,
compilation stops completely. If a fatal error occurs, fix the error and recompile.

Be aware that the compiler generates messages as they are detected. Because C and C++
don't force any restrictions on placing statements on a line of text, the true cause of the
error might occur one or more lines before or after the line number specified in the error
message.

☞☞☞☞

Appendix A, Errors and messages 273

Warnings indicate that conditions that are suspicious but legitimate exist, or that
machine-dependent constructs exist in your source files. Warnings do not stop
compilation.

Warnings are issued as a result of a variety of conditions, such as:

Warning Description

ANSI violations Warn you of code that is acceptable to Paradigm C++ (because of C++ code
or Paradigm C++ extensions), but is not in the ANSI definition of C.

Frequent warnings Alert you to common programming mistakes. These warning messages point
out conditions that are not in violation of the Paradigm C++ language but can
yield the wrong result.

Less frequent warnings Alert you to less common programming mistakes. These warning messages
point out conditions that are not in violation of the Paradigm C++ language
but can yield the wrong result.

Portability warnings Alert you to possible problems with porting your code to other compilers.
These usually apply to Paradigm C++ extensions.

C++ warnings Warn you of errors you've made in your C++ code. They might be due to
obsolete items or incorrect syntax.

Run-time errors and warnings

Run-time errors occur after the program has successfully compiled and is running. Run-
time errors are usually caused by logic errors in your program code. If you receive a run-
time error, you must fix the error in your source code and recompile the program for the
fix to take effect.

Linker errors and warnings

As a rule, linker errors do not stop the linker or cause .AXE or .MAP files to be deleted.
When such errors happens, don't try to execute the .AXE file. Fix the error and relink.

A fatal link error, however, stops the linker immediately. In such a case, the .AXE file is
deleted. All Linker errors are treated as fatal errors if you are compiling from the
Paradigm C++ IDE.

Linker warnings point out conditions that you should fix. When warnings occur, .AXE
and .MAP files are still created.

Librarian errors and warnings

Librarian errors and warnings occur when there is a problem with files or extended
dictionaries, when memory runs low, or when there are problems as libraries are
accessed.

Paradigm C++ debugger messages

Paradigm C++debugger messages are generated by the integrated debugger and appear
under the Run-time tab of the Message window. Many of these messages relate to
options not set properly in the Paradigm C++ IDE screens.

Table A-2
Warning

descriptions

Paradigm C++ User's Guide274

ObjectScripting error messages

ObjectScripting error messages are messages that result from running scripts in the
Paradigm C++ IDE. They appear under the Script tab in the Message window.

Message formats

Messages are displayed with the message class first, followed by the source file name and
line number where the error was detected, and finally with the text of the message itself.

Many of the messages appear in the Message view. For those messages, context-
sensitive help is available. Point to the message and press F1 to display the message
description.

If you're working from the command line or want to look up information on an error
message, refer to the alphabetical list of error and warning messages in "Alphabetical list
of messages" later in this chapter. A listing is also available in the online Help Book Shelf
under "Paradigm C++ error and warnings". The Book Shelf can be accessed by choosing
Help|Keyboard and clicking on the Book Shelf menu tab.

Symbols in messages

Some messages include a symbol (such as a variable, file name, or module) that is taken
from your program. In the following example, 'filename' will be replaced by the file
causing the problem:

Error opening 'filename' for output

The following table describes the meaning of symbols in error and warning messages.

Symbol Meaning

address A hexadecimal number indicating the address where the error occurred

argument An argument

base The name of a base element such as a base class

class A class name

constructor The name of a constructor such as a class constructor

filename A file name (with or without extension)

function A function name

group A group name

identifier An identifier (variable name or other)

language The name of a programming language

len An actual number

macroname The name of a macro

member The name of a data member or member function

message A message string

module A module name

name Any type of name

num An actual number

operator The symbol for an operator such as ++

option An option

parameter A parameter name

path A path name

☞☞☞☞

Table A-3
Symbols in error

messages

Appendix A, Errors and messages 275

reason Reason given in message

segment A segment name

size An actual number

specifier A type specifier

symbol A symbol name

type A type name

variable A program variable

Some messages begin with a symbol name such as the following:
'filename' not found

These messages are listed alphabetically using the name of the symbol. The above
message would be filed under f.

Alphabetical list of Paradigm C++ debugger messages

Messages are listed in ASCII alphabetic order. Messages beginning with symbols come
first, then messages beginning with numbers, and then messages beginning with letters of
the alphabet. Messages that begin with symbols are alphabetized by the type of the
symbols. For example, you might receive the following error message if you incorrectly
declared your function my_func:

my_func must be declared with no parameters

Bad line number 'linenumber'
You tried to add a source breakpoint at a specific line number but you typed an invalid
line number. Use the Paradigm C++ IDE and correct the line number in the Add
Breakpoint dialog box. Breakpoints must be set on executable lines of code.

Can't convert 'string' [which evaluates to 'result'] to an address
The debugger dialog was expecting a memory address as input and it couldn't interpret
the user input as a valid address.

Can't debug during asynchronous compile
While compiling code with the Environment|Process Control|Asynchronous option set,
you tried to issue a debugger command. Because the compiler is not re-entrant and the
debugger and browser use the compiler code, you cannot debug or browse while an
asynchronous (background) compile is taking place.

Can't evaluate 'expression:' 'reason'
The expression you tried to evaluate did not return a valid value. This error will be given
any time invalid input is entered in a debugger dialog and there is no more information
about the error. Every debugger dialog uses the debugger's evaluator to validate and
interpret user input.

Can't inspect 'itemname'
You specified an invalid item for inspection.

Can't navigate to address 0
You are trying to bring up a source view on an address that evaluates to 0.

To find this error
message, look

under the
alphabetized

listing of
"function."

Paradigm C++ User's Guide276

Can't run to 'filename', line 'linenumber'
You tried to run the specified line of the specified file. Either the file does not exist or
there is no executable code associated with the line.'

Disable Group checked but no value entered
You checked the Disable Group check box, but forgot to specify a group name.

Enable Group checked but no value entered
You checked the Enable Group check box, but forgot to specify a group name.

Ensuring executable is up to date
Paradigm C++ is checking to be sure that the executable file is up to date, recompiling, if
necessary.

Error: File not specified
You forgot to specify a filename in the Run To dialog.

Error: Line not specified
You forgot to specify a line number in the Run To dialog.

Error trying to change value
You tried to change a value of an object being inspected, but the debugger was unable to
change the value.

Eval Expr checked but no value entered
You checked the Eval Expr check box, but forgot to specify an expression.

Expr True check but no value entered
You checked the Expr True check box, but forgot to provide an expression.

File 'filename' does not exist
You tried to bring up a source view on an address, and the associated file does not exist.
This problem can usually be fixed by setting the appropriate source path on the debugger
option page.

File 'filename' does not exist (trying to load it anyway...)
The debugger tried to load an executable that does not exist. Check to make sure that
the executable exists and that the path to the executable was correctly specified.

File name not specified
You tried to add a source breakpoint using the Paradigm C++ IDE, but you omitted a
file name. Enter the name of the file into which you want to insert the breakpoint in the
Add Breakpoint dialog box.

Function call terminated by unhandled exception 'value' at address 'addr'
This message is emitted when an expression you are evaluating while debugging includes
a function call that terminates with an unhandled exception. For example, if in the
debugger's evaluate dialog, you request an evaluation of the expression foo()+1 and
the execution of the function foo() causes a GP fault, this evaluation produces the
above error message.

Appendix A, Errors and messages 277

You may also see this message in the Watches window because it also displays the
results of evaluating an expression.

Group name not specified
You tried to set breakpoint options in the Breakpoint Condition/Action Options dialog
box but forgot to specify a group name.

Invalid Pass Count value entered
The Pass Count value you gave was invalid. Valid values for Pass Count are from 0 to
4294967295.

Invalid pathname for executable
The debugger was unable to find the executable you tried to load.

Invalid process id
You specified a process ID that does not match the ID of any active process.

Loading: 'programname'
The debugger is loading the specified program.

Log Expr checked but no value entered
You checked the Log Expr check box, but forgot to specify an expression.

Log Msg checked but no value entered
You checked the Log Msg check box, but forgot to specify a message.

Make failed
The make spawned by the debugger to try to bring the current target up to date failed.
Check the Build Time tab in the Message view to see the reason for the failure.

Make the modified code?
You had a process loaded in integrated debugger and then you modified the source code
for the process. You should probably build the new code instead of continuing to debug
the old executable.

No expression specified
You forgot to specify an expression in the Add Watch dialog

No file corresponds to this item
You tried to bring up a source view on an address, and there is no source file for the
address.

No file line specified
You tried to add a Source breakpoint using the Paradigm C++ IDE, but did not include
the line number. Specify the line in the file where you want the breakpoint to occur in the
Add Breakpoint dialog box.

No line corresponds to this item
You tried to bring up a source view on an address, and there is no line number for the
address.

Paradigm C++ User's Guide278

No module name specified
You tried to add a module breakpoint using the Paradigm C++ IDE, but you omitted the
module name. Specify the module name where you want to insert the breakpoint in the
Add Breakpoint dialog box.

No module specified
You tried to add an Address breakpoint using the Paradigm C++ IDE, but you omitted
the module. Specify the module where you want to insert the breakpoint in the Add
Breakpoint dialog box.

No object specified
You tried to add an Address breakpoint using the Paradigm C++ IDE, but you omitted
the object. Specify the name of the object into which you want to insert the breakpoint in
the Add Breakpoint dialog box.

No offset specified
You tried to add an Address breakpoint using the Paradigm C++ IDE, but you omitted
the offset that indicates where you want to insert the breakpoint. Specify the offset in the
Add Breakpoint dialog box.

No process selected
You pressed the Attach button on the debugger's Attach dialog when there was no
process selected in the process list.

No process to load
You left the Program Name field blank on the Load Program dialog.

No process to reset
You tried to reset a process but there was no process running.

No process to stop
You tried to pause a process but there was no process running.

No process to terminate
You tried to terminate processes but there was no process running at the time.

No type specified
You tried to add a C++ exception breakpoint using the Paradigm C++ IDE. You must
specify a type in the Add Breakpoint dialog box to set this type of breakpoint.

No watch address specified
You specified a data watch breakpoint using the Paradigm C++ IDE, but you omitted
the watch address. You need to specify both a memory address and the number of bytes
to watch.

No watch length specified
You specified a data watch breakpoint using the Paradigm C++ IDE, but you omitted
the watch length. You need to specify both a memory address and the number of bytes to
watch.

Appendix A, Errors and messages 279

Not all breakpoints were valid
You set breakpoints in your program but they were not all valid. Check the breakpoint
view to see which breakpoints were invalid.

OS exception number not specified
You tried to add an OS exception breakpoint using the Paradigm C++ IDE. You must
include an OS exception number if you want to add a breakpoint when a particular OS
exception occurs. Select one of the exceptions in the list box next to the Exception #
field or enter a user-defined exception number.

Pass Count checked but no value entered
You checked the Pass Count check box, but forgot to provide a pass count. You need to
specify a valid pass count.

Process created: 'processname'
The process specified in the message has been created.

Process 'processname' (0x%X) is already being debugged
You tried to attach to a process that is already being debugged.

Process 'processname' (0x%X) is Paradigm C++
You tried to attach to the Paradigm C++ IDE. This is not allowed. Specify another
process.

Process Stopped: 'processname'
The process specified in the message was stopped.

Process terminated: 'programname'
The specified process has been terminated.

Resetting
The process is being reset to its initial condition.

Running
The process is running.

Stopping
The process is stopping.

Terminating
The process is terminating.

The expression cannot be modified
This is an integrated debugger error. You entered an expression in the Evaluator dialog
box and clicked on Modify but the expression cannot be modified.

The expression you entered could not be evaluated
This is an integrated debugger error. The integrated debugger could not interpret the
expression you entered in the Evaluator dialog box.

Paradigm C++ User's Guide280

There is no code for 'file', line 'linenumber'
You tried to view the disassembly for the given line of source code. The specified line of
the file has no code associated with it.

There is no expression to evaluate
This is an integrated debugger error. You forgot to enter an expression in the Evaluator
dialog box.

There is no expression to evaluate, and no process is loaded
This is an integrated debugger error. You forgot to enter an expression in the Evaluator
dialog box and no program is loaded.

This operation not supported for 16 bit executables
You tried to use a command (such as Reset or Pause) in the integrated debugger while
the project was set to produce a 16-bit executable. The integrated debugger does not
support 16-bit executables except to run or terminate them.

Alphabetical list of Compiler messages

Messages are listed in ASCII alphabetic order. Messages beginning with symbols come
first, then messages beginning with numbers, and then messages beginning with letters of
the alphabet. Messages that begin with symbols are alphabetized by the type of the
symbols. For example, you might receive the following error message if you incorrectly
declared your function my_func:

my_func must be declared with no parameters

Cannot access an inactive scope
You have tried to evaluate or inspect a variable local to a function that is currently not
active. (This is an integrated debugger expression evaluation message.)

Cannot evaluate function call
The error message is issued if someone tries to explicitly construct an object or call a
virtual function.

In integrated debugger expression evaluation, calls to certain functions (including
implicit conversion functions, constructors, destructors, overloaded operators, and inline
functions) are not supported.

Cannot take address of member function 'function'
An expression takes the address of a class member function, but this member function
was not found in the program being debugged. The evaluator issues this message.

Compiler unable to allocate huge segments
The compiler is unable to allocate contiguous segments to create a huge array. If you
receive this error, please contact Paradigm for technical support.

Huge arrays of near structure/classes are not allowed
Huge arrays of near structure/classes are not allowed since they may be addressable,
declare these structures/classes as __far.

To find this error
message, look

under the
alphabetized

listing of
"function."

Appendix A, Errors and messages 281

Invalid 'expression' in scope override
The evaluator issues this message when there is an error in a scope override in an
expression you are watching or inspecting. You can specify a symbol table, a compilation
unit, a source file name, etc. as the scope of the expression, and the message will appear
whenever the compiler cannot access the symbol table, compilation unit, or whatever.

Invalid function call
A requested function call failed because the function is not available in the program, a
parameter cannot be evaluated, and so on. The evaluator issues this message.

Missing 'identifier' in scope override
The syntax of a scope override is somehow incomplete. The evaluator issues this
message.

'new' and 'delete' not supported
The integrated debugger does not support the evaluation of the new and delete
operators.

No type information
The integrated debugger has no type information for this variable. Ensure that you've
compiled the module with debug information. If it has, the module may have been
compiled by another compiler or assembler.

Not a valid expression format type
Invalid format specifier following expression in the debug evaluate or watch window. A
valid format specifier is an optional repeat value followed by a format character (c, d,
f[n], h, x, m, p, r, or s).

Overloaded function resolution not supported
In integrated debugger expression evaluation, resolution of overloaded functions or
operators is not supported, not even to take an address.

Redefinition of 'symbol' using different storage class
The symbol was defined or prototyped with one storage class and was later redefined
with a different storage class.

Repeat count needs an lvalue
The expression before the comma (,) in the Watch or Evaluate window must be an
accessible region of storage. For example, expressions like this one are not valid:

i++,10d
x = y, 10m

String literal not allowed in this context
This error message is issued by the evaluator when a string literal appears in a context
other than a function call.

The function 'function' is not available
You tried to call a function that is known to the evaluator, but which was not present in
the program being debugged for example, an inline function.

Paradigm C++ User's Guide282

Index 283

Index

#

!elif 176
!else 176
!endif 176
!error 175
!if 176
!ifdef 176
!ifndef 176
!include 177
!message 177
!undef 178
#if 120
#ifdef 120
$ENV() 68
$INHERIT 68
.autodepend 175
.EMU commands 143
.path.ext 177
.precious 177
.suffixes 178
/ (slash)

16-bit linker options 70
32-bit linker options 70
command-line options 88, 103
Directory options 66
Librarian options 68
Map options 74
Source Directories options 65
Warnings options 76

; (semi-colon) 198
_ (underscores) 47, 60

_ _cdecl 37, 47
_ _far 45, 46
_ _fastcall 37, 47
_ _fastthis 57
_ _huge 51
_ _pascal 37, 47
_ _stdcall 47
_BSS 44

-1 compiler option 41, 202
16- and 32-bit command-line options 88
16- and 32-bit compiler options 88
16-bit command-line options 90
16-bit compiler options 36, 90

calling conventions 37
Entry/Exit code 46
memory model 37

processor 41
segment names code 43
segment names data 43
segment names far data 45

16-bit linker options 70
enabling 32-bit processing 70
initializing segments 70

16-bit memory management 243
16-bit optimization 83
-2 compiler option 41
-3 compiler option 41, 48
32-bit command-line options 88, 91
32-bit compiler options 46, 88

calling convention 47
processor 48

32-bit instruction set 48
32-bit linker options 70

committed heap size 71
committed stack size 71
file alignment 71
image base address 71
image is based 72
importing by ordinal 70
linker errors 72
object alignment 72
reserved heap size 72
reserved stack size 73
verbose 73

32-bit optimization options 86
32-bit, enabling 70
32RTM.EXE 161
-4 compiler option 41, 48
-5 compiler option 41, 48
8086

processors 41
registers 243

80x86 processors 41, 48
instruction opcodes 201
registers 198

80x87 coprocessors 237
emulating 237
registers 239

87 environment variable 238
-B compiler option 201
i486 instructions 41, 48

A

.autodepend 175

Paradigm C++ User's Guide284

-A compile options 61
-a compiler options 42
Add Node command 20
Add Target dialog box 22
addresses 40, 42, 71, 72

map files 74
Advanced Options dialog box 19
-AK compiler option 61
algorithms 66
aliases 84
alignment 42

byte 42
double word 43
file 71
object 72
quad word 43
word 42

alloc.h 210
Allocate Enums As Ints option 57
allocation 56, 85
alphabetical listings

error messages and warnings 275, 280
ancestors 106
ANSI 61, 78
arguments 229

passing 37, 47, 50
arithmetic 240
arrays

project options 40, 82
asm keyword 197

nesting 198
assembler 201
assembly language 197

calling conventions 198
comments 198
directives 203
floating-point emulation 201
instructions 197
jump instructions 200, 203
new lines 197
opcodes 201
operands 197
references 198
registers 198
repeat prefixes 202
size instruction 199
statements 197

C symbols 197
string instructions 202
structures 199
syntax 197
variable offsets 199

assert 210

assert.h 210
assignment 81
-AT compiler option 61
-AU compiler option 61
autodependencies 60, 76
Automatic Far Data option 38

B

_BSS 44
-b compiler option 56
background compile 275
base addresses 71, 72
bcd, binary-coded decimals 240

converting 242
bcd.h 210
binary-coded decimals 240
Break make on option 77
Breakpoint Condition/Action options dialog box

124
breakpoints 116

adding 116, 123
conditional 117
customizing 122, 124

color 122
disabling/enabling 120, 124

groups 121
editing 127
inspecting 120
option sets 121
removing 119
resetting invalid 120
setting 115, 116, 117

conditional 116
unconditional 116

type 123
viewing 120

Breakpoints window 116, 117, 120, 122
browser 105

customizing 108
starting 105
using menu commands 105
views 105

Browser options 62
Browser Reference Information in OBJs option 62
browsing

class inspection 107
filters and letter symbols 107
global symbols 106
objects 106
references 107
symbol declaration 107
symbols 106

Index 285

Build All command 34
Build attributes option 48
Build Node command 35
building

applications 76
libraries 181

builds 35, 48, 67, 163
BUILTINS.MAK 163, 164
byte alignment 42

C

_ _cdecl 37, 47
C calling conventions 37, 47
-C compile option 62
C++ coding, inefficent 79
C++ options 49

compatibility 49
exception handling 51
general 53
member pointers 53
templates 54
virtual tables 55

calculations 59, 85
call stack 63
Call Stack window 142
calling conventions 49, 234

_ _fastthis 57
compiling options 37, 47, 57
optimizing 83
Pascal 37, 47, 50

case sensitivity 68
link 73

catch 189
C-based structured exceptions 194
character conversion macros 213
character types 49, 58
checks.h 211
child nodes 16
Class Inspection window 107
class member functions 115
classes 261

compiling options 49, 51
declarations 218
empty base classes 53

Classes command 106
code

classes 43
elimination 84
external 115
groups 43
inefficient coding 79
motion, optimizing 85

searching 105
segments 23, 37, 39, 41, 43, 46
unreachable 80

code generation 62, 74
compiler 41, 56, 60, 61
optimization 83, 84, 85

code pages 71
CODE statement 153
color customization

syntax highlighting 122
COMDEFs 38, 60
command-line compilers 149
command-line options 88, 103, 148

16- and 32-bit 88
16-bit 90
32-bit 91
by function 96
compiler 91
exception handling 193
MAKE 165
object search paths 88
PCW 103
PLIB 181
PLINK and PLINK32 149

command-line tools
running 161

comment records, purging/debugging 69
comments, nested 62
communal variables 38, 60
compact memory models 38, 40, 41
compatibility 49
Compile command 34, 35
compiler errors and warnings 272

declarations 281
evaluating expressions 280, 281
function calls 276, 280, 281
huge arrays 280
huge segments 280
lvalue 281
modules 278
symbol defines 281
watch address 278

compiler options 56
assembly 200
code generation 56
compiler output 59
debugging 62
defines 56
precompiled headers 64
source 61

compiler output options 59
autodependencies 60
generating code 60

Paradigm C++ User's Guide286

generating underscores 60
compilers 56, 149

32-bit command-line options 90, 91
command-line options 91
message options 77
project options 36, 46, 49, 56, 81
stopping 81

compile-time errors
fixing 35, 109

compiling 34, 40, 163, 220
optimizing 151
with symbol tables 110

complex numbers 240
complex.h 211
conditional breakpoints 117
configuration files 148
constant far data

compiling options 39
constants 84
constructors 49, 193
context-sensitive help 12
conversions 230, 232
converting old projects 23
copy propagation 84
coverage records 62
CPU instruction sets 41, 48
CPU window 135

Disassembly pane 136
Flags pane 141
Memory Dump pane 138
Registers pane 140
Stack pane 139

cstring.h 212
ctype.h 213
customizing the browser 108

D

_defs.h 234
-D compile option 56
-d compiler option 57
data

alignment 42
constant far 39
inspecting range 132
members 51
objects 38
segments 23, 37, 38, 39, 41, 43, 45
structures 127
value 128

DATA statement 154
date.h 213
-dc compiler option 41

debug options
environment 122
syntax highlighting 122

debugger 109
adding breakpoints 116
compile-time errors 35
conditional breakpoints 117
customizing 111
debug information 62, 74, 110
debugger options 111
evaluating expressions 133
external code 115
fixing errors 36, 127

logic 109
run-time 109

inspecting code 120, 132
messages and warnings 271, 273
modifying variables 134
optimizing 85, 87
options

pausing a program 115
program arguments 111
restarting a program 115
terminating a program 115

program execution 111
running programs 112
setting watches 128
starting a session 110
stepping 113, 142
viewing errors 36

debugging macro, assert 210
debugging options 62

browser 62
coverage records 62
line numbers 62
out-of-line inline functions 63
stack frame 63
test stack overflow 63

declarations
classes 218
errors 281

default libraries, linker options 73
defining

macros 56, 172
variables 60

dependencies 60
checking 76

derived classes 49
descendants 106
DESCRIPTION statement 154
destructors 52, 193
detailed segment maps 74
DGROUP 44

Index 287

dictionaries 69
extended 182, 183

dir.h 213
direct.h 214
directives

assembly 203
MAKE 174, 176, 178

directories 65, 88, 149
options 65

entering directory names 67
file search algorithms 66
output 67
source 65

directory names, entering 67
dirent.h 214
disable all, optimization option 87
disabling messages and warnings 78
Disassembly pane 136

SpeedMenu 137
display warnings 78, 81
DLLs 70
dos.h 215
double 234
double word alignment 43
Dump pane 138, 139

SpeedMenu 138
duplicate strings 57
duplicate symbols, linker warning 76
-dx compile option 39
dynamic mode 132
dynamic-link libraries 70

E

!elif 176
!else 176
!endif 176
!error 175
$ENV() 68
Edit window 36, 116, 117
editing code 120
EDPMI.SWP 161
embedded.h 215
EMU file commands 143
Entry/Exit code 46
enumeration types 57
Environment options

browser 108
debugger 111
project views 23

environmental parameters 220
errno.h 216
error codes 216

error messages 273
alphabetical listings 275, 280
categories 271
compiler 272
fatal errors 271
informational 272
librarian 273
linker 273
ObjectScripting 274
run-time 273
warnings 272

error-handling mechanism 187
errors 271

32-bit linker 72
C++ 80
compile-time 35
declaration syntax 62
fixing 36, 109
header file 216
linker 76
linker errors 72
logic 109
messages options 77
potenial errors 81
run-time 109
stop after… 81
viewing 36

Eval Expr 276
evaluating expressions 133
except.h 216
exception handling 222, 235

options 51
routines 52

exceptions 187
catch keyword 189
C-based structured 194
command-line options 193
compiling options 51
constructors and destructors 193
enabling 52
exception declarations 188
floating-point 239
handling 52
throwing exceptions 188
unhandled exceptions 193

excpt.h 235
execution point 112, 127
EXETYPE statement 154
expanding inline functions 52, 55, 63
explicit

casts 53
libraries 66

EXPORTS statement 155

Paradigm C++ User's Guide288

Expr True 276
expressions

duplicate 82
evaluating 133
format specifiers 133
optimizing 82, 84, 85

extended dictionaries 69, 182, 183
external code 115
external option 55
external references 55
external symbols 73

F

_ _far 45, 46
_ _fastcall 37, 47
_ _fastthis 57
-f compiler option 58
-Fa compile option 38
far

classes 45, 51
constant data 39
data compatibility 39
data segments 38, 39, 45
declaring functions 256
declaring objects 256
declaring pointers 257
Far data threshold 38, 39
initialized data groups 45
objects 45
packing segments 39
pointers 248
uninitialized data groups 45
virtual tables 39, 46

far data 38
FAR_BSS 45
FAR_BSS class 39
FAR_DATA 45
FAR_DATA class 39
fastcall parameter-passing 37, 47
fastthis calling convention 57
fatal errors 77, 271, 273
-Fb compile option 39
-Fc compiler option 60
fcntl.h 217
-Ff compile option 38, 39
-ff compiler option 58
file alignment 71
file extensions

.DLL 67, 70

.EMU commands 143

.LIB 65, 66, 68, 70, 76

.LST 69

.MAP 67

.OBJ 67, 68, 70, 74, 88, 110

.PDL 31

.ROM 110
file names 64
file search algorithms 66
file.h 217
files 148

32RTM.EXE 161
BUILTINS.MAK 164, 166
include 65
MAKE.EXE 163, 166
MAKESWAP.EXE 162
PLIB.EXE 181
PLINK.CFG 150
PLINK32.CFG 150
TOUCH.EXE 164

file-sharing 228
filling and padding 265
filters and letter symbols 107
Filters matrix 107
fixing errors 36, 109
Flags pane 141

SpeedMenu 142
flags registers 245
float 234
float.h 218
floating point

calculations 59
emulation (inline assembler) 201
I/O 237

code 238
exceptions 239
fast option 238

options 58
routines 218

-Fm compiler option 38
for statements 50
format specifiers

expressions 133
-Fp compile option 39
-fp compiler option 58
-Fs compiler option 38
fstream.h 218
function calls 83, 142, 276, 281

compiler error 280
compiling options 37, 47
errors 281

functions
class member 115
inline 52, 55, 63, 83

Index 289

G

-G compile option 87
-g compiler option 81
General linker options 73

case-sensitive link 73
debug information 74
default libraries 73
subsystem version 74

general warnings 78
Generate COMDEFs option 60
Generate coverage information in OBJs option 62
generating code 62, 74

compiler options 41, 56, 60, 61
optimization 84, 85

generating underscores
compiler options 60

generic.h 218
global

definitions 54, 55
registers 84
symbols 106
variables

project options 38, 42, 60
globals command 106
glyphs

Project Manager 16
groups 277

breakpoint 121

H

_ _huge 51
-H compile option 64
-h compiler option 40
-H"xxx" compiler option 65
-H=filename compiler option 64
-Hc compiler option 64
header files 66, 205

_defs.h 234
_nfile.h 235
_null.h 235
alloc.h 210
assert.h 210
bcd.h 210
checks.h 211
complex.h 211
cstring.h 212
ctype.h 213
date.h 213
dir.h 213
direct.h 214
dirent.h 214
dos.h 215

embedded.h 215
errno.h 216
except.h 216
excpt.h 235
fcntl.h 217
file.h 217
float.h 218
fstream.h 218
generic.h 218
io.h 219
iomanip.h 219
iostream.h 219
itimer.h 233
limits.h 220
malloc.h 220
math.h 220
mem.h 222
new.h 222
precompiled 64
process.h 222
promice.h 223
rtk32.h 223
rtkernel.h 226
setjmp.h 228
share.h 228
signal.h 228
stdarg.h 229
stddef.h 229
stdio.h 229
stdiostr.h 230
stdlib.h 230
string.h 231
strstrea.h 232
sys\type.h 232
thread.h 232
time.h 232
timer.h 233
typeinfo.h 234
values.h 234

heap 71, 72
heap size 71, 72

committed 71
reserved 72

HEAPSIZE statement 155
Help

contacting Paradigm 14
context-sensitive help 12
Help files 11
index 13
keyword searches 13
online manuals 12
SpeedMenus 13

hidden

Paradigm C++ User's Guide290

members 49
pointers 49, 51

-Hu compiler option 64
huge

arrays 40
declaring pointers 257
memory models 38, 40
pointers 248

huge arrays
compiler error 280

huge segments
compiler error 280

I

!if 176
!ifdef 176
!ifndef 176
!include 177
#if 120
#ifdef 120
$INHERIT 68
i486 instructions 48
-I compile option 65, 66
-i compiler option 61
I/O 237

exceptions 239
formatting 264
manipulators 219
of user defined types 267
routines 219, 229
simple file 267

i486 instructions 41
i586 instructions 41
Identifier length option 61
identifiers 61

Pascal 60
image base addresses 71, 72
implicit libraries 66
importing by ordinal, linker option 70
IMPORTS statement 156
include files 66, 205
induction variables 82
informational messages 271, 272
inheritance 51, 54
INI files 103
initialization 44, 80

segments 70
initialization file (PCW5.INI) 103
initialized data 44
inline

#pragma directive 200
assembly 197

functions 52, 55, 63, 83
statements 200

input 219, 261, 266
inspecting 107

breakpoints 120
code 132
data range 132
error 275
expressions 132
local variables 132

Inspector window 132
changing values 132

installation 11
instructions

Pentium 41, 48
project options 41, 48
string move 85

integral quantities ranges 220
integrated debugger 109

adding breakpoints 116
conditional breakpoints 117
customizing 111
error messages 273
errors 35, 36, 109
evaluating expressions 133
inspecting code 120, 132
messages and warnings 271
modifying variables 134
optimizing 85, 87
program execution 111
running programs 112
setting watches 128, 129
starting 111
stepping 113, 142

intrinsic functions 83
invalid breakpoints 120
invariant code 85
io.h 219
iomanip.h 219
ios class 262
iostream classes 261

ios 262
streambuf 261

iostream library 261
iostream.h 219
itimer.h 233

J

-j compiler option 81
-Jg compiler option 54
-Jgd compiler option 54
-Jgx compiler option 54

Index 291

jump optimization 85

K

-K compile option 58
-k compiler option 63
-K2 compiler option 49
Kernighan and Ritchie 61, 229

L

-L compile option 65
Language compliance option 61
large memory models 38, 40, 41
Librarian messages 273
Librarian options 68

case-sensitive library 68
comment records 69
dictionaries 69
list files 69
page size 69

libraries 66
case-sensitive 68
creating 181
default libraries 73
dynamic-link 70
managing 181
project options 65, 70, 76

library files 65, 66, 76, 258
library functions 217
LIBRARY statement 157
licensing 11
limits.h 220
line numbers 62

including 74
linker errors 72
Linker messages 273
Linker options 70

16-bit programs 70
32-bit programs 70
general 73
map files 74
warnings 76

linkers 70
16-bit command-line options 90
command-line options 96
project options 70, 73, 74, 76

linking 70
command-line syntax 149
large applications 182
mixed modules 258
optimizing 69, 150

Lint options 69
list files 69

literal strings 41, 57
local virtual tables 55
Log Expr 277
Log Msg 277
logic errors

fixing 109
longjmp 228
loops 50, 82, 85
low-level I/O routines 219
lvalue

errors 281

M

!message 177
Machine Stack pane 139

SpeedMenu 140
macros 173, 229

$INHERIT and $ENV() 67, 68
defining 56
MAKE 172, 173, 174, 178

MAKE 76, 163
command operators 171
command prefixes 170
command syntax 170
command-line options 165, 166
defaults 163, 164, 166, 173
directives 174, 176, 178
macros 172

defaults 173
defining 172
in directives 178
modifying default 174
null 178
string substitutions 173

NMAKE compatibility 166
project options 76
rules 168, 169
TOUCH 164

Make All command 34
Make Node command 35
Make options 76

autodependencies 76
Break make on 77
new node path 77

makefiles 167
response files 171

MAKESWAP 162
malloc.h 220
mangled names 39, 76
manifest constants 56
manipulators 219, 264
manuals 12

Paradigm C++ User's Guide292

map files 67, 74
linker options 74, 76

math
complex classes 240
error handlers 220
floating point 237
math.h 220

-mc compiler option 40
medium memory models 38, 40
mem.h 222
member functions 115
member pointers 53

honor precision 53
options 53
representation 53

memory 210, 222
running out of 243

Memory Dump pane 138
SpeedMenu 138

memory functions 83
memory management

16-bit 243
functions 210, 220

memory manipulation functions 222, 231
memory model 150
Memory Model options 37

compiling segments 37
constant far data 39
far data 38
far data compatibility 39
far data threshold 39
huge pointers 40
models 40
pack far segments 39
page alignment 38
stack and data segments 38
strings 41
virtual tables 39

memory models 243, 249
mixed-model programming 255

memory segmentation 246
Message window 35, 79
messages 77

disabling 78
displaying 77, 271
project options 77

Messages options 77
ANSI violations 78
display warnings 78
general 78
inefficient C++ coding 79
inefficient coding 79
obsolete C++ 80

portability 80
potential C++ errors 80
potential errors 81
stop after… errors 81
stop after… warnings 81
user-defined warnings 79

-mh compiler option 40
mixed-model programming 258
-ml compiler option 40
-mm compiler option 40
-mm! compiler option 40
model 15
module definition files 153, 160
modules 36, 46, 278

purging comment records 69
-ms compiler option 40
-ms! compiler option 40
-mt compiler option 40
multiple directories 67
multi-target projects 21

N

_nfile.h 235
_null.h 235
-N compile option 63
-n compiler option 67
name mangling 39, 49, 76
NAME statement 157
near

declaring functions 256
declaring pointers 257
pointers 248

nested comments 62
nested templates 80
New Target command 22
new.h 222
NMAKE 166
Node attributes dialog box 21
node path, Make option 77
nodes 24, 48

adding 17, 20
building 35
changing attributes 22
copying 22
default 19
deleting 20
Make Node command 35
options 21, 23, 32, 33

nonstatic data members 51
normalizing huge pointers 40
null 178
numerical types 240

Index 293

O

-OS compile option 86
-O compile option 85
-O1 compiler option 87
-O2 compiler option 87
-Oa compiler option 84
-Ob compiler option 84
object alignment options 72
object files 88, 110

project options 59, 62, 65, 67, 74, 76
searching 88

object hierarchies 106
object search paths 88
objects 38, 45

sharing 39
ObjectScripting messages 274
obsolete C++ 80
-Oc compiler option 82
-Od compiler option 87
-Oe compiler option 84
offsets 40
-Og compiler option 82
-Oi compiler option 83
-Ol compiler option 85
-Om compiler option 85
-Op compiler option 84
opcodes 201
opening projects 20
operators 81
Optimization options 81, 84

16- and 32-bit 82, 84
16-bit 83
32-bit 86
common subexpression 82
copy propagation 84
dead code elimination 84
disable all 87
general settings 87
induction variables 82
inline intrinsic functions 83
invariant code motion 85
jump optimization 85
loop optimization 85
pointer aliasing 84
project options 81
size 84
suppress loads 86

optimizing 81
debugger 85, 87
expressions 82, 84, 85
jumps 85
size 83

statements 81, 85
ordinal numbers 70, 73
-Os compiler option 87
-Ot compiler option 87
out-of-line inline functions 55, 63
output 219, 237, 261, 263

directories 67
files 67

-Ov compiler option 82
overrides 49
-Ox compiler option 87

P

#pragma directives 200
.path.ext 177
.precious 177
_ _pascal 37, 47
-p compiler option 37
-p compiler options 47
page alignment 38, 71
page size 69
Paradigm C++ IDE messages 273
Paradigm C++ Lint utility 69
Paradigm C++ messages 271
Paradigm C++ tools overview 161
Paradigm extensions 61
Paradigm optimizing compiler 46
Paradigm Systems, contacting 14
parameterized manipulators 219
parameters 37, 229

passing 47, 50
parent nodes 16
Pascal 47

calling conventions 50
identifiers 60

PASM 201
pass count 125

error 277
PCC.EXE 88
PCC32.EXE 88
PCW

command-line options 103
PCW5.INI 103
PDL files 31
Pentium instruction scheduling 86
Pentium instructions 41, 48
Pentium option 48
platform 15, 18, 52, 150, 194
PLIB 181

/C option 182
/E option 182
/P option 183

Paradigm C++ User's Guide294

command-line options 181
error messages 271
examples 184
operation list 183
project options 68
response files 183

PLIB.EXE 68
PLINK 151

command-line options 90
error messages 271
optimizing 182

PLINK and PLINK32 70
16-bit options 70
32-bit options 70
command-line options 91, 96
command-line syntax 149
general options 73
map files 74
warnings 76

PLINK.CFG 150
PLINK32.CFG 150
-po compiler option 57
pointer aliasing, optimization 84
pointers 247

compiling options 39, 40, 49, 51, 53, 84
declaring 257
far 248
huge 248
near 248
segment 255

portability 80
precision 80
precompiled headers 64, 207

cache 64
files 64
header name 64
terminating 65

preprocessing 56
Print mangled names 76
process.h 222
Processor options 41, 48

16-bit compiler 41
32-bit compiler 48
32-bit instruction set 48
alignment 42
instructions 41

project management 15
Project Manager 16

nodes 17
Project options 36

16-bit compiler 36, 37, 43, 45, 46
32-bit compiler 46, 48
build attributes 48

C++ 49
compatibility 49
exception handling 51
general options 53
member pointers 53
options 49
templates 54
virtual tables 55

command-line options 88, 103
16- and 32-bit 88
16-bit 90
32-bit 91
by function 96
compiler 91
object search paths 88

compiler 56
code generation 56
compiler output 59
debugging 62
defines 56
floating point 58
precompiled headers 64
source 61

directories 65
file search algorithms 66
names 67
output 67
source 65

librarian
case-sensitive library 68
comment records 69
dictionaries 69
list files 69
page size 69

linker 70
16-bit programs 70
32-bit programs 70
general 73
map files 74
warnings 76

Make 76
autodependencies 76
Break make on 77
new node path 77

messages 77
ANSI violation 78
display warnings 78
general warnings 78
ineffecient C++ coding 79
inefficient coding 79
obsolete C++ 80
portability 80
potential C++ errors 80, 81

Index 295

stop after… errors 81
stop after… warnings 81
user-defined warnings 79

optimization 81
16- and 32-bit 82, 84
16-bit 83
32-bit 86
common subexpression 82
copy propagation 84
dead code elimination 84
general settings 87
induction variables 82
inline intrinsic functions 83
invariant code motion 85
jump optimization 85
loop optimization 85
pointer aliasing 84
suppress loads 86

project platform 15, 18, 52, 150, 194
project tree 16

default nodes 19
navigating 17

Project View options 23
projects 15, 24, 29, 32, 163, 164

building files 34, 35, 163
compiling 35
converting 23
Make Node command 35
multi-target 21
sharing tools 31
starting with 103
viewing options 33

promice.h 223
public definitions 54, 56
public symbols 73

map files 75

Q

quad word alignment 43

R

-R compile option 62
-r compiler option 58
raise 228
-rd compiler option 58
Real address mode applications

compiling options 38, 40
records, coverage 62
redundant loads, suppressing 86
reference nodes 22
references 107

compiling options 50, 54, 55

register keyword 58
register variables 58
registers 84, 86

8086 243
flags 245
general-purpose 244
reloading 86
segment 245
special-purpose 245

Registers pane 140
SpeedMenu 140

reloading registers 86
relocatable load modules 67, 70, 149
repeat prefixes 202
reserved words 61
response files 148, 151, 183
routines

exception handling 52
-RT compiler option 52
rtk32.h 223
RTKernel

header file 233
rtkernel.h 226
RTM.EXE 162
RTTI 52
run-time errors 273

fixing 109
run-time support 222
run-time type information 52

S

.suffixes 178
_ _stdcall 47
scratch registers 199
search 230

code 105
paths 66, 88, 149

Search menu
classes 106
globals 106

SECTIONS statement 157
segment 23

compiling options 37, 38, 39, 41, 43, 45
initializing 70
map files 74
names 43, 45

code options 43
far initialized data 45
far uninitialized data 45
far virtual tables 46
initialized data 44
uninitialized data 44

Paradigm C++ User's Guide296

pointers 255
registers 245

segments and offsets 258
SEGMENTS statement 158
setjmp 228
setjmp.h 228
settings

optimization 87
share.h 228
sharing objects 39
signal 228
signal.h 228
signed character types 49
single stepping 113
size, optimizing 83, 84, 85, 86
small memory models 38, 40
sorting 230
source code 74, 105
source directories 65
source files 65, 69
Source options 61

identifier length 61
language compliance 61
nested comments 62

source pools 24
creating 24

speed
optimizing 86

speed, optimizing 82, 83, 84, 85
stack 63, 71, 73, 142

warning 76
Stack pane 139

SpeedMenu 140
stack segments 38
stack size 71, 73

committed 71
reserved 73

STACKSIZE statement 158
startup options

PCW5 103
statements

optimizing 81, 85
potential C++ errrors 80

stdarg.h 229
stddef.h 229
stdio FILE structures 230
stdio.h 229
stdiostr.h 230
stdlib.h 230
stepping 113, 142

step into 113
step over 114

stop after ... warnings 81

stop after… errors 81
stream classes 219, 230, 261
stream input 266

simple file 267
user-defined types 267

stream output 263
filling and padding 265
fundamental types 264
I/O formatting 264
manipulators 264
simple file 267
user-defined types 267

streambuf class 261
streams 229
string manipulation functions 231
string move instructions 85
string stream processing 268
string.h 231
strings 41, 57
strstrea.h 232
structured exceptions 194
STUB statement 159
Style Sheets 23, 29

attaching 31
dialog box 30
inheriting 31
overriding options 32
setting options 29
sharing 31

between projects 32
subexpressions 82, 84, 85
SUBSYSTEM statement 159
subsystem version 74
switch statements 85
symbol defines

compiler error 281
symbols

case-sensitive in library 182
duplication warning 76
in library 69
map files 75
public 73
stack warning 76
symbol declaration window 107
symbol tables 110
symbolic addresses 74
symbolic constants 56
viewing 106, 107
visible 108

syntax
MAKE 163, 168, 169, 170, 171, 172

syntax errors 35, 109
syntax highlighting 122

Index 297

sys\types.h 232

T

target model 15, 19
TargetExpert 15, 18, 36

options 19, 22
targets 19

adding 22
deleting 22
Make Node command 35
multiple 167
multi-target projects 21

templates
instance generation 54
options 54

Test stack overflow option 63
third-party libraries 79
this pointer 57
thread.h 232
threshold 38, 39
throwing exceptions 188
time.h 232
timer.h 233
tiny memory models 38, 40
Tool Options dialog box 26
tools 25, 163

adding 26
customizing 26
sharing between projects 31
TOUCH 164

TOUCH 165
command-line options 165

trailing segments 70
translators 25

adding 26
-tWM compiler option 103
type information

errors 281
typecasting

explicit casts 53
typeinfo.h 234

U

!undef 178
-u compiler option 60
underscores (_) 60
uninitialized data 44
uninitialized trailing segments 70
UNIX compatible constants 234
UNIX System V 61, 229
unreachable code 80
unsigned character types 49, 58

user-defined warnings 79
Using PLIB response files 183
Using PLINK

with PCC.EXE 152
Using PLINK and PLINK32 149
utilities 163

TOUCH 164

V

-V compile option 55
-V0 compiler option 55
-V1 compiler option 55
-Va compiler option 50
values.h 234
variable live range analysis 85
variables 135

compiling options 38, 42, 58, 60
examining 105, 134
optimizing 82, 84
scope 50

-Vb compiler option 51
-vc compile option 62
-VC compile option 49
-Vc compiler option 49
-Vd compiler option 50
-Ve compiler option 53
verbose, linker option 73
-Vf compiler option 39
-Vh compiler option 51
-vi compiler option 63
viewers, adding 26
viewing

breakpoints 120
errors 36
project options 33

virtual base pointers 49, 51
virtual tables 39

far 39, 46
linkage 55
options 55
pointers 39, 51
segments 46

visible symbols 108
-Vmd compiler option 53
-Vmm compiler option 53
-Vmp compiler option 53
-Vms compiler option 53
-Vmv compiler option 53
-Vp compiler option 50
-Vs compiler option 55
-Vt compiler option 51
-Vv compiler option 49

Paradigm C++ User's Guide298

W

-w compiler option 78
warnings 271

alphabetical listings 275, 280
checking source files 69
compiler 77
disabling 78
displaying 78
general 78
inefficient C++ coding 79
inefficient coding 79
linker 76
obsolete C++ 80
portability 80
potential 81
potential C++ 80
project options 78
stop after… 81
user-defined 79

Warnings linker options 76
duplicate symbol 76
no stack 76

watch 128, 129
address error 278
changing properties 130
deleting 131
disabling and enabling 131
length error 278

Watches window 128
Windows platforms 46
Windows version 74
-wmsg compiler option 79

word alignment 42

X

-X compile option 60
-x compiler option 52
-xc compiler option 52
-xd compiler option 52
-xf compiler option 52
-xp compiler option 52

Y

-y compiler option 62

Z

-Z compiler option 86
-zA compiler option 43
-zB compiler option 44
-zC compiler option 43
-zD compiler option 44
-zE compiler option 45
-zF compiler option 45
-zG compiler option 44
-zH compiler option 45
-zP compiler option 43
-zR compiler option 44
-zS compiler option 44
-zT compiler option 44
-zV compiler option 46
-zW compiler option 46
-zX compiler option 45
-zY compiler option 45
-zZ compiler option 45

	Table of Contents
	Chapter 1, Getting started
	Starting Paradigm C++
	Licensing and Registration
	Quick Start Guide

	Using Help in Paradigm C++
	Online help organization
	Online manuals organization
	Help on Paradigm C++

	Chapter 2, Managing projects
	What is project management?
	Project management tools

	Using the Project Manager
	Project Manager reference
	Creating a project
	Adding nodes
	Adding files without relative path information
	Editing source node attributes
	Adding target nodes to your project
	Editing target attributes using TargetExpert
	Moving nodes within a project
	Copying nodes in a project
	Converting project files into makefiles
	Customizing the Project window

	Grouping sets of files with Source Pools
	Creating a Source Pool

	Translators, viewers, and tools
	Adding translators and viewers

	Chapter 3, Project options
	Setting project options
	Using Style Sheets
	View project options

	Compiling projects
	Fixing compile-time errors
	Viewing errors
	Fixing errors

	Project options reference
	16-bit compiler options
	Calling conventions
	Memory model
	Processor
	Segment names code
	Segment names data
	Segment names far data
	Entry/Exit code

	32-bit compiler options
	Paradigm optimizing compiler
	32-bit compiler options

	Build attributes
	Always build
	Build when out of date
	Never build
	Can't build
	Exclude from parent

	C++ options
	C++ compatibility
	Exception handling/RTTI
	General
	Member pointer
	Templates
	Virtual tables

	Compiler options
	Defines
	Code generation
	Floating point
	Compiler output
	Source
	Debugging
	Precompiled headers

	Directories options
	Source directories
	File search algorithms
	Output directories
	$INHERIT and $ENV(€)

	Librarian options
	Case-sensitive library
	Create extended dictionary
	Generate list file
	Library page size
	Purge/debug comment records

	Lint options
	All diagnostics
	Warnings and error diagnostics
	Error diagnostics
	Lint Options File

	Linker options
	16-bit linker
	32-bit linker
	General
	Map file
	Warnings

	Make options
	Autodependencies
	Break make on
	New node path

	Messages options
	ANSI violations
	Display warnings
	General
	Inefficient C++ coding
	Inefficient coding
	Obsolete C++
	Portability
	Potential C++ errors
	Potential errors
	Stop after ... errors
	Stop after ... warnings

	Optimization options
	General settings
	16- and 32-bit
	16-bit
	32-bit
	General optimization settings

	Command-line only options
	Object search paths
	16- and 32-bit command-line options
	Linker supported command-line options
	32-bit command-line options

	Compiler command-line options
	Command-line options by function
	Command-line options

	Chapter 4, Browsing through your code
	Using the browser
	Starting the browser

	Browsing objects (class overview)
	Browsing global symbols
	Browsing symbols in your code

	Browser filters and letter symbols
	To view all instances of a particular type of symbol
	To hide all instances of a particular type of symbol
	To change several filter settings at once

	Customizing the browser

	Chapter 5, Using the integrated debugger
	Types of bugs
	Run-time errors
	Logic errors

	Planning a debugging strategy
	Starting a debugging session
	Compiling with debug information
	Running your program in the Paradigm C++ IDE

	Controlling program execution
	Running to the cursor location
	The execution point
	Stepping through code
	Running to a breakpoint
	Pausing a program
	Terminating the program

	Using breakpoints
	Debugging with breakpoints
	Setting breakpoints
	Creating conditional breakpoints
	Removing breakpoints
	Disabling and enabling breakpoints
	Viewing and editing code at a breakpoint
	Resetting invalid breakpoints
	Using breakpoint groups
	Using breakpoint option sets
	Changing breakpoint options
	Changing the color of breakpoint lines
	Using the Breakpoints window
	Integrated debugger features

	Examining program data values
	Modifying program data values
	Understanding watch expressions
	Adding a watch
	Changing watch properties
	Disabling and enabling watches
	Deleting a watch
	Dynamic updates
	Inspecting data elements
	Evaluating and modifying expressions

	CPU window
	Resizing the CPU window panes
	The Disassembly pane
	Memory Dump pane
	Machine Stack pane
	Registers pane
	Flags pane

	Viewing function calls
	Navigating to function calls

	Summary of Emulator .EMU file commands
	Standard EMU file commands
	Custom [USER] EMU commands

	Chapter 6, Paradigm C++ compiler
	Using the command-line compiler
	Command-line compiler syntax
	Compiler configuration files
	Compiler response files
	Entering directories for command-line options

	Using PLINK and PLINK32
	PLINK and PLINK32 command-line syntax
	PLINK.CFG file
	Linker response files
	Using PLINK with PCC.EXE
	Linking libraries

	Module definition file reference
	Module definition file defaults
	CODE statement
	DATA statement
	DESCRIPTION statement
	EXETYPE statement
	EXPORTS statement
	HEAPSIZE statement
	IMPORTS statement
	LIBRARY statement
	NAME statement
	SECTIONS statement
	SEGMENTS statement
	STACKSIZE statement
	STUB statement
	SUBSYSTEM statement
	Example module definition file

	Paradigm C++ tools overview
	Running the command-line tools
	Memory and MAKESWAP.EXE
	The run-time manager and tools

	Chapter 7, Using MAKE
	MAKE basics
	BUILTINS.MAK
	Using TOUCH
	MAKE options

	Using makefiles
	Symbolic targets

	Explicit and implicit rules
	Explicit rule syntax
	Implicit rule syntax
	Command syntax

	Using MAKE macros
	Defining MAKE macros
	String substitutions in MAKE macros
	Default MAKE macros
	Modifying default MAKE macros

	Using MAKE directives
	.autodepend
	!error
	Error-checking controls
	!if and other conditional directives
	!include
	!message
	.path.ext
	.precious
	.suffixes
	!undef
	Using macros in directives
	Null macros

	Chapter 8, PLIB.EXE
	PLIB basics
	PLIB options
	Using PLIB response files
	Operation list
	PLIB examples

	Chapter 9, Exception handling
	C++ exception handling
	Exception declarations
	Throwing an exception
	Handling an exception

	C-based structured exceptions
	Using C-based exceptions in C++
	Handling C-based exceptions

	Chapter 10, Using inline assembly
	Inline assembly syntax and usage
	Inline assembly references to data and functions
	Using C structure members
	Using jump instructions and labels

	Compiling with inline assembly
	Using the built-in assembler
	Opcodes

	Chapter 11, Header files summary
	Using precompiled headers
	Setting file names

	Precompiled header file overview
	Precompiled header limits
	Precompiled header rules
	Optimizing precompiled headers
	alloc.h
	assert.h
	bcd.h
	checks.h
	complex.h
	cstring.h
	ctype.h
	date.h
	dir.h
	direct.h
	dirent.h
	dos.h
	embedded.h
	errno.h
	except.h
	fcntl.h
	file.h
	float.h
	fstream.h
	generic.h
	io.h
	iomanip.h
	iostream.h
	limits.h
	malloc.h
	math.h
	mem.h
	new.h
	process.h
	promice.h
	rtk32.h
	rtkernel.h
	setjmp.h
	share.h
	signal.h
	stdarg.h
	stddef.h
	stdio.h
	stdiostr.h
	stdlib.h
	string.h
	strstrea.h
	sys\types.h
	thread.h
	time.h
	timer.h, itimer.h
	typeinfo.h
	values.h
	_defs.h
	excpt.h
	_nfile.h
	_null.h

	Chapter 12, Math
	Floating-point I/O
	Floating-point options
	Emulating the 80x87 chip
	Using the 80x87 code
	No floating-point code
	Fast floating-point option
	The 87 environment variable
	Registers and the 80x87
	Disabling floating-point exceptions

	Using complex types
	Using bcd types
	Converting bcd numbers
	Number of decimal digits

	Chapter 13, 16-bit memory management
	Running out of memory
	Memory models
	The 8086 registers
	Memory segmentation
	Pointers
	The five memory models

	Mixed-model programming: Addressing modifiers
	Segment pointers
	Declaring far objects
	Declaring functions to be near or far
	Declaring pointers to be near, far, or huge
	Using library files
	Linking mixed modules

	Chapter 14, Using iostreams classes
	What is a stream?
	The iostream library
	The streambuf class
	The ios class

	Stream output
	Fundamental types
	I/O formatting
	Manipulators
	Filling and padding

	Stream input
	I/O of user-defined types
	Simple file I/O
	String stream processing

	Appendix A, Errors and messages
	Message categories
	Fatal errors
	Errors
	Warnings
	Informational messages

	Message generators
	Compiler errors and warnings
	Run-time errors and warnings
	Linker errors and warnings
	Librarian errors and warnings
	Paradigm C++ debugger messages
	ObjectScripting error messages

	Message formats
	Symbols in messages

	Alphabetical list of Paradigm C++ debugger messages
	Alphabetical list of Compiler messages

	Index

