Paradigm C++ Professional
User's Guide

=

Paradigm Systems

The authors of this software make no expressed or implied warranty of any kind with regard to this software
and in no event will be liable for incidental or consequential damages arising from the use of this product. The
software described in this document is furnished under a license and may only be used or copied in accordance
with the terms of the licensing agreement.

The information in this document is subject to change without notice.
Copyright © 2006 Paradigm Systems. All rights reserved.

Paradigm C++ Professional™ is a trademark of Paradigm Systems. Other brand and product names are
trademarks or registered trademarks of their respective holders.

December 8, 2005
Manual Version 6

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of Paradigm Systems.

Paradigm Systems
3301 Country Club Road
Suite 2214
Endwell, NY 13760
USA

(607)748-5966
(607)748-5968 (FAX)
Sales information: sales@devtools.com
Technical support: support@devtools.com
Web: http://www.devtools.com

For prompt attention to your technical questions, contact our technical support team via the Internet at
support@devtools.com. Please note that our 90 days of free technical support is only available to registered
users of Paradigm C++. If you haven't yet done so, take this time to register your products under the Paradigm
C++ Help menu or online at http://www.devtools.com.

You can call Paradigm at (607) 748-5966 to purchase a Paradigm SurvivalPak support agreement for an
additional 12 months of technical support.

Chapter 1 Getting started

Starting Paradigm CH+......ooviiieeeeeeeeeee 11
Licensing and Registration..........cccccoveeverienneeenne. 11
Quick Start GUIdE.........cccvveiieeiee e 11

Using Help in Paradigm C++......oceeeececececieee 11
Online help organization...........ccccceevveeeeveenennnns 11
Online manuals organization...........ccccecceveereenns 12
Help on Paradigm C++ ..., 12

Getting context-sensitive help........c.ccocceeienne 12
Accessing and using contents screens............... 13
Using the indeX..........ccccveveveevvcceseece e, 13
Searching for keywords...........cccceevvecvieeiiennenne. 13
Help SpeedMenus...........ccccevveveeeeveereseeseene, 13
Contacting Paradigm..........ccocceverinneeneninnene 14

Chapter 2 Managing projects

What is project management?..........ccccceeeeeveereenenene 15
Project management tOOIS..........cccccceveereeceeseennn. 15

Using the Project Managerccccoveeierieesceniennne 16
Project Manager reference..........cccooceveeevenienneenne. 17
Creating apProjeCt......ccccuveereerierieereesie e e seeseens 18

Setting options with the New Target dialog box18
Specifying the source node types.........ccccene... 19
Opening existing Projects..........ccevvveeereereereenn 20
Adding NOES........coeeeiieieeee e 20
Deleting source NOES...........cooveeereeereeneenieenen. 20
Adding files without relative path information..... 20
Editing source node attributes............cccccvecvvnnee. 21
Adding target nodes to your project..........ccoue.... 21
Deleting target NOdes..........cccveveveeveereeeeseenn, 22
Editing target attributes using TargetExpert......... 22
Moving nodes within aproject...........ccooceevevrenee. 22
Copying NOdeS iN @ ProjeCtccceveereererrieerienens 22
Converting project filesinto makefiles................ 23
Customizing the Project window..............ccccuveuene 23

Grouping sets of fileswith Source Poals................. 24
Creating aSource Poolccccooieeiencniienenne 24

Trandators, viewers, and tools..........c.cceceveriennenne 25
Adding tranglators and Viewers...........cccceeceenenen. 26

Chapter 3 Project options

Setting Project OPLIONS.......cccvveeerieeriereereerie e 29
Using Style Sheets ... 29

Predefined Style Sheets.........ccoeevveeieneneenen. 30

The default project options..........cccceeeevieereennne 30

Managing Style Sheets.........cccoovveeveevecceceenen, 30

Attaching Style Sheetsto nodes............cccv..... 31

Sharing style sheets between projects............... 31

Project Description Languagefiles................... 32
Contents

Table of Contents

Setting local overrides........cccooeveeveeceeveeseenns 32
View project OptionS.......cccvevveeeereereeseeseeeeeseeens 33
Compiling ProjECESecveiieeeeieere e see e 34
Compiling part of aproject.........cccceeveeveriiernenne 35
Fixing compile-time errors.........ccocceveerieeeeeseeniennnns 35
VIBWING EITOIS ..ot 36
FiXING €ITOIS.....coiieieeeeeere e 36
Project options reference........ccooveveeeeveeceveesieenens 36
16-bit compiler Options...........cceveevereerieeie e 36
Calling coNVeNtioN..........ccoveereeiieneeneeee e 37
(©30] 1] o FU TSP 37
PaSCalcooiieeeeie e 37
REGISIEN ..o 37
Memory MOdE!ccceeeeveee e 37
Assume SSequalsDS.........coevvveveereeee, 38
Automatic far dataccoeeeeveeiincnneneeeee, 38
Page alignment for far segments..........ccccceeueeee. 38
Borland C++-compatible far data...................... 39
Make all constant datafar...........ccccoeevereriennene 39
Pack far segments........cccceevvveeveecevceese e 39

Far datathresholdccooveriiiniiniiie 39

Far virtual tables.........ccooovieniiiieeee, 39
Fast huge pointers.......cooevreeneninnceneeeseee 40
MOGEL ... 40

Put constant strings in code segments................ 41
PrOCESSOT ... 41
16-bit inStruction Set.........cccevevevrineresese 41
Dataalignment..........cccoooereneenieninneeneseeseeen 42
Segment NAMES COUE..........cceerereereenieeie e 43
COUB....eieeee e e 43
Segment name data.........ccceeeveeveeneeseeie e 43
Initialized data..........cocovevevenirieieeee e 44
Uninitialized data...........ccooeveeriervenineresene 44
Segment names far data..........cceeeeeeieeinieenenns 45
Farinitidized data...........ccooeeeieninneeieceenn, 45

Far uninitialized dataccceveeinveenenieenee, 45

Far virtual tables..........cocvviriiiiiieeee 46
Entry/EXit COdE.........ocoveeeieece e 46
32-bit compiler Options.........ccccvvveeveeceereereecee e 46
Paradigm optimizing compiler.........ccccccevervnnnenne 46
32-bit compiler OptionS.........ccceeveereereriereerienens 46
Calling conNVentions...........ccveeveeieneenenieeseenne a7
PrOCESSON ... 48
Build attribUtes ..o 48
CH+ OPLIONS ...t 49
CH++ compatibDilitycceeeeeieiieeiseeeee e 49
'deep’ virtual bases.........ccocceveviniinee 49
Calling convention mangling compatibility49

Disable constructor displacements.................... 49

Do not treat 'char’ as distinct type...........ccooue.... 49
Don't restrict scope 'for' loop expression
VarableS......ooiiei 50
Pass class values via reference to temporary..... 50
Push 'this first for Pascal member functions.....50
Treat far' classes as'huge'........cocvevveceeveerieennne 51
Virtual base pointers.........cooeeevneeneeieseenennne 51
Vtable pointer follows data members................ 51
Exception handling/RT Tlcccovvriiieeienieeene, 51
Enable exceptions...........ccccevvevevieseese e, 52
Enable run-time type information..................... 52
GENENAL....cceeieeee 53
Zero-length empty base classes.........ccoceeeveenee 53
Member POINESS.......ccooeeveeereereeee e 53
Honor precision of member pointers................. 53
Member pointer representation..............ccccueee.. 53
TeMPIALES.......ee e 54
Templates instance generation..........cccoceeveenene 54
Virtual tables........coooeovviiiie e, 55
Virtual tableslinkage...........ccocoveiincnieeienne 55
Compiler OPLIONS.........ccoveeiiriereee e 56
DEFINES. ... 56
Defining macros from the IDE...........ccccceveee. 56
Defining macros on the command line.............. 56
Code generation..........cceeeereereerieeneeniesee e 56
Allocate enums asintsS.......ccccceevveeneenieneeniennen. 56
Duplicate strings merged.........cccocvveeveneeseenn. 57
FaSINIS .o 57
Register variables.........cccocevvevevceiiece e, 58
Unsigned characters.........cccooevvvceveerecceeseenen, 58
Floating POiNt.........ccooereererieniene e 58
Correct Pentium FDIV flaw.......c.ccoocevveinnnene 58
NO floating POINtcccerveerieieee e 59
Fast floating point.........ccccceeeevevceseese e 59
Compiler OULPUL.........cceeeeveeieeeeceecie e 59
Autodependency information.............ccccceeeveenee. 59
Generate COMDEFS........cooiiiieeee 60
Generate UNAErSCONES.......ccuveeerieereeneesieeneesieene 60
SOUICE....eeiieeieeeiee et et e et e e e e e saeesaneens 60
Identifier |ength........cccvveeveece e 61
Language complianCe..........ccceveveereereeeeeseenen 61
Nested COMMENEScccererererieere e 62
D= o107 o 1o (o ST 62
Browser reference informationin OBJs............ 62
Generate coverage information in OBJs........... 62
Line nUMDErS......cccooiiirie e 62
Out-of-lineinline functions............ccccvevveniennene 63
Test stack overflowccoeveevieienicccce, 63
Precompiler headers.........ccooveieiiinenencceee, 64
Cache precompiled headerccocvevvennnne 64
Precompiled header name............cccoceevvrencnen. 64
Precompiled headers........ccccccevveeeveececceeseenee, 64

Stop precompiling after header file................... 65
DirectorieS OPtioNSccveeeveerieriesee e 65
SOUrCE dirECLONES ... 65
INCIUTE ... 65
] o= VS 65
SOUICE....ceeeieieeere et e 65
Specifying multiple directories.........c.ccccevueennne 66
File search algorithms...........ccooeveniinenecin 66
#include-file search algorithms...........cccceneee. 66
Library file search algorithms...........cccccvneene. 66
OULPUL dIrECLONESeeveeeee e 67
INterMediateccoovevverererereeeeeee e 67
FINal .o 67
Guidelines for entering directory names............ 67
SINHERIT and SENV () oovvevvvieieeeeeee e 68
BINHERIT ..o 68

R VAV () TS 68
Librarian OptioNS..........ccccveceeveeseeieseese e seeseeenens 68
Case-sengitive library........cccvevevescesivece e, 68
Create extended dictionary..........ccoccevveeereenennnns 68
Generate list file.......coveeiiiiie e, 69
Library page Size......cccoveeieriinieneeeseeeee e 69
Purge/debug comment records...........cccceevevvernnene 69
LiNt OPLIONS.....cceeieeeeceee e 69
Linker OptioNS........cccueveerierie e e e e see e 70
16-DIt HNKEX ..o 70
Enable 32-bit processing........cccccoeceveeneninnennnn. 70
Initialize SegMentsccoveeveecr v 70
32-DIt lINKES ... 70
Allow import by ordinalcccccevveiveceenenee. 70
Committed stack size (in hexadecima)............. 70
Committed heap size (in hexadecimal) 71
File alignment (in hexadecimal)............c.ceeueee. 71
Image base address (in hexadecimadl) 71
Imageisbased.......ccccoecvveveeie v 72
Maximum [iNKer errors.........cccevevenenenerennenn 72
Object alignment (in hexadecimal).................... 72
Reserved heap size (in hexadecimal 72
Reserved stack size (in hexadecima)................ 72
VEIDOSE. ...t 73
GENENAl ... 73
Case-senSitiVe lINK ..o 73
Default libraries........cccoeveveerieieiineseseree 73
Include debug information............cccccevereeneeenee. 73
Subsystem version (major.minor)..........cceceeueee 74
MaP fil€.eiee 74
Include source line numbers...........cccoceverienene. 74
MaP fil€..ceeeeceeeee e 74
OFf s 74
SEOMENTS ... 74
PUDIICS.....coiiee e 75

Print mangled namesin map file..........c.cco........ 75
WarNINGS ...ccveeeeeeeeeie e ee et 75

Paradigm C++ User's Guide

32-DIt WaIMINGS.....ccoveeieereerieeiesieerie e see e s 75

NO Stack™ Warning........ccoecereererieesensieseeseeens 76
Warn duplicate symbol in .LIBcccccceennee. 76
MaKE OPLIONS.....cceeieeierie e 76
AULOdEPENTENCIES.......ccveeeeeeeeieeie e 76
NONE ...t 76
USEL o e 76
CaCNB... e 76
Cacheand display........cccoveeverneniineenece e 76
Break make on.........ccoeeveniiiinene e, 77
WaaININGS ... 77
BITOrS. .. 77
Fatal errors.......ccovvine s 77
New node path..........cccoceveriiiinene e, 77
MESSATE OPLIONS....c.eeeveeieriee e see e 77
ANSI VIOIALIONS ..o 77
Display Warnings.........ccceveeveeeenecieseeneeseeseeens 78
Al 78
SeleCted ..o 78
NONE ... e 78
GENENAL. ... 78
User-defined warningscccceceveeveneeneenn. 78
Inefficient C++ coding........cccoecvevveieveeneeieseene, 79
Inefficient Coding.......cccceveeveeieerecce e 79
ObSOlEte Ct ... 79
POrali ityccveeeeeee e 80
Potential C++ EITOrS......ooceeveieerere e 80
Potential errors.......ocoveveeieneseee e 80
StOp after ... BITOIS....ccceeeeceeie e 81
Stop after ... WarningS.........ccoeveeeereereeieeseesesnens 81
Optimization OPtioNS........ccccveeveereereeee e 81
General SEtiNGScoovvevvereereerieeee e 81
16- and 32-Dit......cceeeeieiiieceee e 81
Common Subexpression..........ccceceveeneeieeneene 82
Induction variables...........cccceveveiinineniienee 82
Inlineintrinsic fuNCtioNS...........ccoocevevevcscneee 83
16-DIt ONIY..cvveiececeee e 83
Assume no pointer aliasingccoeeevereenieenen 83
COopy Propagation..........ccceeereerieereeseesiesseeseeenee 84
Dead code elimination...........cccoeeeveenenenseenn. 84
Global register allocation...........c.ccceceevveieernenne 84
Invariant code MOLION.........ccevveverenereneriene 84
JUMpP OPtiMIZatioN.......cccvvereeeceee e 85
LOOp OptimiZation..........ccccoveeiereenenrieeeenee e 85
Suppress redundant loads...........cccceceereeinnnenne 85
32Dt 86
General optimization SettingS........cccceveeeveerennnns 86
Disable al optimizations..........ccccceveeeveeceeseeenen. 86
Use selected optimizations..........cccoceeveeeeerneenee. 87
Optimize for SIZeccccveeeveeeneeeeeee 87
Optimize for SPeed.........ccoovvveeveereneeseeie e 87
Command-line only Options.........cccecereriereesienens 88
Object search paths.........cccccevevcenierecce e 88

Contents

16-bit command-line Optionscccceveveeverrnnnne 88
Compileto .ASM, then assemble...................... 88
Compileto .OBJ, N0 linK.......ccccceeverinieninnnne 89
Specify assembler ... 89
Specify executablefilename.........ccccevveeens 89
Pass option to lINKer.........ccoevevevceveere e, 89
Create aMAP file. .o 89
Compiler .OBJto filename.........c.cccocvveriinnnnnne 89
CH+ COMPIB....eeieieee e 89
Compileto assembler ... 89
Specify assembler option..........ccccceeveeevvenennnns 90
Undefine symbol..........cccoooveeeviiceiiceeeee, 90

Linker supported command-line options............... 90
Generate 8087 INSLrUCLIONSccccevereerieerienenns 90
Compileto rea-mode.........ccoceveeverienieniinnene 90
Enable backward compatibility options............. 90
Link 20-bit address space.........cccccveveveeeereeenn. 90
Link 24-bit address space.........cccccevveveeveseeenn. 90
Enable 24-bit extended addressing.................... 90

32-bit command-line switches...........ccocceveerennnnne 91
Generate a multi-threaded target............ccecueneeee 91
Link using 32-bit Windows API...........cccoeueenee. 91
Link 32-bit console application...........cccceeuee. 91
Link 32-bit .DLL file...cccooiiriiieenere 91
Link 32-bit relocatable load module.................. 91

Compiler command-line options...........ccccceveevennnnne 91
Command-line options by function...........cc.ccceene. 97
Command-1in€ OPpLioNScccceveereeieneeneeee s 103
Chapter 4 Browsing through your code

UsiNg the BroWSEScooeieeiieeee e 105

Starting the Browser ... 105
BrOWSEN VIBWScoiiiieieieieeeeee e 105

Browsing objects (class overview).........ccceeeeuennee. 106

Browsing global symbols.........c.ccccevvevieiiennnnnne 106
SEAICN . 106
Browser SpeedMenu..........ccocvveenieeeeneeniennns 106

Browsing symbolsin your code...........c.cccouerunne 106
Symbol declaration windowccccccvnuennee. 107
Browsing references.........ccceevveeveeceevvesiennens 107
Classinspection Windowcccceeveveeereenns 107

Browser filters and letter symbols...........ccccuenneeee. 107

To view all instances of atype of symboal........... 108

To hide all instances of atype of symbal............ 108

To change several filter settings at once............. 108

Customizing the browser...........ccccoveveeveveeincene, 108
Chapter 5 Using the integrated debugger
TyPeS Of BUQGS.....c.eoieeriiriieiiee e 109

RUN-tIME EITOIS....c.eieieieeeeeeeee e 109

LOQIC EITOIS.....eeeeeeeesieeie ettt 109

Planning a debugging strategy.........cccvevevververueenee. 110
Starting a debugging SESSION.........cccveveeieereeriennns 110
Compiling with debug information..................... 110

5

Running your program in the IDE...................... 111

Specifying program argumentsccceeee.. 111
Controlling program execution...........c.cceeeeeeerueene 111
Running to the cursor location............ccceceeveenee 112
The execution POINtccccvveeereereesieereeree e 112
Finding the execution point.............ccceeveveennnne 113
Stepping through code.........ccccevveceveeveececeenee, 113
SEEPPING INLO.....eeeeeeeeeieeee e 113
SEEPPING OVEN ...t 114
Debugging member functions.............cccceeuee 115
Running to abreakpoint...........ccccccevveeeveesennns 115
Pausing @ program.........cccceeeeeeeeeeseeseeseesenseens 115
Terminating the program..........cccceeceeeeeveereesenene 115
Using breakpoints...........ccoveeieneenenenceeseseee 116
Debugging with breakpoints............ccccceveeerennnne 116
Setting breakpointscccccoveererieneeseneseee, 116
Setting an unconditional breakpoint................ 116
Setting a conditional breakpoint...................... 116
Setting other breakpoints...........cccocvevveeenieenen. 117
Setting breakpoints after program execution
DEJINS ..o 117
Creating conditional breakpoints...........c.ccceueuee. 117
Removing breakpoints..........cccccveveerveceveesiennns 119
From an Edit Windowcccceevviienenenienne. 119
From an Edit window or the Disassembly pane of
the CPU WindOWcccooevvvennininneeeene 119
From the Breakpoints windowcccee..... 119
Disabling and enabling breakpoints.................... 120
Viewing and editing code at a breakpoint........... 120
Viewing code at a breakpoint.............ccccueeneee. 120
Editing code at a breakpoint............ccccceeveennne 120
Resetting invalid breakpoints............ccccoceevennne 120
Using breakpoint groups..........ccceeereeneeneeniennee. 121
Creating a breakpoint groupcccceeveereennnnne 121
Disabling or enabling a breakpoint group 121
Using breakpoint option Setscccoceeveeeenveenee. 121
Creating a breakpoint option set...........c......... 121
Associating a breakpoint with an option set.... 121
Changing breakpoint options..........c.ccccceevereenee. 122
Changing the color of breakpoint lines............... 122
Using the Breakpoints window............ccccceevenee. 122
About the Breakpoints window.............c......... 123
Integrated debugger features..........coeevvverennnnne 123
Add breakpoint..........cccceviriiinieee 123
(@107 RSP R 123
Source breakpoint...........ccooceeveiinennenieneee, 124
Address breakpoint...........ccceeveereeieeseesieneenn 124
C++ exception breakpointcccceeveeerennnnne 124
Breakpoint Condition/Action Options............. 124
NAMES.....oiiiiiie e 124
CoNItIONS.......covierieiieree e 125
EXPr. TrUE...cooeeee e 125
Pass CouNtcccoveerieeneeee e 125

ACHONS ... 126
BreaK.. .o 126
SEOP LOQ. e 126
ST LOG e 126

LOQg EXPI e 126

EVal EXPI oo 126

LOg MESSAEovvieeeiiee e 127
DisSabe GroUP ..cceeveeereeeieeeeseesie e 127
Enable Groupcooeveeienieceeece e 127

Add Conditiong/ACtions..........cccceveeieereenne 127

Edit Breakpoint dialog boX...........cccceeueenene 127
Examining program datavalues...........c.ccccecueeuennen. 127
Modifying program datavalues..............ccceveunne 128
Understanding watch expressions............ccc.c..... 128
Using Watches Windowccccceveeeereenennnne 128
Adding aWatCh........ccooeciiiiiinieee e 129
Add Watch dialog boX.........ccceeevvrienneeiinnnenne 129
Formatting watch expressions..............ccceeeuee 129
Changing watch properties..........cccccveverveceerenne. 130
Edit Watch dialog boX........cccooveiiiniiiiiiene 131
Disabling and enabling watches..............ccceoeeuee 131
Deleting aWalCh..........ccocvveeveeiineeseee e 131
DynamicC Updates..........cccvvvueveeversieenieesieseesieenens 132
Inspecting dataelements..........ccccevveveceereennnne 132
Evaluating and modifying expressions............... 133
Evaluating eXpressionsccocceveeeeeneeniennnns 133
Modifying the values of variables................... 134
CPU WINAOW ..o 135
Resizing the CPU window panes..........c.ccceveunene 136
The Disassembly pane........ccccocceveevenceneeieeene, 136
The Disassembly pane SpeedMenu................. 136
RUN tO CUIrent.........coooveeieeee e 137

Set PCto currentccooceeveeeieesee e 137
Toggle Breakpoint...........ccocveveneeneninnienne 137

GO tO AAAreSS.......coeveirieeieeeere e 137
Gotocurmrent PC........oovieeeeeee e 137
Follow jump into Disassembly pane........... 138
Follow address into Dump pane.................. 138
Show previous address.........cccoceeveeeeneennee. 138

(GO tO SOUICE.... et 138
Memory DUMP PaNeccooceerneerinieesnieeesieeens 138
The Dump pane SpeedMenu...........cccceeeeeneee. 138
[DIES o] b= VA= SN 139
Follow address into Disassembly pane....... 139
Follow addressinto Stack pane................... 139
Machine Stack panecceveeveneeneein e 139
The Stack pane SpeedMenu..........ccceevveceenene. 140
Gototop framecccceveecvccecece e, 140

GO to top Of StaCK......ceveeeeeeerecie e 140
REQISIEIS PANE ..o 140
The Registers pane SpeedMenu...................... 140
Increment registerccveeveeveneenecie s 141
Decrement register.......cceoeveeveeceeseeseennens 141

Paradigm C++ User's Guide

A= (o] (=01 (= g 141

Change register........ooeveevvneenenie e 141
Show old registers.......coovvvvveveeienieneene, 141
FlagS Pane.....cccoociieenece e 141
The Flags pane SpeedMenu...........ccccceeevernee. 142
Toggleflag.....cccooeveeieeeeece e, 142
Viewing function callS........ccccevvevvrceveeceececeene, 142
Navigating to function calls..........cccccocceveenennnns 143
Emulator .EMU file commands...........cccoceecevnuenee. 143
Standard EMU file commands...........ccccoeeeruennee. 144
Custom [USER] EMU commands...........c.......... 145
Chapter 6 Paradigm C++ compiler
Using the command-line compiler...........ccocvnuennee. 147
Command-line compiler syntaX.........cc.cceceeuenee. 147
Default SettingS......ccocveveeveceeseecie e 147
Compiler configuration files.........cccocevvecvvenenee. 148
Compiler responsefiles.......cccvvevevceeveeceeseenne. 148
Compiler-option precedencerules.................. 148
Entering directories for command-line options .. 149
Using PLINK and PLINK32.........cccooerevineniennne 149
PLINK and PLINK32 command-line syntax...... 149
PLINK.CFG file ..o 150
Linker response files.......cooevvececienecee e 151
Using PLINK with PCC.EXE........ccccvevnvrinnnne. 152
Module definition file reference...........ccccceeceeenennee. 153
Module definition file defaultsccccceveneee 153
CODE Statementcccoveverereeeeiese e 153
DATA Statement.......cccooeverenererieresie e 154
DESCRIPTION statement..........ccccooeverenereenne 154
EXETYPE statementcccceceeveeeeneneneseneene 154
EXPORTS statementccccceeeeeveeneneseseneene 155
HEAPSIZE statement.........cooveveeveneneseseneene 155
IMPORTS statement.........ccoccveeereenenieseneseenes 156
LIBRARY statement.........ccocovererreneneneseneene 157
NAME Statementccveeverererieenenesese e 157
SECTIONS statementcceeceeverrieeenenseeeen. 157
SEGMENTS statement.........ccoeveeevenenenieseennnn 158
STACKSIZE statement.........ccccevevererieseseennenn 158
STUB StAEMENt.......ccceverieririeeeesee e 159
SUBSY STEM statement..........ccoceverereenieriennenn 159
Example module definition file..........cccccenennee. 160
Paradigm C++ tools overviewccceveeceenueenee. 161
Running the command-line tools..........c..ccccvnuennee. 162
Memory and MAKESWAP.EXEccccoeuenee. 162
The run-time manager and toals............ccccueeeee. 162
Chapter 7 Using MAKE
MAKE DBSICS.....ceeitieieiienieeiesee e 163
BUILTINSMAK ..ot 164
USiNg TOUCH.EXE ... 164
MAKE OPiONS.......cccoveieeiesieeieseese e sieesie e 165
Setting default MAKE options.........ccccceeveeee. 166
Compatibility with Microsoft's NMAKE........ 166

Contents

Using MaKefiles.......oovvveevicecee e 167
SymboliC targetsS.coveevere e 167
Rulesfor symbolic targets........ccoooveveereenennnnne 167
Explicit and implicit rules.........cccooeevivenenieneenen. 168
EXplicit rule SyntaX........ccccceveeveseeseeseseeseenens 168
Single targets with multiple rules.................... 169
IMpPlicit rule SYNtaXccceeeeveereeeeereeieceeseeeens 169
Explicit rules with implicit commands............ 170
Command SYNLaX........cceeruererreerenieeseesieeee e 170
Command Prefixes........oovveeeneneeieneeneens 170
USING @ ...oooveeeeeeieeie e ceeie et nae e 170
USING -NUM AN - ..o e 171
USING & .ottt 171
Command OPEratorsS.........coceeveeeereereereereenieens 171
Debugging with temporary files..........cccc...... 171
Using MAKE MaCros.........ccocveeenerinneeneseenieeen 172
Defining MAKE MECTOS.......cccoveeereeriesreerieenens 172
String substitutions in MAKE macros................ 173
Default MAKE MaCIOS......ccccverveieieniesiesiesienes 173
Modifying default MAKE macros..........ccceceeueene 174
Using MAKE direCtiVes........cccooeverinneenenieneenen 174
aULtOdEPENd ..o 175
FEITON e 175
Error-checking controls..........ccoocevveieieesecnnne 176
lif and other conditional directives..................... 176
HNCIUGE......ee e 177
TMESSA0E. ..ttt 177
PANEXT . 177
JPPECIOUS ..o ceeeieeeee ettt 177
SUFTIXES e 178
TUNGES ... 178
Using macros in direCtives..........ccccoveeveeneeneeennn. 178
NUIL MBCTOS......eoiieeiieeee e 178
Chapter 8 PLIB.EXE
PLIB DASICS....c.ciiiiiieienie e 181
PLIB OPLIONS ..ot 181
Using PLIB responsefiles.......cccoocvveeiinenneenee. 183
PLIB operation list........coooeveeieneenerie e 183
PLIB €XampPIES.......cccoveveiieieeeeceesie e s 184
Chapter 9 Exception handling
C++ exception handlingccceceveeieneneninnne 187
Exception declarations...........cccceceierieneenennne 188
Throwing an exception............ccveeeveeceeseesesnnenn 188
Handling an exception..........cccccveveevveveseesieenns 189
Exception specifications...........cccvveveevvenennns 190
Sample output when 'a istheinpuit.................. 192
Constructors and destructors............c.ccceeveenene. 193
Setting exception handling options.................. 193
Unhandled exceptions...........cccovevveeeeveesennns 193
C-based structured exceptions...........cccccevvereerennne 194
Using C-based exceptionsin C++..........ccceveeee. 194
Handling C-based exceptions............cccveeevernnnne 195
7

Chapter 10 Using inline assembly

Inline assembly syntax and usage..........c.ccoeeveeuennee. 197
Inline assembly references to data and functions198
Inline assembly and register variables............ 198
Inline assmebly, offsets,a and size overrides.. 199
Using C structure members........cococcveceeviecie, 199
Using jump instructions and labels..................... 200
Compiling with inline assembly..........c.ccoooveinnne 200
Using the built-in assemblercccccoveevvecenenee. 201
(@] 07000 /= TS 201
String INSEFUCLIONS......cveceecieeie e 202
JUMP INSEFUCHIONS......eeeveeeeeeee e 203
Assembly directives.........ccocceveeveneenenienene 203
Chapter 11 Header files summary
Using precompiled headers...........cccccvvevvecennnnenen. 207
Setting file Names ..o, 207
Precompiled header file overviewcccceneee. 207
Precompiled header limits.........ccccoeeeeviinencnnennn. 208
Precompiled header rules..........ccccoeevveevencieninenen. 208
Optimizing precompiled headers...........cccccvevuennene 209
AOCN....oi 210
ASSEIt. N 210
BCA.N. 210
CheckS.N. ..o 211
COMPLEX. N 211
CSLING. .o 212
CLYPE N 213
date ... 213
Ir N 213
AIreCt.N..ee e 214
AIreNt.N . 214
OS. N 215
embedded.N.........cooeiiini 215
EITNO.N e 216
EXCEPE.N .. 216
FONEL N 217
I N e 217
FlOBEN ... 218
FStrEAM.N. . 218
QENENTC.N..coie 218
TO N 219
TOMANTP.NL. e 219
TOSErEAMLN. ... 219
MIES. L 220
MAITOC.N. .o 220
MEEN. N 220
MEMLNL.c e 222
NEW.N ..o e 222
PrOCESS.N.....coiiciiceee e 222
[0100] 1010/ o 223
FEKS2. N e 223
FEKEINELN e 226
8

SEMP. N 228
SNAE ... 228
SIGNAL N 228
StAAIrG.N e 229
SEAAEF . N 229
SEAIO.N e 229
SEAIOSEI. N . 230
SEAD.N . 230
SEING. N 231
SESEEAN. ... 232
SYSMYPES. N 232
thread.N. ..o 232
HIME. N 232
timer.h, itimer.N.......ocoooe e 233
tYPEINFO.N...ceii 234
ValUBSN...oi 234
eSS 234
EXCPL N 235
N N 235
UL 235
Chapter 12 Math
Floating-point 1/O.......ccoeevieieeeeee e 237
Floating-point Options...........cccveveereeieseereeieeseenens 237
Emulating the 80X87chip.......ccccoveiiriiiiiiine 237
Using the 80X87 Code.........cccoceevererieeieniesieene 238
No floating-point Code..........ceevreenerierierenins 238
Fast floating-point option..........cccccevverereereenens 238
The 87 environment variable............ccccocevvnenens 238
Registers and the 80X87ccceeevveveiierennne 239
Disabling floating-point exceptions.................... 239
USING COMPIEX tYPESoveeeerirniieieeee e 240
USING DCA tYPES ...t 240
Converting becd NUMBEXS.......cccovvececeereeie e 241
Number of decimal digitS........ccecevvevniieiennnne 242
Chapter 13 16-bit memory management
Running out of Memory..........cccceverivveenesieneenn. 243
Memory MOEIS........ccovveevieeeeereee e 243
The 8086 regiSters........ccvvevveceeveereeee e 243
General-purpose registers.......oovveereeieeseennn. 244
Segment regisSters......coovvvneerenie e 245
Special-purpose registers........ooovveererienneennn. 245
Theflagsregister ... 245
Memory segmentation...........ccecveeeereereseeseenens 246
Address calculation...........coeveeeereneneneneene 247
POINTES. ... 247
NEar POINLENS.....ccueeiiereerieeieeie e rie e 248
Far POINEErS......coveeiieiereeee e 248
HUQE POINLENS......eeeeieiesieeieeee e 248
The five memory models........ccccceeveceenveciecnnene. 249
Mixed-model programming:Addressing modifiers255
Segment POINLENS........ccveverreereerieeee e see e 255
Declaring far objects........cccoveeiiieiiiieee 256

Paradigm C++ User's Guide

Declaring functions to be near or far.................. 256

Declaring pointers to be near, far, or huge.......... 257
Pointing to a given segment:offset address..... 258
Using library files........ccccoviininiineieeee, 258
Linking mixed modules...........cccooevveieieenennnns 258
Chapter 14 Using iostreams classes
What iISaStream?ccocceevereeneeie e 261
Theiostream library........ccccovoniineniniinenenne 261
The streambuf Class.........ccccoveevieececcecece 261
TheIOS ClaSS.....ccieeeeeeeseee e 262
SIrEaM QUEPUL ... 263
Fundamental types........cccoeveriinieenenie e 264
[/O fOrmMatting......ccccervereereenieeienee e 264
MaNIPUIBLOTS.......coieeieriesiesiee e e 264
Filling and padding...........cccoevevenieenenievieseeens 265
S e T] | O 266
1/O of user-defined types.......cccooveveveveeieseeseene, 267
SIMPIEefIle /O 267
String Stream ProCesSiNg.......covveeereeriereeseeseenenns 268
Contents

Appendix A Paradigm C++ errors and
messages

MeSSage CAtEJONES.uevveerveeeeereesieeeeseee e eeeseeeneas 271
Fatal eTOrS.. ..o 271
BITOIS ..o 272
WarNINGS ...coeeieeiiriesie e e 272
Informational MESSAgES.........ccevvveeereeeiierierieenens 272

MeSSage gENEratorSccccueeerieeereee e 272
Compiler errorsand Warnings..........cceeeveeeeseene 272
Run-time errors and warnings...........c.ccceeeeveeene 273
Linker errors and Warningsccoeeeveseeseneens 273
Paradigm C++ debugger messages.........ccoeeuee 273
ObjectScripting error messages..........cccvveeereeene. 274

MeSSage fOrMALS.......cccvveereeee e 274
Symbols in MESSAQES.......cceccveveereeeeeere e 274

Alphabetical list of messages........ccccvvveevvrceerieennn. 275

INAEX .. 283

10

Paradigm C++ User's Guide

Chapter

1

Getting started

Starting Paradigm C++

Or select
SETUP.EXE
from the
CD-ROM drive.

The Paradigm C++ installation program will launch automeatically from the Paradigm
C++ CD, when inserted. Follow the instructions given by the installation program. Once
the installation is complete, a new shortcut and program group will be added to the
Windows Start menu. Use the program item to launch Paradigm C++.

Licensing and Registration

Paradigm C++ is purchased with a single-user license agreement. This license entitles use
of the product by one programmer at any given time. Each copy of Paradigm C++ comes
with alicensing device intended to support the licensing agreement. See the enclosed
literature for instructions on maintaining your license.

Registration of your copy of Paradigm C++ is mandatory for you to receive technical
support and to be notified of changes to the software. To register your copy of Paradigm
C++, visit http://www.devtools.com and select the Register button.

Quick Start Guide

To get users up and running quickly with Paradigm C++, the Quick Start Guide is
available to provide a step-by-step tutorial on the use of the integrated development
environment. This hands-on approach to understanding the operation of the IDE is
designed for users who are wondering where to begin.

Using Help in Paradigm C++

Table 1-1
Help files

Paradigm C++ provides complete online documentation through the Help system. Using
Help is a convenient way to get information about language features, compiler options,
and any tasks you need to perform while developing applications in Paradigm C++. Help
files can be accessed from the Help menu or from the Start menu under the Paradigm
C++ program group.

Online help organization

The following help files cover basics of the Paradigm C++ integrated development
environment.

Help file Description

Paradigm C++ User's Guide Guide to using projects and debugging (PCW.HLP)
Paradigm C++ Programmer's Guide Programming tips and language details (PCPP.HLP)
Error Messages and Warnings Paradigm C++ messages (PCERRM SG.HLP)

Paradigm C++ Tools Command-linetools (PCTOOLS.HLP)

Paradigm Assembler Help Assembler options and operators reference (PASM.HLP)

Chapter 1, Getting started 11

http://www.devtools.com/

Table 1-2
Online manuals

12

ObjectScripting Guide Customizing scriptsin Paradigm C++ (SCRIPT.HLP)
Paradigm C++ Class Libraries Guide Script classlibrary reference (CLASSLIB.HLP)
Paradigm C++ Finder Help Source code search utility reference (FINDER.HLP)
Version Control Integration Source code control system reference (SCCS.HLP)

Other files may also be available if you have optional components installed in the
Paradigm C++ IDE.

Online manuals organization

A similar library of online help is available in Adobe .PDF format. The following manuals
can be easily accessed in Help | Reference or from the Start menu under the Paradigm
C++ program group.

Online manual Description

Quick Start Guide Tutorial for Paradigm C++ (QKSTART.PDF)
PASM Manua Paradigm Assembler user's guide (PASMUG.PDF)
User's Guide Explanation of Paradigm C++ tools (PCPPUG.HLP)
Object Scripting Guide Script customization features (CSCRIPT.PDF)

Other online manuals may also be available if you have optional components installed in
the Paradigm C++ IDE.

Help on Paradigm C++

In Paradigm C++, you can get Help in the following ways:

+ Context-sensitive Help (F1)

. Contents screens

. Index

. Keyword Search (F1 or Ctrl+F1 in the Edit Window)
« SpeedMenus (in the Help window)

« Contacting Paradigm

Getting context-sensitive help
To access context-sensitive Help for items in Paradigm C++:

1. Select the element you want help on (menu, menu command, an item in a dialog
box).
2. PressF1 or Ctrl+F1.
Help buttons are available on many dialog boxes and for most error messages.
Click Help to view information aboui:

. Theentire dialog box
« Anerror message
. Thecurrent group of topicsin an Options settings dialog box

Paradigm C++ User's Guide

Toreturnto a
previous topic or
Help file, click
the Back button.

Toreturnto a
previous topic or
Help file, click
the Back button.

Accessing and using contents screens

Each Help Contents offers an entry into a Help system installed with Paradigm C++.
From the Contents, select the category of information that best suits your needs, then
click onit.

. Todisplay the Master Contents screen, choose Contents on the Help menu in
Paradigm C++.

« To accessthe Help Contents from within atopic in the active Help file, click the
Contents button.

« To accessthe Help Contents screen of a different Help file installed with Paradigm
C++, right-click and select the name of the Help file you want to view.

. To accessthe Contents of al available Help files, click the Book Shelf button from
within the topic of a Help file. Shortcuts to help files can be accessed from the Start
menu under the Paradigm C++ program group.

Y ou can expand books that appear on the Contents, or jump directly to atopic. To view
atopic, click onit.

Y ou can print several topics at once by clicking a book on the Contents and then clicking
Print.

Using the index

In Help, click the Index tab to view alist of index entries. Either type the word you are
looking for or scroll through the list.

Searching for keywords
Keyword Search gives you direct access to Help about atermin your program. To get
help on aterm:
1. Inthe Edit window, place the insertion point on the term you want help on.
2. Use one of the following methods:
« PressFi or Ctri+F1.
« Choose Keyword Search on the Help menu.
. Choose Go To Help Topic on the Edit Window SpeedMenu.
3. One of these events occurs:
. Thetopic associated with the term you selected is displayed.

. If more than one topic is available on the term for which you requested Help, the
Topics Found dialog box is displayed listing topics associated with the term.
Double-click the topic you want to view.

. If no Help isavailable for the term nearest the insertion point, the index is
displayed. Y ou can then select a different searching method to locate a topic
associated with that term. The term for which you requested Help appears
highlighted in the top box. Click the Display button or double-click the term to
view the list of topics associated with the term.

Help SpeedMenus

All the Paradigm C++ Help files have SpeedMenus that you access by right-clicking on
the mouse. These menus provide quick access to commands for copying or printing a
Help topic, or exiting Help.

Chapter 1, Getting started 13

14

The SpeedMenu also lists additional Help files containing information related to the
current Help file. Right-click and select a Help file from the SpeedMenu. The Contents
screen for that Help file is displayed.

Contacting Paradigm

There are several ways to contact Paradigm Systems for technical assistance on
Paradigm C++.

Use the Help menu item to access the Paradigm C++ home page and service packs.
From this menu, you can also compose an email to technical support or register
Paradigm C++. If you use this convenient method to contact Paradigm, your serial and
version numbers will be included automatically.

Y ou can contact Paradigm directly at:

Paradigm Systems

Suite 2214

3301 Country Club Road
Endwell, NY 13760
USA

Sales: 607-748-5966, sales@devtools.com
Fax: 607-748-5968
Technical Support: support@devtools.com

Ninety days of free technical support is only available to registered users of Paradigm
C++. If you haven't yet done so, take this time to register your products under the
Paradigm C++ Help menu or online at http://www.devtools.com. Contact Paradigm to
purchase a Paradigm SurvivalPak support agreement for an additional 12 months of
technical support.

Paradigm C++ User's Guide

Chapter
2

Managing projects

The Paradigm C++ IDE contains a Project Manager that gives you a visual
representation of the files contained in your project. With the Project Manager, you can
see exactly what files you're building, the files you're using in the builds, and the options
that you've set for the builds.

This chapter covers the following topics, which describe how to use the Project Manager
to organize the files in your project:

. Project management

. Using the Project Manager

« Grouping sets of files with Source pools

. Trandators, viewers, and tools

What is project management?

Table 2-1
Project
management
tools

As an application grows in size and complexity, it becomes dependent on various
intermediate files. Often, source files need to be compiled with different compilers and
different sets of compiler options. Even a smple embedded application can have multiple
C or C++ source files, with each file type requiring different compilers and different
compiler settings.

As your project complexity increases, the need increases for away to manage the
different components in the project. Looking at the files that make up a project, you can
see that a project combines one or more source filesto produce a single target file.
While target files are usually absolute executable .AXE files for embedded development
or relocatable load module .EXE for DOS development, the source files cover a broader
range of file types, including .C, .CPP, and .ASM files. Additionally, many source files
have autodependent files (files that are automatically included by the source), suchasC
header files. In larger projects, you are likely to find several targets with scores of
SOUrCes.

Project management is the organization and management of the source and target files
that make up your project. In addition, project management encompasses how and when
you employ different tools to trandate the source files into your project target files.

Project management tools

Paradigm C++ provides several toolsto help you manage your application projects.

Tools Description

Project Manager ~ The Project Manager isthe main tool for managing projectsin Paradigm C++. Use
the View|Project command to access the Project Manager, a collapsible/expandabl e,
hierarchical display of thefilesin your project.

Project menu The Project menu provides commands to open and close projects, add a new target
to a project, and make, build, or compile targets.

Chapter 2, Managing projects 15

OptionsHierarchy The View Options Hierarchy command (located on the Project Tree window
SpeedMenu) opens a dialog box that lets you set options for individual project
nodes.

Node attributes The Edit Node Attributes command (located on the Project Tree window
SpeedMenu) lets you control how each node is handled by the Project Manager.

Tools Use the OptiongTools command to install, delete, or modify the tools that you use
in your projects.
TargetExpert TargetExpert opens when you create a new project or add a new target node to an

existing project. TargetExpert makes available the appropriate platform, modd, and
library choices based on the type of target you select.

Using the Project Manager

The Project Manager visually organizes all the filesin your project in a hierarchy diagram
known as the project tree. The Project Tree represents each file in your project as anode
on the tree. The Project Tree is divided into discrete levels where each level contains a
single target node. Indented below each target node are the target’ s dependencies-the

files used to build the target. To expand and collapse the hierarchy tree, click nodes
containing the + and - symbols.

Figure 2-1 Project Tree for an embedded absolute executable (L AXE) application

E Project : c:\paradigm\examples\embedded\cppdemo\cppdemo.ide _|Ofx]
WEAmE) cppdenc . aze [.axe]

[cppdemo.»t [.2t]
. =[O cppdeno . rom [.rom]

. [coppdeno .cpp [.cpp] code size=590 line=s=49 dat:
=[O Helpsr files [SourcePool]

. [heapsize.c [.c]

. [console.c [.c]

. M =tklen_ asn [.asm]

1| | i

The Project Manager uses the following types of nodes to distinguish the different types
of filesin your project:

The project node, located at the top of the Project Tree, represents the entire project. All
the files used to build that project appear under the project node (similar to a symbolic
target in a makefile). By default, the project node is not displayed in the Project Tree. To
display the project node, choose Options|Environment and select Project View from the
list of topics, then check Show Project Node.

A target node represents afile that is created when its dependent nodes are built. A
target can be one of a variety of target types, depending on the IDE package being used.
A project can contain many target nodes. For example, in a single project, you might
build three separate .LIB files, with each library being a separate target.

16 Paradigm C++ User's Guide

[]

Table 2-2
Project Manager
reference

Source nodes refer to the files that are used to build atarget. Files such as.C and .CPP
are typical source nodes.

A run-time node refers to files that the Project Manager uses during the linking stage of
your project, such as startup code and .LIB files. The Project Manager adds different
run-time nodes depending on the options you specify in TargetExpert. By default, run-
time nodes are not displayed by the Project Manager. To view run-time nodes, choose
Optiong|Environment|Project View, then check Show Runtime Nodes.

Autodependency nodes are the files that your program automatically references, such as
included header files. By viewing autodependency nodes, you can see the files that
source nodes are dependent upon, and you can easily navigate to these files (just double-
click the node). By default, the Project Manager does not display Autodependency
nodes; you must choose Options|Project|Make, then check Autodependencies: Cache &
Display. Note that you must build the project before the Project Manager can display
autodependency information).

The Project Manager usesthe following color schemesfor its nodes:

. Blue nodes represent those that were added by the programmer.
. White nodes indicate project targets.

. Yélow nodes are those that were added programmatically by the compiler (when it
posts dependencies and Autodependencies), or by TargetExpert (when it adds nodes
based on the target type).

The Project Manager uses specia glyphs in the left margin to indicate the build attributes
of project nodes. To apply build attributes to a node (and for a reference on the different
Project Manager glyphs), choose Edit Local Options from the Project Manager
SpeedMenu, then select the Build Attributes topic.

In addition to helping you organize your project files, you can use the Project Manager
to access source files and build targets.

« To bring asource file into an Edit window, double-click the node in the Project Tree,
or highlight the node and either press Enter or choose View|Text Edit from the
Project Manager SpeedMenu.

. Using the Project Manager to make a project is very effective because you can use
the Project Manager to trandate only the files that have changed since the last
project build; computer resources are not wasted on unnecessary file updates. (The
term "trandate” refersto using one file type to create another. For example, the C++
compiler isatrandator because it generates .OBJ files from .CPP files.)

There are several ways to customize the build options of the nodes in your project.
Maintaining project option and compiling project targetsis described in detail in Chapter
3, Project options,

Project Manager reference

The Project Tree can be traversed with the mouse or the keyboard.

The Project Manager supports incremental searching, so you can quickly find a node by
typing the node name. Incremental searching finds the first node in the Project Manager
that matches the letters you type. Press Ctrl+S to find the next match.

Task Keyboard Mouse

Add Node Insert Right Click|Add Node

Chapter 2, Managing projects 17

Collapse hierarchy Minus Click parent node

Collapse/Expand node Spacebar

Copy Node Ctrl+Left Click Drag
Default action for node Enter Double Click
Delete Node Delete

Demote a node Alt+RightArrow Left Click Drag
End node search Esc

Expand hierarchy + (Plus) Click parent node
Expand entire hierarchy * (asterisk)

Find a node Incremental search (start typing)

Move down in project DownArrow Scroll Bar
Move node down Alt+DownArrow Left Click Drag
Move node up Alt+UpArrow Left Click Drag
Move to bottom of hierarchy End Scroll Bar
Move to top of hierarchy Home Scroll Bar
Move up in project UpArrow Scroll Bar
Open SpeedMenu Alt+F10 Right Click
Page down PgDn Scroll Bar
Page up PgUp Scroll Bar
Promote a node Alt+LeftArrow

Reference Copy Node Alt+Left Click Drag
Scroll left LeftArrow Scroll Bar
Scroll right RightArrow Scroll Bar
Select anode Up/DownArrow Left Click
Select Contiguous nodes Shift UpArrow Shift Left Click
Select Non-Contiguous nodes Ctrl Left Click

Creating a project

When you begin to write a new application, the first step isto create a new project to
organize your application's files. The command File]New|Project opens the New Target
dialog box.

Setting options with the New Target dialog box

When you create a new project, the IDE automatically assigns default file names to the
nodes in your project. The following steps show how to change these default settings
and how to complete the initial project setup.

1. Type the path and name for the new project into the Project Path And Name input
box (the project name must contain eight characters or less). Note that you don't
have to type afile extension because the IDE automatically assigns the extension
IDE to all project files,

2. Inthe Target Name input box, type the name for the first target in your project. This
is usually the name of the target file that you want to create.

The remaining fields in the New Target dialog box set the options for the first target
in the project. These fields are commonly referred to as the TargetExpert, since these
are the fields contained in the TargetExpert dialog box.

18 Paradigm C++ User's Guide

Table 2-3
Source node

types

3.

4,

Choose the type of target you want to build using the Target Type list. For more
information, see "target types' in the online Help index.

Choose a platform for your target using the Platform drop-down list. For more
information on individual platform types see "target types' in the online Help index.

. Select the memory model of the target from the Target Model options:

. Small uses different code and data segments, giving you near code and near data.
« Medium gives you near data and far code.

. Compact isthe inverse of the Medium model, giving you near code and far data.
. Largegivesyou far code and far data.

. Hugeisthe same as Large model, but allows more than 64K of static data.

32-bit targets

. Win32 Emulation - If Protected address mode is chosen under Platform,
selecting Win 32 Emulation will allow you to generate an application to be
executed locally on your PC.

. Win 32 Embedded - If Protected address mode is chosen under Platform,
selecting Win32 Embedded will allow you to generate an application to be
executed on an embedded target.

. If needed, click the Advanced button to specify the types of source nodes created

with your new target (this procedure is described in the following section.

. Click OK to accept the settings and close the New Target dialog box. The Project

Manager creates the project file, which is denoted with an .IDE extension

When you close the New Target dialog box, the Project Manager draws a graphical
representation of your project in the Project window. The Project Manager creates a
target node with one or more source nodes below with the project node. After creating
the initial target for a project, you can add, delete, or modify the nodes in your project,
as described in the following sections.

Specifying the source node types

The Advanced button in the New Target dialog box opens the Advanced Options dialog
box. Use this dialog box to set the types of source nodes that the Paradigm C++ IDE
creates with a new target node.

Extension File Type

.CPP node Creates a C++ language source node.

.C node Creates C language source node.

No source node Creates a Target node that doesn't use a source node. Use this option

when you want to create a Source node that uses the same file name as
the name of the project. When you create a new target with this option,
you must specifically add the source node.

For 32-bit applications
.DEF Creates a source node that is associated with a Windows module

definition file, which is used by the linker.

Chapter 2, Managing projects 19

Use care when
deleting nodes;
you cannot undo
the deletion.

Opening existing projects

To open an existing project, choose Project|Open Project, then use the file browser to
select an existing .IDE or .PDL project file. If the project opens, but the Project window
is not visible, choose View|Project to access the Project window.

Adding nodes

To add a source nodeto a project:

1. Select any node in the Project Tree under which you want the new node to appear.
For example, if you want the new node to appear under the target, select the target
node.

2. Pressins, click the button on the SpeedBar, or right-click the node to open the
Project window SpeedMenu and then choose Add node.

3. Using the file browser, choose the file or files you want associated with the new
node. Alternatively, you can type the name for the file you want to add.

4. Choose OK to confirm your settings.
You can use the Windows File M anager to add one or mor e sour ce nodes:

1. Open the File Manager and arrange the windows so you can still view the Project
window in the Paradigm C++ IDE.

2. In the File Manager, press Ctrl and select the files you want to add as source nodes.
3. Drag the files from the File Manager and drop them on a node in the Project

window. The Project Manager automatically adds the source files under the selected
node.

Deleting source nodes

To delete anode in a project, select the node and press Del or choose Delete Node from
the SpeedMenu. To delete many nodes, select the ones you want to delete (press Ctrl or
shift and click the left mouse button to select multiple nodes), then press Del. The Project
Manager asks if you want to delete the nodes before it proceeds. If you delete an origina
node, al reference copies of that node are also deleted.

Adding files without relative path information

Because the Project Tree supports drag and drop, you can copy files right from the
desktop file manager. Relative path information is included when files are copied. If you
move sources or the Paradigm C++ IDE, the relative path information will be incorrect.
Hereis how to add files to your project without the presence of relative path
information:

. Make surethat the Absolute (Options|Project|Make]New Node Path) is turned off
(thisis the default setting).

« Right-click on the node under which the added files will become children once they
are dropped.

« Choose Add Node from the Project Tree SpeedMenu.

. Browse and highlight the file(s), you want to add. (Hold down the Ctrl key to select
non-contiguous files.)

« After hightlight the desired files, shift focusto the input box and capture to the
Clipboard (Ctrl-C).

20 Paradigm C++ User's Guide

. Browse back to the project file location.

. Shift focusto the input box, paste from the Clipboard (Ctrl-v or Shift + Insert) and
choose OK.

Files added to the project by this method do not have relative path information.

Editing source node attributes

Node attributes describe the source node and define the tool that trandatesit (if
applicable). To edit the attributes of a source node:

1. Right-click the source node (or select the node and press Alt-F10), then choose Edit
Node attributes from the SpeedMenu. The Node attributes dialog box appears.
2. Update the node attributes, then choose OK to confirm your settings.

Node attributes
. Nameisthe file name of the node, without afile extension.
. Description isan optional text description of the node.

. Style Sheet isthe name of the Style sheet the Project Manager uses when it
trandates that node. If <<None>> is specified, the Project Manager usesthe
parent options, plus any local overrides set on nodes higher in the Project Tree
hierarchy.

D If you need to create or edit an existing Style sheet, click the Styles button to access
the Style Sheets dialog box.

. Trandator names the trandator used on that node. The Paradigm C++ IDE
assigns a default trandator for the node type (for example, CppCompile for a
.CPP node), which can be overridden using this field.

« Node type defines node extension, which in turn defines the available trandators
for that node.

Adding target nodes to your project

To add atarget to a project with the New Target dialog box:

1. Choose Project|New Target, or click the button on the SpeedBar.
2. Type the name for the new target, then choose one of the following target types.
. Standard (default) can be an absolute executable, .LI1B, or other file.

« Source Pool isacollection of files that can be referenced in other targets.

3. Choose OK. If the target type is Standard, the TargetExpert dialog box appears so
you can further define your target. If the target type is SourcePool, the Target is
added to the project and you can add nodes to it immediately.

When you add a new target, it is aways appended to the end of the Project Tree.

To view a sample project with two targets, open the file MULTITRG.IDE in the
EXAMPLES\MULTITRG directory. The project contains atext file that describes how
to use two or more targets in a project.

With more than one target in a project, you can choose to build a single target, multiple
targets, or the whole project.

Chapter 2, Managing projects 21

Use care when
deleting target
nodes; you
cannot undo the
deletion.

Deleting target nodes

To delete atarget node:
1. Right-click the target node you want to delete (or highlight it and press Alt-F10).
2. Choose Delete Node from the SpeedMenu.

3. The Project Manager asks if you're sure you want to delete the target. Choose OK to
delete the target and all it's dependencies from the project.

Y ou can aso delete several nodes by pressing Ctrl and clicking the nodes you want to
delete, then press Del.

Editing target attributes using TargetExpert

Target attributes describe the target being built by the IDE. Using TargetExpert, you can
modify the memory model for a 16-bit program, debug connection type, floating point
support, and various other options. Please note, however, you can't change target
attributes for SourcePools - they use the settings from the applications which include
them.

To change atarget'sattributes:

1. Inthe Project window, right-click the target node (or select it and press Alt-F10),
then choose TargetExpert from the SpeedMenu to open the TargetExpert dialog
box.

The TargetExpert fields are a subset of the fields in the New Target dialog box.
2. Update the target attributes, then choose OK to confirm your new settings.

Moving nodes within a project

Y ou can move nodes within a project in the following ways:

. By dragging the node to its new location.

« By selecting the node and pressing Alt and the arrow keys. This moves the selected
node up or down through the visible nodes. Y ou can also use Alt and the right and
left arrow keys to promote and demote nodes through levels of dependencies. For
example, if you have a .CPP file dependent that is on a header file (the .H file appears
under and right of the .CPP in the project window), you can move the header file to
the same level as the .CPP file by selecting the header file and pressing Alt .

Copying nodes in a project

Y ou can copy nodes in your project file either by value or by reference. When you copy
nodes by value, the Project Manager makes an identical, but separate, copy of the node
in the location you specify. The nodes you copy inherit all the attributes from the original
node, and you have the ability to modify any of the copied node's attributes.

When you copy nodes by reference, you simply point to one node from a different
location in the project; areference copy is not distinct from the original node. If you
modify the structure of the original node, the reference copy is also modified. However,
areference copy does not inherit the options of the original node; you're free to attach
Style Sheets and override options in the copied node without affecting the original node.

To copy project nodes,

22 Paradigm C++ User's Guide

1. Select agroup of nodes you want to copy (press Shift or Ctrl and click to select
modify nodes). Y ou don't need to select the node's dependents because they are
copied automatically.

2. Hold down the ctrl key and drag the selected nodes to the new location to copy by
value.

Or

Press the Alt key and drag the selected nodes to the new location to copy by
reference.

When you release the mouse button, the copied node appears. If you reference-copied
the node, it will appear in alighter font. At this point, if you've copied by value, you can
edit either the original or the copied nodes without changing other nodes in the project.
If you reference-copied, and you edit the original node (such as adding or deleting
dependents), all referenced copies are updated.

D Y ou cannot add to, delete, or modify nodes that have been copied by reference; to
modify nodes copied by reference, you must edit the master copy. If you delete an
original node, all reference copies to that node are also deleted. Y ou cannot undo this
deletion.

Converting project files into makefiles

Using the Paradigm C++ IDE, you can convert project files (.IDE files) into makefiles
(.MAK files). To convert a project file to a makefile:
1. Open the project file you want to convert.

2. Choose Project|Generate Makefile. The Paradigm C++ IDE generates a makefile
with the same name as the project file, but with the extension .MAK, and placesit in
the edit buffer. The Paradigm C++ IDE displays the new makefile in an Edit window.

3. Choose File|Save to save your new makefile.

Customizing the Project window

By default, the Project window displays target nodes and source nodes. To control the
display of nodes and options:

1. Choose Options|Environment to open the Environment Options dialog box, then
choose Project View. The right side of the dialog box displays the Project View
options.

2. Check or uncheck the options you want. A sample node called WHELL O changes as
you select or deselect options. This sample shows you how all nodes appear in the
Project window.

. Build trandator displays the trandator used on the node.

« Codesizedisplaysthetotal size of code segments. This information appears only
after the node has been compiled.

. Data size displays the size of the data segment in bytes. This information appears
only after the node has been compiled.

« Description displays the optional description of the node in the Project Tree.
Type the description using the Edit node attributes dialog box from the Project
Manager SpeedMenu.

« Location lists the path to the source file associated with the node.

Chapter 2, Managing projects 23

. Connection displays the name of the target connection used for the node. This
only applies to target nodes that support a debugger connection.

« Number of lines displays the number of lines of code in the file associated with
the node. This information appears only after you compile the code.

. Node type describes the type of node (for example, .cpp, or .c).
. Style Sheet names the Style Sheet attached with a node.

. Output names the path and file name that is created when the node is trandated.
For example, a.CPP node creates an .OBJfile.

. Show run-time nodes displays the nodes the Project Manager uses when the
project is built. For example, it lists startup code and libraries.

. Show Project Node displays the project node, of which all targets are
dependents.
3. Click OK to close the Environment Options dialog box.

4. To save your project customizations, choose Options|Save, then check Project. Note
that you can save different option sets with the different projects you work on.

Grouping sets of files with Source Pools

Whatisa A Source Pool isa collection of nodes that can be referenced by multiple target nodes.
Source Pool? When a Target node references a Source Pool, the nodes in the Source Pool take on the

options and target attributes of the target. Because Source Pools let you create different
targets using a common set of source nodes, it is easy to maintain the files that the
targets use. For example, with Source Pools, you can create both 16- and 32-bit
applications using a single set of source nodes. Then, when you add or delete from the
Source Pool, you don’t have worry about updating al your target nodes; they're updated
automatically through the reference to the Source Pool.

Y ou can aso use Source Pools when you have several header files that you need to
include throughout your project. If you place the header filesin a Source Pool, you can
reference them wherever you need them in your project. Then, you only have to update
the original Source Pool when you need to make changes to the group of header files; if
you add a new header file to the Source Pool, all the referenced copies are automatically
updated.

Source Pools are also useful when you want to assign a single Style Sheet to multiple
nodes. For example, if three targets in a project need to use the same Style Sheet, you
can reference a Source Pool that contains the Style Sheet instead of attaching the same
Style Sheet to each individual node. Then, if you need to update the Style Sheet (for
example, if you want to change from compiling with debug information to compiling
without it), you can update al the targets by modifying the single Style Sheet. Y ou can
also use Source Pools to apply custom tools to project nodes. For more information, see
"Source Pools" in the online Help index.

Creating a Source Pool

When you create a Source Pool, you create a target node with a group of nodes under it.
However, the target node of the Source Pool cannot be compiled—to compile the nodes
in a Source Pool, you must copy the Source Pool to a another target node. Source Pools
work to your best advantage when you copy them by reference.

To create a Source Pool
1. Inyour project, create a new target node by choose Project|New Target.

24 Paradigm C++ User's Guide

2. Type the name for the Source Pool in the Target Name.

3. Select Source Pool from the Type list and press OK to create a Source Pool target
node in your project.

4. Select the new Source Pool in the Project Tree, then press Ins to open the Add To
Project List dialog box.

5. Select the source files you want, then press OK to add them to the Source Pool.

6. Copy the Source Pool by reference by holding down the Alt key and dragging the
Source Pool to the target nodes you want.

D To see aworking example of Source Pools, open the sample project called
SRCPOOL.IDE inthe EXAMPLES\SRCPOOL directory. The project file includes a
text file that describes how the Source Pool is used in the example.

Translators, viewers, and tools

Trandators, viewers, and tools are internal and external programs that are available to
you through the Paradigm C++ IDE.

. Trandatorsare programsthat create one file type from another. For example, the
C++ compiler isatrandator that creates .OBJfiles from .CPP files; the linker isa
trandator that creates .EXE or .ROM filesfrom .OBJ, .LIB, and .DEF files.

. Viewersare programs that let you examine the contents of a selected node. For
example, an editor is aviewer that lets you examine the source code of a.CPP file.

. Toolsare programs that help you create and test your applications. The externa
AXE utility is an example of a programming tool.

The Paradigm C++ I DE associates each node in a project with different translators or
viewers, depending on the file extension of the node. Although each node can be
associated with severd different translators or viewers, each node is associated with a
single default trandator or viewer. Thisis how the Paradigm C++ IDE knowsto open
the Edit window when you double-click a .CPP node (double-clicking a node invokes
the default viewer on the node).

To seethe default node type (determined by file extension) for a specific trandator
or viewer:

1. Choose Options|Tools to open the Tools dialog box.
2. Select the item you want to inspect from the Tools list.
3. Choose Edit to access the Tools Options dialog box.

4. Choose Advanced to access the Tool Advanced Options dialog box, then inspect the
Default For text box.

When you right-click a node, you'll find that some source nodes have a Special
command on the SpeedMenu. This command lists the aternative trandators that are
available for the node type selected. For example, the commands C To Assembler, C++
To Assembler, and Preprocess appear on the Special menu of a.CPP node. The
command Implib appears if you selected a .DLL node. Using the Special command, you
can invoke any trandator that is available for a selected node type. Also, by selecting a
source node in the Project Tree and choosing Edit Node Attributes from the
SpeedMenu, you can reassign the default trandator for the selected node.

Chapter 2, Managing projects 25

Adding translators and viewers

The Tools dialog box displays the default set of trandators, tools, and viewers The
following steps show how to add an item to thislist of programs:

1

2.

3.

26

Choose Options|Tools to access the Tool Options dialog box. This dialog box
displays the default list of trandators, tools, and viewers.

Choose New to add a new program to the Tools list (to modify a program that is
already listed, select the tool, then choose Edit).

Set the following option in the Tools Options dialog box:

. Nameisadescription of theitem you're adding. Thisis the placed on the Tool
list.

. Path isthe path and executable program name. Y ou can use the Browse button
to complete this selection.

. Command-line holds any command-line options, transfer macros, and the
Paradigm C++ IDE filters you want to pass to the program. For more
information, see "transfer macros' in the online Help index. (Try using
$PROM PT if you want to experiment with transfer macros.) the Paradigm C++
IDE filtersare .DLL filesthat let tools interface with the Paradigm C++ IDE (for
example, the GrepFile tool uses afilter to output text to the Message window).
To see transfer macros and filtersin use, choose Options|Tools, then select
GrepFiles and choose Edit.

« Menu Text appears on SpeedMenus and on the Tools menu. If you want to
assign a shortcut key to your menu text, precede the shortcut letter with an
ampersand (&) - this letter appears underlined in the menu. For example, & File
assigns the letter F as the shortcut key for File. If you want an ampersand to
appear in your menu text, use two ampersands (& & Up& date appears as
& Update in the menu).

Y ou must supply Menu Text if you want the program item to appear on the
SpeedMenu or Tools menu.

. Help Hint is descriptive text that appearsin the status line of the Tools dialog
box when you select the program item.

. Open the Advanced Options dialog box (choose Advanced) to set the options for

your new program. Depending on the Tool type you choose (Simple Transfer,
Trandator, or Viewer), different fields become available. If you create a Trandator,
the program becomes available for make and build processes.

« Place On Tool Menu adds the item to the Tools menu.

« Place On SpeedM enu adds a viewer or trandator to the associated SpeedMenu.

. Target Trandator available for trandators and viewers. For trandators, this
field specifies whether the program produces a final target (such as an .AXE file)
or an intermediate file (such asan .OBJ or . file). If you check this box, the
trandator produced afinal target that is saved to the directory you specify in the
Final text box (choose Project|Optiong|Directories). If you don’'t check Target
Trandlator, the translated file is saved in the directory you specify in the
Intermediate text box.

For viewers, Target Trandator specifies that the viewer works only on nodes that
have been trandated (such as .OBJ or .AXE files); the node has to be transated
before you can view it.

Paradigm C++ User's Guide

. Trandate From defines the node types (determined by file extension) that a
trandlator can trandate. To specify multiple node types, use a semicolon to
separate file extensions.

When you enter afile extension in thisfield, the Project Manager adds the trandator
to the Special menu of the project nodes that have that file extension. When you
choose Special from the Project Manager SpeedMenu, the Project Manager displays
all the available trandators for that node type. However, it isimportant that each
node type can have only a single, default trandator (see the description for Default
For).

To see how thisworks, look at the tool CppCompile (choose Options|Tools, double-
click CppCompile, then click Advanced). The Tool Advanced Options dialog box
shows that the C++ compiler isatrandator for .CPP, .C, .CAS, and .H files. If you
have a source node with a.C extension, CppCompile appears on the Special menu
when you right-click the node and choose Special.

. Trandate To defines the extension of the file that the trandator generates.

« AppliesToissmilar to Trandate From field, except that it's used for viewers
instead of trandators.

. Default For changes the Paradigm C++ IDE's default trandator or viewer for the
file types you specify. Type the file extensions (separating each with a semicolon)
for the file types whose default you want to override.

5. Choose OK twice to confirm your settings, then close the Tools dialog box.

Y our new tool has now been added to the Tools list of the associated project, and to the
Tools menu or SpeedMenu, depending on where you chose to add the item. If you added
the item to the Tool menu, you can check the addition by choosing Tools from the main
menu; the new program name appears on the Tools list.

Although the Project Manager lets you define your own Tools items, these items apply
only to the project that you add them to; they aren’t added as permanent parts of the
Paradigm C++ IDE. However, trandators, viewers, and tools can be passed to new and
existing projects by sharing the Style Sheets of the projects.

Chapter 2, Managing projects 27

28

Paradigm C++ User's Guide

Chapter

3

Project options

After you create a project file and write the code for the source nodes in your project,
you need to set the options for the different project nodes before you can compile the
project. This chapter describes how to set options in a project, how to view the options
you set, how to compile a project, and how to use the Message window to view and fix
compile-time errors. In addition, this chapter contains a complete reference to the
compiler and linker options that can be set from the Paradigm C++ IDE.

Setting project options

This section explains how to set, view, and manage project options.

Project options tell the Paradigm C++ IDE how to compile and link the nodes in your
project to form the targets you need. The settings of the project options can indicate
whether or not to generate debugging information, where to look for source code, what
types of compiler optimizations you want to use, and so on.

The Project Manager lets you set project options in two different ways:

. You can attach Style Sheetsto your project nodes.
. You can override the settings in a Style Sheet using local overrides.

Style Sheets group a collection of option settings into a single unit. Once a Style Sheet is
created, you can attach it to a node, a group of nodes, or an entire project. Local
overrides are settings that take precedence over Style Sheet settings at the node level.

Using Style Sheets

A Style Sheet is a group of option settings. In your project, for example, you might want
to compile .C files with one set of options and .CPP files with another, or you might
want to build one target with debugging information, and another one without it. Style
Sheets make it easy to view and maintain the settings of your project options. Option
settings control how target nodes in your project are built. Y ou can attach Style Sheets
to entire projects or to individual nodesin a project. You can attach one or more Style
Sheets to your entire project or assign one or more Style Sheets to individual nodesin
your project.

To view the options that can be incorporated into a Style Sheet, open the Project

Options dialog box by choosing Options|Project. This dialog box contains a hierarchical
list of topics on the left, with the options that relate to each topic listed on theright. To
expand and collapse the Topic ligt, click the + and - icons to the left of the topic listings.

To see an example of how Style Sheets are used, open the STYLESHT.IDE project file
located in the EXAMPLES\IDE directory. This file uses a different Style Sheet for each
of itstwo versions of the application and also contains atext file that explains the use of
Style Sheets.

Chapter 3, Project options 29

Tie»>

Create

Compose

Predefined Style Sheets

The Project Manager contains severa predefined Style Sheets that you can attach to any
node in your project. Y ou can also customize a predefined Style Sheet to meet the
special needs of your projects.

To inspect the predefined Style Sheets, choose Optiong|Style Sheets on the main menu
(or click the Styles button on the Edit Node Attributes dialog box). This opens the Style
Sheets dialog box where you can create, compose, copy, edit, rename, or delete from the
list of Style Sheetsthat are available for your project. Predefined Style Sheets are listed
on the left with the description of the selected Style Sheet on the right.

The default project options

When you initially create a project, it inherits the Style Sheet known as the Default
Project Options. If some components in your project require different settings, you can
attach different Style Sheetsto those nodes. If different nodes in your project require
different option settings, you should override the default option settings by attaching
different Style Sheets to the nodes in your project.

Be careful when you use the Options|Project command to modify option settings; if
your project contains more than a single target node, the changes you make always
modify the project's Default Project Options (regardless of the node you have selected
when you choose the command). Because of this, all targetsin your project inherit the
changes you make when you use the Options|Project command. In addition, if you
modify project options when you don't have a project loaded, your modifications update
the Default Project Options Style Sheet; the projects you later create will inherit these
new default settings. If you need to revert to the Paradigm C++ |DE's factory default
settings, delete the file PCWDEF.PCW (located in the Paradigm C++ IDE BIN
directory), then open and close the Paradigm C++ IDE to create a new file.

Managing Style Sheets

The buttons at the bottom of the Style Sheets dialog box let you create, compose, copy,
edit, rename, and delete user-defined Style Sheets.

Create lets you design a new Style Sheet for the currently loaded project. To create a
Style Sheet:

Choose the Create button, then enter a name for your new Style Sheet into the Create
Style Sheet dialog box. Choose OK to add the new Style Sheet to the Available Style
Sheets list.

Compose lets you create a Style Sheet that contains the combined options from one or
more Style Sheets. To compose a Style Sheet:

1. Create anew Style Sheet using the Create button.

2. Select the new Style Sheet in the Available Style Sheets list, then click Compose.

3. Select the Style Sheet you want included in your new Style Sheet from the Available
Style Sheets list, then move the Style Sheet to the Composite Style Sheets list by
double-clicking it or by clicking the — button. (Y ou can also remove Style Sheets
from the Composite Style Sheet list by selecting a Style Sheet there and clicking —.)

4. Continue modifying the composed Style Sheet, then choose OK when you're
finished.

30 Paradigm C++ User's Guide

D Y ou cannot edit the option settings in a composed Style Sheet. However, you can edit
the option settings in the Style Sheets contained in the composed Style Sheet, which
affects the settings in the composed Style Sheet.

Copy Copy letsyou create anew Style Sheet from an existing one. When you choose Copy,
you're prompted for the new Style Sheet's name. Enter the new name, then choose OK
to make an exact copy of the selected Style Sheet. Copying is afast way to create a Style
Sheet that closely resembles another-you only have to change the options you want.

Edit to change any of the copied options. Copying is afast way to create a Style Sheet
that closely resembles another-you only have to change the options you want.

Edit Edit lets you modify the option settings of an existing Style Sheet, including any
predefined Style Sheet.

Rename Rename lets you rename a selected Style Sheet.
Delete Delete lets you remove an unwanted Style Sheet. (This action cannot be reversed.)

Attaching Style Sheets to nodes

Sometimes different nodes in a project need to be built with option settings that are
different than those in the project Style Sheet. For example, you might want to compile
.C files with one set of options but .CPP files with another. Or, you might want to build
separate targets with a different set of compiler defines.

To attach an existing Style Sheet to a project node:
1. Right-click the node in the Project Tree (or select it and press Alt-F10).
2. Choose Edit node Attributes from the SpeedMenu. The Node Attributes dialog box

appears.
3. Select a Style Sheet from the drop-down box, then choose OK.

When you attach a Style Sheet to anode, al child nodes of that node inherit the settings
of the selected Style Sheet. To change the settings of a child node, attach a different
Style Sheet, or override an option setting using alocal override.

D Although you can attach only a single Style Sheet to a project node, one Style Sheet can
be composed of several different Style Sheets.

Sharing style sheets between projects
There are two ways to share Style Sheet between projects:

« inheriting style sheets from another project
. editing the .PDL file associated with a project

When you create a custom Style Sheet, that Style Sheet remains with the project for
which it was created; it doesn't get added to the list of predefined Style Sheets.
However, if you want a new project to use one of your custom Style Sheets or user-
defined tools, you can do so by letting a new project inherit settings from another
project.

Before a project can inherit the settings of another project, you must modify the
PCWHx.INI file that resides in your Windows directory. If the file doesn't contain an
inherit setting, then you must add the settings to the file as follows:

[Project]

; To have new projects inherit settings fromthe Default Project

Settings (default) ;
i nherit=0

Chapter 3, Project options 31

Tie»>

; To have new projects inherit settings fromcurrently open project:
i nherit=1

; To have new projects inherit factory default settings:
i nherit=2
To pass Style Sheets or user-defined tools from one project to a new project:
1. Modify PCWx.INI so that i nherit =1.
2. Open the project that contains the Style Sheet or tools you want to share.
3. Choose Project|New Project.

When the new project is created, it inherits the Style Sheets and user-defined tools of the
project that was open when you chose Project|New Project.

Project Description Language files

Y ou can aso share Style Sheets across projects by editing the Project Description
Language files (.PDL) associated with your projects. When you save a project, you can
instruct the Paradigm C++ IDE to create a.PDL file that has the same file name as the
project's Paradigm C++ IDE file. Likewise, when you open a project you can instruct the
Paradigm C++ IDE to read the project's .PDL file. Because a .PDL file contains
information about the Style Sheets and tools used in a project, you can edit a project's
.PDL file so that it uses the Style Sheet and tools of your choosing.

Be careful if you choose to edit .PDL files. If a .PDL fileis corrupted, the Project
Manager will not be able to read it. You may want to make a backup copy of the .PDL
file before you begin making changes.

A .PDL fileisatext file that is equivalent to a.IDE project file. Style sheet and Tools
information can be copied from one .PDL file to another, allowing you to quickly modify
Style Sheet and tools for your projects.

To edit the .PDL file:

1. Open the .PDL file containing the Style Sheet you want to share. Y ou can open the
.PDL file using any text editor or select File | Open with Text Edit selected as the
viewer.

2. Search for Subsystem = Style Sheet. Then, scan for the desired Style Sheet by name.
For example, if you created a Style Sheet called MY STYLE, you'll see asectionin
the .PDL filethat starts{ Styl eSheet = “MYSTYLE".

3. Copy dl the text from the beginning to the ending brace. Y ou can copy more than
one Style Shest.

To share a user-defined tool, copy the section that reads Subsystem=<tool>.

4. Edit the .PDL file that is going to use the copied Style Sheet.
5. Find the section for Style Sheets, then paste the copied text to the end of the existing
Style Sheet list.

6. Savethe .PDL file that received the copied Style Sheet. The .PDL file can be opened
as aproject like any .IDE project file by selecting Project | Open project.

Setting local overrides

Inherited options or Style Sheet options can be overridden at the node level using local
overrides. Local overrides are useful when a node's option settings must differ from its
associated Style Sheet by one or two settings. Set options for an individual node by
selecting Edit Local Options on the Project Tree window SpeedMenu or by selecting

32 Paradigm C++ User's Guide

Edit Local Options from the Edit Local Options on the Edit window SpeedMenu when
no project isloaded. The local options dialog box displays where the node is located in
the Project Manager and allows you to set options for that node.

Once options have been set, they become local overrides associated with the node. Local
Override are useful when you use a Style Sheet (perhaps inherited from a parent node).

D Although the local overrides make it easy to set options for individual nodes, they have
the disadvantage of being difficult to track. While the Options Hierarchy dialog box
displays the Style Sheet and local override settings for a selected node, you must
examine each individual node to see which ones have been overridden. Because of this,

it's recommended that you use separate Style Sheets for nodes that require different
option settings, and use local overrides only in special cases.

To override an option setting:
1. Choose the node whose settings you want to override.

2. Right-click the node (or press Alt-F10) and choose Edit Local Options from the
SpeedMenu. The Options dialog box (which is similar to the Project Options dialog
box) appears and displays the settings for that node.

3. Select the option you want to override. The Paradigm C++ IDE automatically checks
the Local Override box whenever you modify a Style Sheet setting.

4. Choose OK to confirm your new settings.

D The Local Override check box is enabled only when an option within a topic is selected
otherwise, the check box is grayed. When you select an option (using Tab, or by clicking
and dragging the mouse off the option), the Local Override check box shows the status
of the selected option. Because of this, you must individually select each option ina
topic to see which ones have been overriden locally. If you choose an option (by clicking
it, or by selecting it and pressing Enter), you change its setting , which always causes the
Local override check box to be checked.

To undo an override:

1. Right-click the node whose setting you want to modify, then choose Edit local
options from the SpeedMenu.

2. Inthe Options dialog box, select the topic that contains the overridden setting.

When you select atopic page that has a locally overridden option, the Project
Manager enables the Undo Page button.

3. Select the option (using Tab, or by clicking and dragging the mouse off the option)
whose local override you want to undo; the Loca Override checkbox will be
checked.

4. Click the Local Override check box to undo the override; the option will revert to
the default Style Sheet setting. To revert the entire topic to the settings contained in
the associated Style Sheet, choose the Undo Page button.

5. Choose OK to confirm your modifications.

View project options

Because each node can have its own Style Sheet and you can override the option in the
Style Sheet, you need a quick way to view the option settings for each node.

To view option settings for the nodes in your project:

1. Right-click any node in the Project window and choose View Options Hierarchy, or
click the button on the SpeedBar.

Chapter 3, Project options 33

4,

The Options Hierarchy dialog box appears, listing the nodes in the project on the left
and the options that each node uses on the right. Y ou can expand and collapse the
list of nodes in the dialog box just like you can in the Project window, however,
Autodependency nodes do not appear.

An option that's surrounded by double-asterisks (**) in the Options listing indicates
that the option is overridden (by either a Style Sheet or local override) by a
dependent node located farther down in the Options listing. (The asterisks display
only when you select the node where the option is overridden.)

When you select anode in the Project Options At list, its setting appears to the right
in the Options list.

The Options list displays components of the project in square brackets. At the top of
the list, you'll see the name of the project followed by its Default Project Options.
Below thisis the name of the target associated with the node you've selected. If the
node has a Style Sheet associated with it, it is displayed beneath the node (also in
brackets), along with the settings of the Style Sheet. If you've overridden any
settings, these are displayed beneath the [Node overrides] listing. The Options list
displays the setting for all the ancestors of the node selected in the Project Tree.

If you want to edit an option, double-click the option in the Option list, or select it
and click Edit. Whenever you edit options in this manner, the modifications become
local overrides.

When you finish viewing your project's option settings, choose Close.

Compiling projects

There are two basic ways to compile projects: built and make. Build compiles and links
all the nodes in a project, regardless of file dates. Make compares the time stamp of the
target with the time stamps of all the files used to build target. Make then compiles and
links only those nodes necessary to bring the target up to date.

To compile a project, open the project using the Project|Open command, then choose
either Compile, Make All, or Build All from the Project menu (note that the SpeedBar
has three similar looking buttons that correspond to these Project Menu commands).

34

Compile (Alt-F9) builds the code in the currently active Edit window. If a Project
window is selected, all the selected nodes in the project are trandated; child nodes
aren't trandated unless they're selected.

Make all (F9) trandates all the out-of-date nodes in a project. If a project is not
open, the file contained in the active Edit window buffer is built.

When you choose Make All, the Project Manager moves down the Project Tree until
it finds a node with no dependents. The Project Manager then compares the node's
date and time against the date and time of the node's parent. The Project Manager
trandates the node only if the child node is newer than the parent node. The Project
Manager then moves up the Project Tree and checks the next node's date and time.
In this way, the Project Manager recurses through the Project Tree, trandating only
those nodes that have been updated since the last compile.

Build All trandates all nodes in a project - even if they are up-to-date. Build All
always starts at the project node and builds each successive target down the project.
Choose Cancel to stop a build.

When you choose Build All, the Project Manager starts at the first target and works
down the Project Tree until it comesto a node with no dependents. The Project

Paradigm C++ User's Guide

Manager compiles that node first (and other nodes on the same level), then works
back up the Project Tree, compiling and linking all nodes needed to create the target.
This process is then repeated down the Project Tree, until al the targets have been
updated.

For example, if you have a project with an .LIB target that is dependent on two
separate .OBJfiles, the Project Manager creates the first .OBJ file by compiling all its
dependents. It then creates the next .OBJ file. Once atarget node's dependents are
created, it can compile or link the target node. In this case, the Project Manager will
link the two .OBJfilesto create the library.

Compiling part of a project

Y ou can compile part of aproject several ways:
. Trandate an individual node.

. Build anode and its dependents.

. Make anode and its dependents.

« Select several nodes and compile.

To trandate an individual node:

1. Select the node you want to trandlate.

2. Choose Project|Compile from the main menu or choose the default trandation
command from the SpeedMenu. For example, if you've selected a.CPP file, the node
SpeedMenu contains a C++ Compile command, which compiles only the selected
node.

To build anode and its dependents:

1. Choose the node you want to build.

2. Right-click the node (or press Alt-F10) and choose Build Node from the
SpeedMenu. All the dependent nodes are built regardless of whether they're out-of-
date.

To make anode and its dependents:

1. Choose the node you want to build.

2. Right-click the node (or press Alt-F10) and choose Make node from the SpeedMenu.
This command compiles only the dependent nodes whose source files are newer than
their associated target files.

To compile several selected nodes:

1. Select the project nodes you want to compile by pressing Ctrl and clicking the
desired project nodes. (The nodes must be the same file type, such as .CPP).

2. Choose Make Node or Build Node from the Project Manager SpeedMenu to compile
the selected nodes.

Fixing compile-time errors

Compile-time errors, or syntax errors, occur when your code violates a syntax rule of the
language you're programming in; the C++ compiler cannot compile your program unless
it contains valid language statements. If your compiler encounters a syntax error while
compiling your code, the Message window opens and displays the type of error or
warning it encountered. By choosing Options|Environment|Preferences, you can specify
if old messages should be preserved or deleted between calls to different programming

Chapter 3, Project options 35

tools (such as compiler, or GREP). Check Save Old Messages if you want the Message
window to retain its current listing of messages when you run atool.

To clear the Message window, choose Remove All Messages from the Message window
SpeedMenu.

Viewing errors

To view the code that caused a compiler error or warning, select the message in the
Message window; the Paradigm C++ IDE updates the Edit window so that it displays
the location in your code where the error or warning occurred (thisis called Automatic
Error Tracking). If the file containing the error isn't loaded in an Edit window, press
Spacebar to load the file (you can also load the file by pressing Alt-F10, then choosing
View Source from the SpeedMenu). When you view errors in this manner, the Message
window remains selected so you can navigate from message to message. To open or
view the Message window, click the button on the SpeedMenu, or choose
View|Message.

Fixing errors

To edit the code associated with an error or warning, do one of the following:

« Double-click the message in the Message window.

« Select the message in the Message window and press Enter.

« Press Alt-F10 and choode Edit Source from the SpeedMenu.

The Edit window gains focus with the insertion point placed on the line and column in
your source code where the compiler detected the error. From here, edit your code to fix

the error. After fixing the error, press Alt-F7 to move the next error message in the list
or press Alt-F8 to go back to the previous message.

Project options reference

Y ou set compiler, linker, librarian, and make options from two different placesin the
Paradigm C++ IDE: the Project Options multiple-page dialog box and TargetExpert.
The remainder of this chapter describes the options available in the Project Option dialog
box. They are described in alphabetical order.

16-bit compiler options

The 16-bit compiler options affect the compilation of all 16-bit source modules. It is
usually best to keep the default setting for most options in this section.

The subtopics are

« Processor

. Cadling convention

. Memory model

« Segment names data

« Segment names far data
« Segment names code

« Entry/Exit code

36 Paradigm C++ User's Guide

Calling conventions

Calling Convention options tell the compiler which calling sequences to generate for
function calls. The C, Pascal, and Register calling conventions differ in the way each
handles stack cleanup, order of parameters, case, and prefix of global identifiers.

Youcanusethe _cdecl, pascal, or __fastcall keywordsto override the default
calling convention on specific functions.

C
Command-line equivalent: -pc, -p-

This option tells the compiler to generate a C calling sequence for function calls
(generate underbars, case sengitive, push parametersright to left). Thisisthe same as
declaring all subroutines and functions with the _ _cdecl keyword. Functions declared
using the C calling convention can take a variable parameter list (the number of
parameters does not need to be fixed).

Pascal
Command-line equivalent: -p

This option tells the compiler to generate a Pascal calling sequence for function calls (do
not generate underbars, all uppercase, calling function cleans stack, pushes parameters
left to right). This is the same as declaring all subroutines and functions with the
__pascal keyword. The resulting function calls are usually smaller and faster than those
made with the C (-pc) calling convention. Functions must pass the correct number and
type of arguments.

Register

Command-line equivalent: -pr

This option forces the compiler to generate all subroutines and all functions using the
Register parameter-passing convention, which is equivalent to declaring al subroutine

and functions with the __fastcall keyword. With this option enabled, functions or
routines expect parameters to be passed in registers.

Default = C (-pc)

Memory model

The Memory Model section lets you specify the organization of segments for code and
datain your 16-bit programs. All .OBJand .LIB filesin your program should be
compiled in the same memory model.

The options are

. Modd
. Assume SS equals DS
Options

. Put constant strings in code segments
. Far virtual tables

. Automatic far data

+ Fast huge pointers

. Far datathreshold

Chapter 3, Project options 37

Assume SS equals DS

The Assume SS Equals DS options specify how the compiler considers the stack
segment (SS) and the data segment (DS).

Default for The memory model you use determines whether the stack segment (SS) is equal to the
memory datasegment (DS). Usually, the compiler assumesthat SSis equal to DS in the small and
model Medium memory models.

Never Command-line equivalent: -Fs-

The compiler assumes that the SSis never equal to DS. Thisis aways the case in the
compact and large memory models.

Always Command-line equivalent: -Fs

The compiler always assumes that SSisequal to DS in all memory models. Y ou can use
this option when porting code originaly written for an implementation that makes the
stack part of the data segment but you will have to provide replacement startup code for
this option to work.

Default = Default for Memory Model

Automatic far data
Command-line equivalent: -Ff

When the Automatic Far Data option is enabled, the compiler automatically places data
objects larger than or equal to the threshold size into far data segments. The threshold
size defaultsto 32,767. This option is useful for code that doesn't use the huge memory
model, but declares enough large global variables that their total size is closeto or
exceeds 64K. This option has no effect for programs that use small, and medium memory
models.

When this option ~ This option and the Far Data Threshold input box work together. The Far Data
is disabled, the Threshold specifies the minimum size above that which data objects will be automatically
size value is made far.

ignored
If you use this option with the Generate COMDEFs option (-Fc), the COMDEFs
become far in the compact, large, and huge models.

Default = OFF

The command-line option -Fm enables all the other -F options (-Fc, -Ff, and -Fs). You
can use -Fm as a handy shortcut when porting code from other compilers. To do thisin
the Paradigm C++ IDE, check the Automatic Far Data and Always options on this
Project Options page, and the Generate COMDEFs option on the Compiler|Floating
Point page.

Page alignment for far segments
Command-line equivalent: -Fa

Allows you to change from paragraph (alignment on a 16-byte boundary) to page
alignment (256-byte boundary alignment) of far segments.

38 Paradigm C++ User's Guide

Borland C++-compatible far data
Command-line equivalent: -Fb

Enables Borland C++ compatible far data segments. When enabled, Paradigm C++ will
combine initialized and uninitialized far datainto the FAR_DATA class instead of
placing initialized far datain class FAR_DATA and uninitialized far datain class
FAR_BSS.

Make all constant data far
Command-line equivalent: -dx

This option forces all constant data to be far so it can be placed in aread-only memory
address space. Inthe past the _far keyword was required to do this but with this
option all constant data will be treated as far by the Paradigm C++ compiler.

Pack far segments

Command-line equivalent: -Fp

This option if enabled allows the packing of far undimensioned arrays into the same
segment, if space permitsthis. Normally far undimensioned arrays are placed in separate
segments since the compiler did not know the size of the array until the initializers had
been parsed. This option enables a compiler change that calculates the array size to
allow far arrays to be placed in the same segment whenever possible, saving alignment
bytes. Support for this option is preliminary and it can only be enabled using the
Paradigm C++ IDE by adding the #pragma option --Fp to the source code.

Far data threshold
Command-line equivalent: -Ff=size, where size= threshold size

Use Far Data Threshold to specify the size portion needed to complete the Automatic
Far Data option.

Default = 32767 (if Automatic Far Datais disabled, this option value is ignored)

Far virtual tables

Command-line equivalent: -Vf

When you turn this option on, the compiler creates virtual tables in the code segment
instead of the data segment, unless you override this option using the Far Virtual Tables
Segment (-zV) or Far Virtual Tables Class (-z2W) options. Virtua table pointers are
made into full 32-bit pointers (which is done automatically if you are using the huge
memory model).

Y ou can use Far Virtual Tables to remove the virtual tables from the data segment
(which might be getting full). Y ou might also use this option to share objects (of classes
with virtual functions) between modules that use different data segments.

Y ou must compile all modules that might share objects entirely with or entirely without
this option.

D Y ou can get the same effect by using the huge or _export modifiers on a class-by-class
basis.
This option changes the mangled names of C++ objects.
Default = OFF

Chapter 3, Project options 39

Small

Medium

Fast huge pointers
Command-line equivalent: -h

This option offers an aternative method of calculating huge pointer expressions.

For 16-bit real-mode programs, this option offers a faster method of “normalizing” than
the standard method. (Normalizing is resolving a memory address so that the offset is
always less than 16.) When you use this option, huge pointers are normalized only when
a segment wraparound occurs in the offset part, which causes problems with huge arrays
if an array element crosses a segment boundary.

Usually, Paradigm C++ normalizes a huge pointer whenever adding or subtracting from
it. This ensures, for example, that if you have an array of structsthat’s larger than 64K,
indexing into the array and selecting a struct field always works with structs of any size.
Paradigm C++ accomplishes this by always normalizing the results of huge pointer
operations--the address offset contains a number that is no higher than 15 and a segment
wraparound never occurs with huge pointers. The disadvantage of this approach is that it
tends to be quite expensive in terms of execution speed.

Default = OFF

Model

The Model options specify the memory model you want to use. The memory model you
choose determines the default method of memory addressing.

Command-line equivalent: -ms

Use the small model for average size applications. The code and data segments are
different and don't overlap, so you have 64K of code and 64K of data and stack. Near
pointers are always used.

The -ms! command-line option compiles using the small model and assumes DS != SS.
To achieve thisin the Paradigm C++ IDE, you need to check both the Small and Never
options.

Command-line equivalent: -mm

Use the medium model for large programs that do not keep much data in memory. Far
pointers are used for code but not for data. Data and stack together are limited to 64K,
but code can occupy up to 1 MB.

The -mm! command-line option compiles using the medium model and assumes DS =
SS. To achieve thisin the Paradigm C++ IDE, you need to check both the M eduim and
Never options.

The net effect of the -ms! and -mm! optionsis actually very small. If you take the
address of a stack variable (parameter or auto), the default (DS == SS) isto make the
resulting pointer anear (DS relative) pointer. Thisway, you can assign the addressto a
default-sized pointer in those models without problems. When DS =SS, the pointer
type created when you take the address of a stack variable isan _ss pointer. This means
that the pointer can be freely assigned or passed to a far pointer or to an _ss pointer. But
for the memory models affected, assigning the address to a near or default-sized pointer
produces a “ Suspicious pointer conversion” warning. Such warnings are usualy errors.

40 Paradigm C++ User's Guide

Compact

Large

Huge

8086

Command-line equivalent: -mc

Use the compact model if your code is small but you need to address alot of data. The
Compact model is the opposite of the medium model: far pointers are used for data but
not for code; code is limited to 64K, pointers can point amost anywhere. All functions
are near by default and all data pointers are far by default.

Command-line equivalent: -ml

Use the large model for fairly large real mode applications or any extended mode
application. Far pointers are used for both code and data. Data is limited to 1MB. Far
pointers can point almost anywhere. All functions and data pointers are far by default.

Command-line equivalent: -mh, 16-bit real mode only

Use the huge model for very large applications only. Far pointers are used for both code
and data. Paradigm C++ normally limits the size of all static data to 64K; the huge
memory model sets aside that limit, allowing data to occupy more than 64K.

Default = Large in the Paradigm C++ IDE; Small in PCC.EXE

Put constant strings in code segments
Command-line equivalent: -dc

This option moves all string literals from the data segment to the code segment of the
generated object file, making the data type const.

Use this option only with compact, large, or huge memory models since far data pointers
are needed to access the string literals in the code segment.

Using this option saves data segment space. Thisis true especially in large programs with
alarge number of literal strings. This option shifts the burden from the data segment to
the code segment, so that the string literals are no longer copied to RAM.

Default = OFF

Processor

The Processor options let you specify the minimum CPU type compatible with your
program. These options introduce instructions specific to the CPU type you select to
increase performance.

The options are

« Instruction set
. Dataaignment

16-bit instruction set

The Instruction Set options specify for which CPU instruction set the compiler should
generate code.

Command-line equivalent: -1-

Chapter 3, Project options 41

80186

80286

80386

i486

Pentium

Byte
alignment

Word
alignment (2-
byte)

Choose the 8086 option if you want the compiler to generate 16-bit code for the 8086-
compatible instruction set. (To generate 8086 code, you must not turn on the options -2,
-3, or -4, or -5.) This option is the default for 16-hit.

Command-line equivalent: -1

Choose the 80186 option if you want the compiler to generate extended 16-bit code for
the 80186 instruction set. Also supports the 80286 running in Real mode.

Command-line equivalent: -2

Choose the 80286 option if you want the compiler to generate 16-bit code for the 80286
protected-mode-compatible instruction set.

Command-line equivalent: -3

Choose the 80386 option if you want the compiler to generate 16-bit code for the 80386
protected-mode-compatible instruction set.

Command-line equivalent: -4

Choose the 1486 option if you want the compiler to generate 80386/i486 instructions
running in enhanced-mode Windows.

Default = 8086 (-1-)

Command-line equivalent: -5

Choose the Pentium option if you want the compiler to generate Pentium instructions
running in enhanced-mode Windows.

Data alignment

The Data Alignment options let you choose the compiler aligns datain stored memory.
Word, double-word, and quad-word alignment forces integer-size and larger itemsto be
aligned on memory addresses that are a multiple of the type chosen. Extra bytes are
inserted in structures to ensure that members align correctly.

Command-line equivalent: -al or -a-

When Byte Alignment is turned on, the compiler does not force alignment of variables or
datafields to any specific memory boundaries; the compiler aligns data at either even or
odd addresses, depending on which is the next available address.

While byte-wise alignment produces more compact programs, the programs tend to run
abit slower. The other data alignment options increase the speed that 80x86 processors
fetch and store data.

Command-line equivalent: -a2

When Word Alignment is on, the compiler aligns non-character data at even addresses.
Automatic and global variables are aligned properly. char and unsigned char variables

42 Paradigm C++ User's Guide

Double word
(4-byte)

Quad word
(8-byte)

Do not change
the settings in
this dialog box
unless you are

an expert.

Code
segment

Code group

Code class

[]

and fields can be placed at any address; all others are placed at an even-numbered
address.

Command-line equivalent: -a4, 32-bit only

Double Word alignment aligns non-character data at 32-bit word (4-byte) boundaries.
Command-line equivalent: -a8, 32-bit only

Quad Word alignment aligns non-character data at 64-bit word (8-byte) boundaries.
Default = Byte Alignment (-a-)

Segment names code

Segment Names Code options let you specify a new code segment name and reassign the
group and class.

The options are

. Code segment
. Codegroup
. Codeclass

Code
Use Code to change the name of the code segment as well as the code group and class.

In all options, use an asterisk (*) for name to select the default segment names.

Command-line equivalent = -zCname

Sets the name of the code segment to name. By default, the code segment is named
_CODE for near code and modulename_TEXT for far code, except for the medium and
large models where the name is filename_TEXT (filename is the source file name).

Command-line equivalent = -zPname

Causes any output filesto be generated with a code group for the code segment named
name.

Command-line equivalent = -zAname

Changes the name of the code segment class to name. By default, the code segment is
assigned to class CODE.

Default = * (default segment name) for all options

Segment names data

Use Segment Names Data to change the default segment, group, and class names for
initialized and uninitialized data.
Do not change the settings in this dialog box unless you have a good understanding of

segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Chapter 3, Project options 43

[]

Initialized
data class

Initialized
data group

Initialized
data
segment

[]

Uninitialized
data (BSS
class)

Uninitialized
data (BSS
group)

The options available are

. Initialized Data
« Uninitialized Data

Initialized data

Use Initialized data to change the default segment, group, and class names for initialized
data.

In all options, use an asterisk (*) for name to select the default segment names.

Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Command-line equivalent = -ZT name

Sets the name of the initialized data segment to name. By default, the initialized data
segments class is named DATA.

Default = * (default segment name) for all options

Command-line equivalent = -zSname

Sets the name of the initialized data ssgment group to name. By default, the data group
is named DGROUP.

Command-line equivalent = -zRname

Sets the name of the initialized data segment to name. By default, the initialized data
segment isnamed _DATA for near data and modulename_DATA for far data

Uninitialized data

Use Uninitialized Data to change the default segment, group, and class names for code
uninitialized data.

In all options, use an asterisk (*) for name to select the default segment names.

Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Command-line equivalent = -zBname

Sets the name of the uninitialized data segment class to name. By default, the
uninitialized data segments are assigned to class BSS.

Default = * (default segment name) for all options

Command-line equivalent = -zGname

Sets the name of the uninitialized data segment group to name. By default, the data
group is named DGROUP.

44 Paradigm C++ User's Guide

Uninitialized
data (BSS
segment)

[]

Far data
class

Far data
group

Far data
segment

[]

Far
uninitialized
data class

Command-line equivalent = -zDname

Sets the name of the uninitialized data segment. By default, the uninitialized data
segment isnamed _BSS for near uninitialized data and modulename_BBS for far
uninitialized data.

Segment names far data

16-bit Compiler|Segment Names Far Data options set the far data segment name, group,
class name, and the far virtual tables segment name and class.

Far initialized data

Use the far uninitialized data options to change the default segment, group, and class
names for far initialized data. These options also apply to far uninitialized data if the -Fb
option is enabled. In all options, use an asterisk (*) for name to select the default
segment names.

Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Command-line equivalent = -zFname

Sets the name of the classfor __far initialized objects to name. By default, the nameis
FAR DATA.

Default = * (default segment name) for al options

Command-line equivalent = -zHname

Causes __far initialized objects to be placed into the group name. By default, far objects
are not placed into a group.

Command-line equivalent = -zEname

Sets the name of the segment where __far initialized objects are placed to name. By
default, the segment name is the name of the object module followed by DATA.

Far uninitialized data

Use the far uninitialized data options to change the default segment, group, and class
names for far uninitialized data. In al options, use an asterisk (*) for name to select the
default segment names.

Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Command-line equivalent = -zY name

Sets the name of the classfor __far uninitialized objects to name. By default, the name
isFAR_BSS.

Default = * (default segment name) for all options

Chapter 3, Project options 45

Far
uninitialized
data group

Far
uninitialized
data
segment

[]

Virtual table
class

Virtual table
segment

Command-line equivalent = -zZname

Causes uninitialized _ _far objectsto be placed into the group name. By default, far
uninitialized objects are not placed into a group.

Command-line equivalent = -zXname

Sets the name of the segment where uninitialized __far objects are placed to name. By
default, the segment name is the name of the object module followed by BSS.

Far virtual tables
Use Far Virtual Tablesto change the default segment and class names virtual tables.

In all options, use an asterisk (*) for name to select the default segment names.

Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Command-line equivalent = -zZ\Wname

Sets the name of the far virtual table class segment to name. By default, far virtua table
classes are generated in the CODE segment.

Default = * (default segment name) for al options

Command-line equivalent = -zZVname

Setsthe name of the __far virtual table segment to name. By default, far virtual tables
are generated in the CODE segment.

Entry/Exit code

These options specify which type of prolog and epilog code the compiler generates for
each modul€e's functions.

32-bit compiler options

The 32-bit Compiler page contains options specific to the compiler used for 32-bit
protected mode development.

Paradigm optimizing compiler

The Paradigm optimizing compiler is afast compiler and it produces small executable
files. If you are compiling from the command line, use PCC32.EXE.

32-bit compiler options

32-bit compiler options listed on the Processor and Calling Convention pages affect the
compilation of al 32-bit applications. Because 32-bit programs use a flat memory model
(they are not segmented), there are fewer options to configure than for 16-bit programs.

46 Paradigm C++ User's Guide

These options
should be used
by experts only.

C

Pascal

Register

Standard
Call

Calling conventions

Calling Convention options tell the compiler which calling sequences to generate for
function calls. The C, Pascal, and Register calling conventions differ in the way each
handles stack cleanup, order of parameters, case, and prefix of global identifiers.

Youcanusethe _cdecl, pascal, fastcall, or __stdcall keywordsto override the
default calling convention on specific functions.

Command-line equivalent: -pc, -p-

This option tells the compiler to generate a C calling sequence for function calls
(generate underbars, case sengitive, push parametersright to left). Thisisthe same as
declaring all subroutines and functions with the _ _cdecl keyword. Functions declared
using the C calling convention can take a variable parameter list (the number of
parameters does not need to be fixed).

Youcanusethe _pascal, _ fastcall, or _ _stdcall keywordsto specifically declare a
function or subroutine using another calling convention.

Command-line equivalent: -p

This option tells the compiler to generate a Pascal calling sequence for function calls (do
not generate underbars, all uppercase, calling function cleans stack, pushes parameters
left to right). This is the same as declaring all subroutines and functions with the
__pascal keyword. The resulting function calls are usually smaller and faster than those
made with the C (-pc) calling convention. Functions must pass the correct number and
type of arguments.

Youcanusethe _cdecl, fastcall, or __stdcall keywordsto specifically declare a
function or subroutine using another calling convention.

Command-line equivalent: -pr

This option forces the compiler to generate all subroutines and all functions using the
Register parameter-passing convention, which is equivalent to declaring al subroutine
and functions with the __fastcall keyword. With this option enabled, functions or
routines expect parameters to be passed in registers.

Youcanusethe _pascal, _cdecl, or __stdcall keywordsto specifically declare a
function or subroutine using another calling convention.

Command-line equivalent: -ps

This option tells the compiler to generate a Stdcall calling sequence for function calls
(does not generate underscores, preserve case, called function pops the stack, and
pushes parameters right to left). Thisisthe same as declaring all subroutines and
functionswith the __stdcall keyword. Functions must pass the correct number and type
of arguments.

Youcanusethe _cdecl, pascal, _fastcall keywordsto specificaly declare a
function or subroutine using another calling convention.

Default = C (-pc)

Chapter 3, Project options 47

Processor

The 32-bit Compiler Processor options specify which CPU instruction set to use and
how to handle floating-point code for 32-hit programs.

32-bit TheInstruction Set options specify for which CPU instruction set the compiler should
instruction generate code.
set
80386 Command-line equivalent: -3

Choose the 80386 option if you want the compiler to generate 80386 protected-mode
compatible instructions.

i486 Command-line equivalent: -4

Choose the 1486 option if you want the compiler to generate 1486 protected-mode
compatible instructions.

Pentium Command-line equivalent: -5
Choose the Pentium option if you want the compiler to generate Pentium instructions.

While this option increases the speed at which the application runs on Pentium machines,
expect the program to be a bit larger than when compiled with the 80386 or 1486
options. In addition, Pentium-compiled code will sustain a performance hit on non-
Pentium systems.

Default = 80386 (-3)

Build attributes

Build attributes affect whether or not a node is built during compilation. The icons
associated with each of these options are displayed next to the nodes in the Project
hierarchy diagram. Build attributes are set in the Options|Project dialog box.

Always build

Check Always Build and the node is always built, even if it has not changed.

Build when out of date

Check Build When Out of Date and the node is built only if it has changed.

Never build

Check Never Build and the node is not built.

Can't build

Check Can't Build to be notified when a node cannot be built.

Exclude from parent

Check Exclude from Parent and the system indicates when a node should be excluded
from parent (such as with source pools).

48 Paradigm C++ User's Guide

C++ options

Project|C++ Options affect compilation of al C and C++ programs. For most of the C++
options, you'll usually want to use the default settings.

C++ compatibility

Use the C++ Compatibility options to handle C++ compatibility issues, such as handling
‘char’ types, specifying options about hidden pointers, passing class arguments, adding
hidden members and code to a derived class, passing the 'this pointer to 'Pascal’ member
functions, changing the layout of classes, or insuring compatibility when class instances
are shared with non-C++ code or code compiled with previous versions of Paradigm
C++.

‘deep’ virtual bases

(Command-line equivalent: -Vv)

When a derived class overrides a virtual function which it inherits from a virtua base
class, and a constructor or destructor for the derived class calls that virtual function
using a pointer to the virtual base class, the compiler can sometimes add hidden members

to the derived class. These “hidden members’ add code to the constructors and
destructors.

This option directs the compiler not to add the hidden members and code so that the
class instance layout is the same as with previous version of Paradigm C++; the compiler
does not change the layout of any classesto relax the restrictions on pointers.

Default = OFF

Calling convention mangling compatibility
(Command-line equivalent: -VC)

When this option is enabled, the compiler disables the distinction of function names
where the only possible difference is incompatible code generation options. For example,
with this option enabled, the linker will not detect if acall ismadetoa__fastcall
member function with the cdecl calling convention.

This option is provided for backward compatibility only; it lets you link old library files
that you cannot recompile.

Default = OFF

Disable constructor displacements
(Command-line equivalent: -Vc)

When the Disable Constructor Displacements option is enabled, the compiler does not
add hidden members and code to a derived class (the default).

This option insures compatibility with previous versions of the compiler.
Default = OFF

Do not treat 'char' as distinct type
(Command-line equivalent: -K 2, 16-hit)

Allow only signed and unsigned char types. The Paradigm C++ compiler allows for
signed char, unsigned char, and char data types. This option treats char as signed.

Chapter 3, Project options 49

This option
insures
compatibility with
previous
versions of the
compiler.

This option is provided for compatibility with previous versions of Paradigm C++ (3.1
and earlier) and supports only 16-bit programs.

Default = OFF

Don't restrict scope of 'for’' loop expression variables
Command-line equivalent: -vVd

This option lets you specify the scope of variables declared in for loop expressions. The
output of the following code segment changes, depending on the setting of this option.
i nt mai n(voi d)

{

for(int i=0; i<10; i++)
{

cout << "Inside for loop, i =" << i << endl
} /lend of for-loop bl ock
cout << "Qutside for loop, i =" <<i << endl; /[/error without
-vd
} /1 end of block containing for |oop

If this option is disabled (the default), the variable i goes out of scope when processing
reaches the end of the for loop. Because of this, you'll get an Undefined Symbol
compilation error if you compile this code with this option disabled.

If this option is enabled (-Vd), the variable i goes out of scope when processing reaches
the end of the block containing the for loop. In this case, the code output would be:

Inside for loop, i =0
tﬁiside for loop, i =10
Default = OFF

Pass class values via reference to temporary

Command-line equivalent: -Va

When this option is enabled, the compiler passes class arguments using the "reference to
temporary" approach. When an argument of type class with constructors is passed by
value to afunction, this option instructs the compiler to create atemporary variable at

the calling site, initialize this temporary variable with the argument value, and pass a
reference from this temporary to the function.

Default = OFF

Push 'this' first for Pascal member functions
Command-line equivalent: -Vp

When this option is enabled, the compiler passes the this pointer to Pascal member
functions as the first parameter on the stack.

By default, the compiler passes the this parameter as the last parameter on the stack,
which permits smaller and faster member function calls.

Default = OFF

50 Paradigm C++ User's Guide

The Virtual Base
Pointers options
specify options
about the hidden
pointer.

Always near

This option
allows for the
smallest and
most efficient
code.

Same size
as 'this'
pointer

Treat 'far’' classes as 'huge’
Command-line equivalent -Vh

When this option is enabled, the compiler treats all classes declared __far asif they were
declared as___huge. For example, the following code normally failsto compile.
Checking this option allows the following code fragment to compile:

struct _ _huge A
virtual void f(); // Avtable is required to see the error.

st ruct _far B : public A
{

/} Error: Attenpting to derive a far class fromthe huge base 'A'.

Default = OFF

Virtual base pointers

When a class inherits virtually from a base class, the compiler stores a hidden pointer in
the class object to access the virtual base class subobject.

Command-line equivalent: -Vb-

When the Always Near option is on, the hidden pointer will aways be a near pointer.
(When a class inherits virtually from a base class, the compiler stores a hidden pointer in
the class object to access the virtual base class subobject.)

Command-line equivalent: -Vb

When the Same Size as ‘this Pointer option is on, the compiler matches the size of the
hidden pointer to the size of the this pointer in the instance class.

This allows for compatibility with previous versions of the compiler.
Default = Always Near (-Vb-)

Vtable pointer follows data members
Command-line equivalent -Vt

When this option is enabled, the compiler placesthe virtual table pointer after any
nonstatic data members of the specified class.

This option insures compatibility when class instances are shared with non-C++ code and
when sharing classes with code compiled with previous versions of Paradigm C++.

Default = OFF

Exception handling/RTTI

Use the Exceptions Handling options to enable or disable exception handling and to tell
the compiler how to handle the generation of run-time type information.

If you use exception handling constructs in your code and compile with exceptions
disabled, you'll get an error.

Chapter 3, Project options 51

Enable exceptions
Command-line equivalent: -x
When this option is enabled, C++ exception handling is enabled. If this option is disabled

(-x-) and you attempt to use exception handling routines in your code, the compiler
generates error messages during compilation.

Disabling this option makes it easier for you to remove exception handling information
from programs; this might be useful if you are porting your code to other platforms or
compilers.

D Disabling this option turns off only the compilation of exception handling code; your
application can still include exception code if you link .OBJ and library files that were
built with exceptions enabled (such as the Paradigm standard libraries).

Default = ON

Enable run-time type information
Command-line equivalent: -RT

This option causes the compiler to generate code that allows run-time type identification.

In general, if you set Enable Destructor Cleanup (-xd), you will need to set this option as
well.

Default = ON

Enable Command-line equivalent: -xp
exception

location When this option is enabled, run-time identification of exceptions is available because the

_ _ compiler provides the file name and source-code line number where the exception
information gecyrred. This enables the program to query file and line number from where a C++
exception was thrown.

Default = OFF

Enable Command-line equivalent: -xd

destructor \ynen this option is enabled and an exception is thrown, destructors are called for all

cleanup 4 tomatically declared objects between the scope of the catch and throw statements.

In general, when you enable this option, you should also set Enable Runtime Type
Information (-RT) as well.

D Destructors are not automeatically called for dynamic objects alocated with new, and
dynamic objects are not automatically freed.

Default = ON

Enable fast Command-line equivalent: -xf

€XCeption \yhen this option is enabled, inline code is expanded for every exception handling

prologs fynction. This option improves performance at the cogt of larger executable file sizes.

D If you select both Fast Exception Prologs and Enable Compatible Exceptions (-xc), fast
prologs will be generated but Enable Compatible Exceptions will be disabled (the two
options are not compatible).

52 Paradigm C++ User's Guide

Default = OFF

Enable Command-line equivalent: -xc, 16-bit only

compatible rpig option allows relocatable load modules and .LIBs built with Paradigm C++ to be

exceptions compatible with executables built with other products. When Enable Compatible
Exceptions is disabled, some exception handling information is included in the
relocatable load module, which could cause compatibility issues.

Default = OFF

General

Zero-length empty base classes
Command-line equivalent: -Ve

Usually the size of aclassis at least one byte, even if the class does not define any data
members. When this option is enabled, the compiler ignores this unused byte for the
memory layout and the total size of any derived classes.

Default = OFF

Member pointer

Use C++ Member Pointers options to direct member pointers and affect how the
compiler treats explicit casts.

Honor precision of member pointers
Command-line equivalent: -Vmp

When this option is enabled, the compiler uses the declared precision for member pointer
types. Use this option when a pointer to a derived classis explicitly cast as a pointer-to-
member of a smpler base class (when the pointer is actually pointing to a derived class
member).

Default = OFF

Member pointer representation
The C++ Member pointers options specify what member pointers can point to.

Support all Command-line equivalent: -Vmv

CaS€S \When this option is enabled, the compiler places no restrictions on where member

pointers can point. Member pointers use the most general (but not always the most
efficient) representation.

Default = ON

Support Command-line equivalent: -Vmm
multiple

_) When this option is enabled, member pointers can point to members of multiple
inheritance

inheritance classes (with the exception of virtual base classes).
Default = OFF

Chapter 3, Project options 53

Support
single
inheritance

Smallest for
class

Smart

This is a
convenient way
of generating
template
instances.

Global

External

Command-line equivalent: -Vms

When this option is enabled, member pointers can point only to members of base classes
that use single inheritance.

Default = OFF

Command-line equivalent: -Vmd

When this option is enabled, member pointers use the smallest possible representation
that allows member pointers to point to all members of their particular class. If the class
is not fully defined at the point where the member pointer type is declared, the most
general representation is chosen by the compiler and a warning is issued.

Default = OFF

Templates

Use the options under C++ Options|Templates to tell the compiler how to generate
template instances in C++.

Templates instance generation

The Template Instance Generation options specify how the compiler generates template
instancesin C++.

Command-line equivalent: -Jg

When the Smart option is enabled, the compiler generates public (global) definitions for
all template instances. If more than one module generates the same template instance, the
linker automatically merges duplicates to produce a single copy of the instance.

To generate the instances, the compiler must have available the function body (in the
case of atemplate function) or the bodies of member functions and definitions for static
data members (in the case of atemplate class), typically in a header file.

Default = ON

Command-line equivalent: -Jgd

When the Global option is on, the compiler generates public (global) definitions for all
template instances.

The Global option does not merge duplicates. If the same template instance is generated
more than once, the linker reports public symbol re-definition errors.

Default = OFF

Command-line equivalent: -Jgx

When the External option is on, the compiler generates external referencesto all
template instances.

When you use this option, al template instances in your code must be publicly defined in
another module with the external option (-Jgd) so that external references are properly
resolved.

54 Paradigm C++ User's Guide

Smart

Local

External

[]

Public

Default = OFF

Virtual tables

C++ Optiong|Virtual Tables options control C++ virtual tables and the expansion of
inline functions when debugging.

Virtual tables linkage

The C++ Virtual Tables options control C++ virtua tables and the expansion of inline
functions when debugging.

Command-line equivalent: -V

This option generates common C++ virtual tables and out-of-line inline functions across
the modules in your application. As aresult, only one instance of a given virtual table or
out-of-line inline function isincluded in the program.

The Smart option generates the smallest and most efficient executables, but produces
.OBJand .ASM files compatible only with PLINK and PASM.

Default = ON

Command-line equivalent: -V's

Y ou use the Local option to generate local virtua tables (and out-of-line inline
functions) so that each module gets its own private copy of each virtual table or inline
function it uses.

The Local option uses only standard .OBJ and .ASM constructs, but produces larger
executables.

Default = OFF

Command-line equivalent: -VO

Y ou use the External option to generate external references to virtual tables. If you don’'t
want to use the Smart or Local options, use the External and Public options to produce
and reference global virtual tables.

When you use this option, one or more of the modules comprising the program must be
compiled with the Public option to supply the definitions for the virtual tables.

Default = OFF

Command-line equivalent: -V1

Public produces public definitions for virtua tables. When using the External option (-
V0), at least one of the modules in the program must be compiled with the Public option
to supply the definitions for the virtual tables. All other modules should be compiled with
the External option to refer to that Public copy of the virtual tables.

Default = OFF

Chapter 3, Project options 55

Compiler options

Compiler options are common to all C and C++ programs. They directly affect how the
compiler generates code.

Defines

Command-line equivalent: -Dname and -Dname=string

The macro definition capability of Paradigm C++ lets you define and undefine macros
(also called manifest or symbolic constants) in the Paradigm C++ IDE or on the
command line. The macros you define override those defined in your source files.

D You can usethe SINHERIT and $ENV () macros to specify the defines for the project
node you are modifying.

Defining macros from the Paradigm C++ IDE

Preprocessor definitions (such as those used in #if statements and macro definitions) can
be entered on the Compiler Defines page. The following rules apply when using the
Defines input box:

. Separate multiple definitions with semicolons (;), and assign values with an equal
sign (=). For example:
Swi t chl; Switch2; Swit ch3=0OFF
« Leading and trailing spaces are stripped, but embedded spaces are left intact.

« If you want to include a semicolon in a macro, precede the semicolon with a
backdlash (V).

Defining macros on the command line

On the command line, the -Dname option defines the identifier name to the null string. -
Dname=string defines name to string. In this assignment, string cannot contain spaces
or tabs. You can aso define multiple #define options on the command line using either
of the following methods:

« Include multiple definitions after a single -D option by separating each define with a
semicolon (;) and assigning values with an equal sign (=). For example:
PCC. EXE - Dxxx; yyy=1; zzz=NO MyFI LE. C
« Include multiple -D options, separating each with a space. For example:
PCC. EXE - Dxxx -Dyyy=1 -Dzzz=NO MYFI LE. C

Code generation

Compiler Code Generation options affect how code is generated.

Allocate enums as ints
Command-line equivalent: -b
When the Allocate Enums As Ints option is on, the compiler always allocates a whole

word (atwo-byte int for 16-bits or a four-byte int for 32-bits) for enumeration types
(variables of type enum).

When this option is off (-b-), the compiler allocates the smallest integer that can hold the
enumeration values: the compiler allocates an unsigned or signed char if the values of
the enumeration are within the range of 0 to 255 (minimum) or -128 to 127 (maximum),

56 Paradigm C++ User's Guide

or an unsigned or signed short if the values of the enumeration are within the following
ranges.

. 010 65,535 (minimum) or -32,768 to 32,767 (maximum) (16-bit)

. 0104,294,967,295 or -2,147,483,648 to 2,147,483,647 (32-hit)

The compiler allocates atwo-byte int (16-bit) or afour-byte int (32-bit) to represent the
enumeration values if any value is out of range.

Default = ON

Duplicate strings merged
Command-line equivalent: -d

When you check the Duplicate Strings Merged option, the compiler merges two literal
strings when one matches another. This produces smaller programs (at the expense of a
dightly longer compile time), but can introduce errors if you modify one string.

Default = OFF (-d-)

fastthis
Command-line equivalent: -po, 16-bit only

This option causes the compiler to usethe _ _fastthis calling convention when passing
the this pointer to member functions. The this pointer is passed in aregister (or a
register pair in 16-bit large data models). Likewise, calls to member functions load the
register (or register pair) with this. Note that you can use __fastthisto compile specific
functions in this manner.

When thisisa'near' (16-bit) pointer, it is supplied in the Sl register; for ‘far’ this
pointers, DS:SI is used. If necessary, the compiler saves and restores DS. All references
in the member function to member data are done viathe Sl register.

The names of member functions compiled with __fastthis are mangled differently from
non-fastthis member functions, to prevent mixing the two. It is easiest to compile all
classeswith __fastthis, but you can compile some classes with _ _fastthis and some
without, as in the following example:

/1 no -po on the conmand-1ine

class X;

#pragna option -po

class Y /1Y will use fastthis

{

class X [/ Xwll not use fastthis,

{ //since its class declaration

[appeared before fastthis was turned on

b

#pragma option -po-

D If you use a makefile to build a version of the class library that has___fastthis enabled,
you must define CLASSLI B_ALLOW po and use the -po option. The
_CLASSLI B_ALLOW po macro can be defined in
<Your_PCW_dir>\INCLUDE\paradigm.h

If you use a makefile to build a___fastthis version of the run-time library, you must
define_RTL_ALLOW po and use the -po option.

Chapter 3, Project options 57

None

Register
keyword

You can use -rd
in #pragma
options.

Automatic

If you rebuild the libraries and use -po without defining the appropriate macro, the linker
emits undefined symbol errors.

Default = OFF

Register variables
These options suppress or enable the use of register variables.

Command-line equivalent: -r-

Choose Noneto tell the compiler not to use register variables even if you have used the
register keyword.

Command-line equivalent: -rd

Choose Register Keyword to tell the compiler to use register variables only if you use
theregister keyword and aregister is available. Use this option or the Automatic option
(-r) to optimize the use of registers.

Command-line equivalent: -r

Choose Automatic to tell the compiler to automatically assign register variables if
possible, even when you do not specify aregister variable by using the register type
specifier.

Generally, you can keep this option set to Automatic unless you are interfacing with
preexisting assembly code that does not support register variables.

Default = Automatic (-r)

Unsigned characters
Command-line equivalent: -K

When the Unsigned Characters option is on, the compiler treats all char declarations as
if they were unsigned char type, which provides compatibility with other compilers.

Default = OFF (char declarations default to signed; -K-)

Floating point

The Foating Point options specify how the compiler handles floating-point numbersin
your code.

Correct Pentium FDIV flaw
Command-line equivalent: -fp

Some early Pentium chips do not perform specific floating-point division calculations

with full precision. Although your chances of encountering this problem are dim, this

switch inserts code that emulates floating-point division so that you are assured of the
correct result. This option decreases your program's FDIV instruction performance.

Use of this option only corrects FDIV instructions in modules that you compile. The run-
time library also contains FDIV instructions which are not modified by the use of this
switch. To correct the run-time libraries, you must recompile them using this switch.

58 Paradigm C++ User's Guide

The following functions use FDIV instructions in assembly language which are not
corrected if you use this option:

acos cosh pow10l
acod coshl powl
asin cod sin
asinl exp sinh
atan expl sinhl
atan?2 fmod sinl
atan2| fmodl tan
atanl pow tanh
cos pow10 tanhl
tanl

In addition, this switch does not correct functions that convert a floating-point number to
or from a string (such as printf or scanf).

Default = OFF

No floating point

Command-line equivalent: -f-

Choose No Floating Point if you are not using floating point. No floating-point libraries
are linked when this option is enabled (-f-). If you enable this option and use floating-

point calculationsin your program, you will get link errors. When unchecked (-f), the
compiler emulates 80x87 calls at run-time.

Default = OFF (-f)

Fast floating point
Command-line equivalent: -ff

When Fast Floating Point is on, floating-point operations are optimized without regard
to explicit or implicit type conversions. Calculations can be faster than under ANSI
operating mode.

When this option is unchecked (-ff-), the compiler follows strict ANSI rules regarding
floating-point conversions.

Default = OFF

Compiler output

Set control of object file contents on the Compiler Output page.

Autodependency information
Command-line equivalent: -X-

When the Autodependency option is checked (-X-), the compiler generates
autodependency information for al project fileswith a.C or .CPP extension.

The Project Manager can use autodependency information to speed up compilation
times. The Project Manager opens the .OBJ file and looks for information about files

Chapter 3, Project options 59

included in the source code. This information is always placed in the .OBJ file when the
source module is compiled. After that, the time and date of every file that was used to
build the .OBJ file is checked against the time and date information in the .OBJfile. The
source file is recompiled if the dates are different. This s called an autodependency
check.

If the project file contains valid dependency information, the Project Manager does the
autodependency check using that information. Thisis much faster than reading each
.OBJfile.

When this option is unchecked (-X), the compiler does not generate the autodependency
information.

Modules compiled with autodependency information can use MAKE's autodependency
feature.

Default = ON (-X-)

Generate COMDEFs
Command-line equivalent: -Fc, 16-bit only
Generate COMDEFs generates communal variables (COMDEFs) for globa C variables

that are not initialized and not declared as static or extern. Use this option when header
filesincluded in several source files contain global variables.

For example, a definition such as

i nt SomeArray|[256] ;
could appear in a header file that is then included in many modules. When this option is
on, the compiler generates SomeArray as a communal variable rather than a public

definition (a COMDEF record rather than a PUBDEF record). Y ou can use this option
when porting code that uses a similar feature with another implementation.

The linker generates only one instance of the variable, so it will not be a duplicate
definition linker error. Aslong as a given variable does not need to be initialized to a
nonzero value, you do not need to include a definition for it in any of the source files.

Default = OFF

Generate underscores

Command-line equivalent: -u

When the Generate Underscores option is on, the compiler automatically adds an
underscore character () in front of every global identifier (functions and global
variables) before saving them in the object module. Pascal identifiers (those modified by

the _pascal keyword) are converted to uppercase and are not prefixed with an
underscore.

Underscores for C and C++ are optional, but you should turn this option on to avoid
errorsif you are linking with the standard Paradigm C++ libraries.

Default = ON

Source

Compiler|Source options set source code interpretation.

60 Paradigm C++ User's Guide

Paradigm
extensions

ANSI

UNIX V

Kernighan
and Ritchie

Tie»>

Identifier length
Command-line equivalent: -in, where n = significant characters

Use the Identifier Length input box to specify the number of significant characters (those
which will be recognized by the compiler) in an identifier.

Except in C++, which recognizes identifiers of unlimited length, al identifiers are treated
asdistinct only if their significant characters are distinct. This includes variables,
preprocessor macro names, and structure member names.

Valid numbers for n are 0, and 8 to 250, where 0 means use the maximum identifier
length of 250.

By default, Paradigm C++ uses 250 characters per identifier. Other systems (including
some UNIX compilers) ignore characters beyond the first eight. If you are porting to
other environments, you might want to compile your code with a smaller number of
significant characters, which helps you locate name conflicts in long identifiers that have
been truncated.

Default = 250

Language compliance
The Language Compliance options tell the compiler how to recognize keywords in your
programs.

Command-line equivalents. -A-, -AT

The Paradigm Extensions option tells the compiler to recognize Paradigm's extensions to
the C language keywords, including near, far, huge, asm, cdecl, pascal, interrupt,
_export, _ds, cs,_ss, _es, and the register pseudovariables (. AX, BX, and so on).
For acomplete list of keywords, see the keyword index.

Command-line equivalent: -A

The ANSI option compiles C and C++ ANSI-compatible code, allowing for maximum
portability. Non-ANS| keywords are ignored as keywords.

Command-line equivalent: -AU

The UNIX V option tells the compiler to recognize only UNIX V keywords and treat
any of Paradigm's C++ extension keywords as normal identifiers.

Command-line equivalent: -AK

The Kernighan and Ritchie option tells the compiler to recognize only the K&R
extension keywords and treat any of Paradigm's C++ extension keywords as normal
identifiers.

If you get declaration syntax errors from your source code, check that this option is set
to Paradigm Extensions.

Default = Paradigm Extensions (-A-)

« Acceptsand ignores directives

Chapter 3, Project options 61

Nested comments
Command-line equivalent: -C

When the Nested Comments option is on, you can nest comments in your C and C++
source files.

Nested comments are not allowed in standard C implementations, and they are not
portable.

Default = OFF

Debugging

Compiler Debugging options affect the generation of debug information during
compilation. When linking larger .OBJfiles, you may need to turn these options off to
increase the available system resources.

Browser reference information in OBJs

Command-line equivalent: -R

When the Browser Info In OBJs option is on, the compiler generates additional browser-
specific information such as location and reference information. This information is then

included in your .OBJfiles. In addition to this option, you need debugging information (-
V) to use the Browser.

When this option is off, you can link and create larger object files. While this option does
not affect execution speed, it does affect compilation time and program size.

Default = OFF

Generate coverage information in OBJs
Command-line equivalent: -vc

When the Generate coverage information in OBJs option is on, the compiler enables
coverage records in object files. Thisis similar to the -v option except that it controls
coverage records, not debug records. It is disabled by defauilt.

Default = OFF

Line numbers
Command-line equivalent: -y

When the Line Numbers option is on, the compiler automatically includes line numbersin
the object and object map files. Line numbers are used by both the Paradigm C++ IDE
and by the integrated debugger (if available) or any 3" party source level debugging
solution.

Although the Debug Info in OBJs option (-v) automatically generates line number
information, you can turn that option off (-v-) and turn on Line Numbers (-y) to reduce
the size of the debug information generated. With this setup, you can till step, but you
will not be able to watch or inspect data items.

Including line numbers increases the size of the object and map files but does not affect
the speed of the executable program.

When Line Numbers is on, make sure you turn off Jump Optimization in the 16-bit
specific optimizations and Pentium scheduling in the 32-bit Compiler options. When
these options are enabled, When this option is enabled, the source code will not exactly

62 Paradigm C++ User's Guide

match the generated machine instructions, which can make stepping through code
confusing.

Default = OFF

Out-of-line inline functions
Command-line equivalent: -vi

When the Out-of-line inline functions option is on, the compiler expands C++ inline
functionsinline.

To control the expansion of inline functions, the Debug information in OBJs option (-v)
acts dightly different for C++ code: when inline function expansion is disabled, inline
functions are generated and called like any other function.

Because debugging with inline expansion can be difficult, the command-line compilers
provide the following options:

« -V turns debugging on and inline expansion off

« -V- turns debugging off and inline expansion on

. -Vi turnsinline function expansion on

« -Vvi- turnsinline expansion off (inline functions are expanded out of line)

For example, if you want to turn both debugging and inline expansion on, use the -v and
-vi options.

Default = OFF

Standard stack frame
Command-line equivalent: -k
When the Standard stack frame option is on, the compiler generates a standard stack

frame (standard function entry and exit code). This is helpful when debugging, since it
simplifies the process of stepping through the stack of called subroutines.

When this option is off, any function that does not use local variables and has no
parameters is compiled with abbreviated entry and return code. This makes the code
smaller and faster.

The Standard stack frame option should always be on when you compile a source file for
debugging.

Default = ON

Test stack overflow
Command-line equivalent: -N, 16-bit only

When this option is on, the compiler generates stack overflow logic at the entry of each
function.

Even though thisis costly in terms of both program size and speed, it can be areal help
when trying to track down difficult stack overflow bugs. If an overflow is detected, the
run-time error message St ack over fl ow isgenerated, and the program exits with
an exit code of 1.

Stack overflow testing is always enabled in the 32-bit compilers (this adds a minimal
overhead to 32-bit programs). (add note sidebar)

Default = OFF

Chapter 3, Project options 63

Generate
and use

Use but do
not generate

Do not
generate or
use

Precompiled headers

Using precompiled header files can dramatically increase compilation speed by storing an
image of the symbol table on disk in afile, then later reloading that file from disk instead
of parsing all the header files again. Directly loading the symbol table from disk is much
faster than parsing the text of header files, especially if several source files include the
same header file.

You can usethe SINHERIT and $ENV () macros in any of the precompiled header
input fields.

Cache precompiled header
Command-line equivalent: -Hc

When you enable this option, the compiler caches the precompiled headers it generates.
Thisis useful when you are precompiling more than one header file.

To use this option, you must also enable the Generate and Use (-H) precompiled header
option.

Default = OFF

Precompiled header name
Command-line equivalent: -H=filename

This option lets you specify the name of your precompiled header file. The compilers set
the name of the precompiled header to filename.

When this option is enabled, the compilers generate and use the precompiled header file
that you specify.

Precompiled headers

Using precompiled headers can dramatically increase compilation speeds, though they
reguire a considerable amount of disk space.

Command-line equivalent: -H

When this option is enabled, the Paradigm C++ IDE generates and uses precompiled
headers. The default file name is <projectname>.CSM for the Paradigm C++ IDE
projects and PCDEF.CSM (16-hit) or PC32DEF.CSM (32-hit) for the command-line
compilers.

Command-line equivalent: -Hu

When the Use But Do Not Generate option is on, the compilers use preexisting
precompiled header files; new precompiled header files are not generated.

Command-line equivalent: -H-

When the Do not generate or use option is on, the compilers do not generate or use
precompiled headers.

Default = Do not generate or use (-H-)

64 Paradigm C++ User's Guide

Stop precompiling after header file
Command-line equivalent: -H" xxx" ; for example -H"stdio.h"
This option terminates compiling the precompiled header after the compiler compiles the

file specified as xxx. Y ou can use this option to reduce the amount of disk space used by
precompiled headers.

When you use this option, the file you specify must be included from a source file for the
compiler to generate a.CSM file.

D Y ou cannot specify a header file that is included from another header file. For example,
you cannot list a header included by windows.h because this would cause the
precompiled header file to be closed before the compilation of windows.h was competed.

Directories options

The Directories options tell the Paradigm C++ compiler where to find or where to put
header files, library files, source code, output files, and other program elements.

Source directories

The Source directories options let you specify the directories that contain your standard
includefiles, library and .OBJ files, and program source files.

Click the down-arrow icon or press Alt+Down arrow to display the history list of
previously entered directory names.

D You can use the INHERIT and $ENV/(') macros in any of the following input fields.

Include
Command-line equivalent: -1path, where path = directory path

Use the Include list box to specify the drive and/or directories that contain program
include files. Standard include files are those given in angle brackets (<>) in an #include
statement (for example, #i ncl ude <nyfil e>).

D The Paradigm compilers and linkers use specific file search algorithms to locate the files
needed to complete the compilation and link cycles.

Library
Command-line equivalent: -L path, where path = directory path

Use the Library list box to specify the directories that contain the Paradigm C++ startup
object files (COx.OBJ), run-time library files (.L1B files), and all other .LIB files. By
default, the linker looks for them in the directory containing the project file (or in the
current directory if you're using the command-line compiler).

D Y ou can aso use the linker option /L path to specify the library search directories when
you link files from the command line.

Source

The Source list box specifies the directories where the compiler and the integrated
debugger should look for your project source files.

Chapter 3, Project options 65

Specifying multiple directories

Multiple directory names are allowed in each of the list boxes; use a semicolon (;) to
separate the specified drives and directories. To display a history list of previously
entered directory names, click the down-arrow icon or press Alt+Down arrow.

From the command line, you can enter multiple include and library directoriesin the
following ways.
. You can stack multiple entries with asingle -L or -1 option by separating directories
with a semicolon:
PCC. EXE - Ldi rnanel; di rnanme2; di rname3 -lincl;inc2;inc3 nyfile.c
. You can place more than one of each option on the command line, like this:
PCC. EXE -Ldirnanel -Ldirnane2 -lincl -linc2 -l1inc3 nyfile.c

« You can mix listings:

PCC. EXE -Ldirnanel;dirnane2 -lincl -Ld:dirname3 -linc2;inc3
nyfile.c

If you list multiple -L or -1 options on the command line, the result is cumulative; the
compiler searches all the directories listed in order from left to right.

File search algorithms

#include-file search algorithms
Paradigm C++ searches for files included in your source code with the #include directive
in the following ways:

If you specify a path and/or directory with your include statement, Paradigm C++
searches only the location specified. For example, if you have the following statement in
your code:

#i ncl ude "c:\ PARADI GM i ncl ude\ stdi o. h"
the header file stdio.h must reside in the directory C:\PARADIGM\INCLUDE. In
addition, if you use the statement:

#i ncl ude <stdio. h>

and you set the Include option (-1) to specify the path c: \ PARADIGM\ i ncl ude, the
file stdio.h must reside in C:\PARADIGM\INCLUDE.

. Ifyouputan#i ncl ude <sonefi | e> statement inyour source code, Paradigm
C++ searches for "somefile” only in the directories specified with the Include (-1)
option.

« Ifyouputan#i ncl ude "sonefil e" statement inyour code, Paradigm C++
first searchesfor "somef i | e" inthe current directory; if it does not find the file
there, it then searches in the directories specified with the Include (-1) option.

Library file search algorithms
The library file search algorithms are similar to those for include files:

. Implicit libraries. Paradigm C++ searches for implicit libraries only in the specified
library directories; thisis similar to the search algorithm for #i ncl ude
<somefil e>.

Implicit library files are the ones Paradigm C++ automatically links in and the start-
up object file (COx.OBJ). To see these files in the Project Manager, turn on run-time

66 Paradigm C++ User's Guide

nodes (choose Options|Environment|Project View, then check Show Runtime
Nodes).

. Explicit libraries. Where Paradigm C++ searches for explicit (user-specified) libraries
depends in part on how you list the library file name. Explicit library files are ones
you list on the command line or in a project file; these are file names with a.LIB
extension.

. If you list an explicit library file name with no drive or directory (like this:
nyl i b. i b), Paradigm C++ first searches for that library in the current directory.
If the first search is unsuccessful, Paradigm C++ looks in the directories specified
with the Library (-L) option. Thisis similar to the search algorithm for #i ncl ude
"somefile".

« If you list a user-specified library with drive and/or directory information (like this:
c:\nystuff\nylibl.|ib), Paradigm C++ searches only in the location you
explicitly listed as part of the library path name and not in any specified library
directories.

Output directories

The Output Directories options specify the directories where your relocatable load
module (.EXE), absolutable executable (.AXE), .LIB, .MAP, and .LOC files are placed.
The Paradigm C++ IDE looks for those directories when performing a make or run and
to check dates and times of relocatable load module, .OBJs, and .LIBs. If the entry is
blank, the files are stored in the current directory.

Click the down-arrow icon or press Alt+Down arrow to display the history list of
previously entered directory names.

D You can use the INHERIT and $ENV/(') macros in any of the following input fields.

Intermediate

Use the Intermediate list box to specify where Paradigm C++ places object (.OBJ) files
when it builds your project. Thisis also the directory where atool places any temporary
filesthat it might create.

Final
Command-line equivalent: -npath, where path = directory path

The Final list box specifies the location where the Paradigm C++ IDE places the
generated target files (for example, relocatable load modules and absolute executables.

Guidelines for entering directory names
Use the following guidelines when entering directories in the Directories options pages.
« You must separate multiple directory path names (if allowed) with a semicolon (;).
« You can use up to amaximum of 512 characters (including whitespace).
« Whitespace before and after the semicolon is allowed but not required.
. Relative and absolute path names are allowed, including path names relative to the
logged position in drives other than the current one.
For example,
C\; C ..\ PARADI GV D: \ mypr og\ sour ce

Chapter 3, Project options 67

$INHERIT and $ENV()

Paradigm C++ supports the two macros $INHERIT and $ENV () in the Directories
page, the Compiler|Defines page and the Compiler|Precompiled Header page of the
Project Options dialog box.

D You can add $INHERIT and $ENV (') anywhere in the strings you type into the input
boxes.

$INHERIT

The $INHERIT macro expands to the value of the respective option of the current nodes
parent.

For example, suppose the project node MY SOURCE.CPP has a parent node
MY SOURCE.AXE, and the defines for MY SOURCE.AXE are

DEBUG,

If you set the Defines value for MY SOURCE.CPP to:

_RTL; $I NHERI T; STRI CT
MY SOURCE.CPP will inherit the defines of MY SOURCE.AXE, which will give it the
following Defines values:

_RTL; DEBUG, ; STRI CT

$ENV()

The $ENV (environment_variable) macro expands to the defined value of the specified
environment variable. For example, suppose the environment variable PCROOT is set to
the following value:

PCROOT = C:\ PARADI GM

Y ou can then set the Include path in the Directories page as follows:
$ENV(PCROOT) \ | ncl ude

Thiswill set the actual include path to:
C.\ PARADI GM | ncl ude

Librarian options

Librarian options affect the behavior of the built-in librarian. The built-in librarian
combines the .OBJ files in your project into .LIB files. Options in this section control
that process. In addition, you can cause the librarian to generate alist (.LST) file
containing the .OBJs in agenerated .LIB and the functions those .OBJs contain.

PLIB.EXE isthe command-line librarian.
Case-sensitive library

Command-line equivalent =/C

When the Case-sensitive library option is on, the librarian treats case as significant in al
symbolsin the library. For example, if Case-sensitive library is checked, "CASE",
"Case", and "case" are all treated as different symbols.

Create extended dictionary

Command-line equivalent = /E

68 Paradigm C++ User's Guide

When the Create extended dictionary option is on, the librarian includes, in compact
form, additional information that helps the linker process library files faster.

Generate list file

When the Generate list file option is on, the librarian automatically produces alist file
(.LST) that lists the contents of your library when it is created.

Library page size

Command-line equivalent = /Psize, where size is number of pages

The Library page size input box is where you set the number of bytes in each library
"page” (dictionary entry).

The page size determines the maximum size of the library. Page size must be a power of
2 between 16 and 32,768 inclusive. The default page size of 16 allows a library of about
1 MB insze.

To create alarger library, change the page size to the next higher value (32).
Purge/debug comment records

Command-line equivalent = /0

When the Purge/debug comment records option is on, the librarian removes all comment
records from modules added to the library. Debug, browser, and other information is
stored as object file comment records and can be removed with this option.

Lint options

Lint options are used to control the operation of the Paradigm C++ Lint utility. Lint can
be used to perform a high level of checking on C/C++ source files and can detect and
warn of many potential problems (such as the unexpected loss of precisionin a
calculation) or of inefficient usage (such as including a header file that is never used).
The options and diagnostic levels are:

All diagnostics

Displays all output from Lint including errors, warnings, and informational diagnostics.
This corresponds to the Lint -w3 command line option.

Warnings and error diagnostics

Displays Lint error and warning diagnostics. This corresponds to the Lint -w2 command
line option.

Error diagnostics

Displays only Lint error diagnostics. This corresponds to the Lint -w command line
option.

Lint Options File

SpecifiesaLint option file to be included in the Lint command file. Thiswill allow you to
add any number of Lint optionsto tailor the operation and output of Lint to meet the
requirements of your project.

Chapter 3, Project options 69

Linker options

This option is
different than
the 16-bit /o
(overlays)
option.

Linker options affect how an application is linked.

Linker options let you control how intermediate files (.OBJ, and .LIB) are combined into
absolute executables (.AXE) and dynamic-link libraries (.DLL). For most options in this
section, you will usually want to keep the default settings.

16-bit linker

16-bit Linker options tell the linker how to link 16-bit programs.

Enable 32-bit processing
Command-line equivalent = /3, 16-bit only

The Enable 32-bit processing option lets you link 32-bit real address mode object
modules produced by PASM or a compatible assembler. This option increases the
memory requirements for PLINK and slows down linking.

Default = OFF

Initialize segments
Command-line equivalent = /i, 16-bit only

When the Initialize segments option is on, the linker initializes uninitialized trailing
segments to be output into the executable file even if the segments do not contain data
records. Thisis normally not needed and will increase the size of your .AXE files.

Default = OFF

32-bit linker

32-bit linker options tell the linker how to link 32-bit programs.

Allow import by ordinal
(Command-line equivalent = /o, 32-bit only)

This option lets you import by ordinal value instead of by the import name. When you
specify this option, the linker emits only the ordinal numbers (and not the import names)
to the resident or nonresident name table for those imports that have an ordinal number
specified. If you do not specify this option, the linker ignores all ordinal numbers
contained in import libraries or the .DEF file, and emits the import names to the resident
and nonresident tables.

Committed stack size (in hexadecimal)
Command-line equivalent = /Sc:xxxx, 32-bit only

Specifies the size of the committed stack in hexadecimal. The minimum allowable value
for thisfield is 4K (0x1000) and any value specified must be equal to or less than the
Reserved StackSize setting (/S).

Specifying the committed stack size here overrides any STACKSIZE setting in a module
definition file.(add note sidebar)

The command-line version of this option (/Sc:xxxx) accepts hexadecimal numbers asthe
stack reserve value.

70 Paradigm C++ User's Guide

Default = 8K (0x2000)

Committed heap size (in hexadecimal)
Command-line equivalent = /Hc:xxxx, 32-bit only

Specifies the size of the committed heap in hexadecimal. The minimum alowable value
for thisfield is 0 and any value specified must be equal to or less than the Reserved Heap
Size setting (/H).

Specifying the committed heap size here overrides any HEAPSIZE setting in a module
definition file.(add note sidebar)

The command-line version of this option (/Hc: xxxx) accepts hexadecima numbers as the
stack reserve value.

Default = 4K (0x1000)

File alignment (in hexadecimal)
Command-line equivalent = /Af:xxxx, 32-bit only

The File Alignment option specifies page alignment for code and data within the
executable file. The linker uses the file alignment value when it writes the various objects
and sections (such as code and data) to the file. For example, if you use the default value
of 0x200, the linker stores the section of the image on 512-byte boundaries within the
executablefile.

When using this option, you must specify afile aignment value that is a power of 2, with
the smallest value being 16.

The old style of this option (/A:dd) is still supported for backward compatibility. With
this option, the decimal number dd is multiplied by the power of 2 to calculate the file
alignment value.(add note sidebar)

The command-line version of this option (/Af: xxxx) accepts either decimal or
hexadecimal numbers as the file alignment value.

Default = 512 (0x200)

Image base address (in hexadecimal)
Command-line equivalent = /B:xxxXx, 32-bit only

The Image Base Address option specifies an image base address for an application, and
is used in conjunction with the image is based option. If this setting is turned on, internal
fixes are removed from the image and the requested load address of the first object in the
application is set to the hexadecimal number specified. All successive objects are aligned
on 64K linear address boundaries. This option makes applications smaller on disk and
improves both load-time and run-time performance (the operating system no longer has
to apply internal fixes).

The command-line version of this option (/B:xxxx) accepts either decimal or
hexadecimal numbers as the image base address.

It is not recommended that you enable this option when producing aDLL. In addition,
do not use the default setting of 0x400000 if you intend to run your application of
Win32s systems.(add note sidebar)

Default = 0x400000 (recommended for true Win32 system applications)

Chapter 3, Project options 71

Image is based

The Image is Based option affects whether an application has an image base address. If
this setting is turned on, internal fixes are removed from the image and the requested
load address of the first object in the application is set to the number specified in the

I mage Base Address input box. Using this option can greatly reduce the size of your final
application module; however, it is not recommended for use when producing a DLL.

Default = OFF

Maximum linker errors
Command-line equivalent = /Enn

Specifies maximum errors the linker reports before terminating. /EO (default) reports an
infinite number of errors (that is, as many as possible).

Object alignment (in hexadecimal)
Command-line equivalent = /A0:xxxx, 32-bit only

The linker uses the object alignment value to determine the virtual addresses of the
various objects and sections (such as code and data) in your application. For example, if
you specify an object alignment value of 8192, the linker aligns the virtual addresses of
the sections in the image on 8192-byte (0x2000) boundaries.

When using this option, you must specify an object alignment value that is a power of 2,
with the smallest value being 4096 (the default).

The command-line version of this option (/A0:xxxx) accepts either decimal or
hexadecimal numbers as the object alignment value.

Default = 4096 (0x1000)

Reserved heap size (in hexadecimal)
Command-line equivalent = /H:xxxx, 32-bit only

Specifies the size of the reserved heap in hexadecimal. The minimum allowable value for
thisfield is 0.

Specifying the reserved heap size here overrides any HEAPSI ZE setting in a module
definition file.(add note sidebar)

The command-line version of this option (/H:xxxx) accepts hexadecimal numbers as the
stack reserve value.

Default = 1Mb (0x1000000)

Reserved stack size (in hexadecimal)
Command-line equivalent = /S:xxxx, 32-bit only

Specifies the size of the reserved stack in hexadecimal. The minimum allowable value for
thisfield is 4K (0x1000).

Specifying the reserved stack size here overrides any STACKSIZE setting in a module
definition file.(add note sidebar)

The command-line version of this option (/S:xxxx) accepts hexadecimal numbers asthe
stack reserve value.

Default = 1Mb (0x1000000)

72 Paradigm C++ User's Guide

Verbose
Command-line equivalent = /r, 32-bit only

This option causes the linker to emit messages that indicate what part of the link cycle is
currently being executed by the linker. With this option turned on, the linker emits some
or al of the following messages:

. Starting pass 1

« Generating map file

. Starting pass 2

General

Use the Linker|General options to include or exclude debugging information from your
.EXE or .ROM file, generated by the linker. Debug information must be included in your
program if you want to use the debugger (you can turn it off for production versions).

Case-sensitive link
Command-line equivalent = /c

When the Case-Sensitive Link option is enabled, the linker differentiates between upper
and lower-case characters in public and external symbols. Normally, this option should
be checked, since C and C++ are both case-sensitive languages.

Default = ON

Default libraries
Command-line equivalent = /n

When you are linking with modules created by a compiler other than the Paradigm C++
compiler, the other compiler might have placed alist of default libraries in the object file.

When the Default Libraries option is unchecked (off), the linker tries to find any
undefined routines in these libraries and in the default libraries supplied by the Paradigm
C++ IDE.

When this option is checked (on), the linker searches only the default libraries supplied
by the Paradigm C++ IDE and ignores any defaultsin .OBJfiles. Y ou might want to
check this option when linking modules written in another language.

Default = ON

Include debug information
Command-line equivalent = /v

When the Include Debug Information option is on, the linker includes information in the
output file needed to debug your application with the integrated debugger.

On the command line, this option causes the linker to include debugging information in
the executable file for all object modules that contain debugging information. Y ou can
use the /v+ and /v- optionsto selectively enable or disable debugging information on a
module-by-module basis (but not on the same command-line where you use /v). For
example, the following command includes debugging information for modules mod2 and
mod3, but not for mod1 and mod4:

PLI NK nmodl /v+ nod2 nod3 /v- nod4
Default = ON in the Paradigm C++ IDE; OFF on the command line

Chapter 3, Project options 73

Command-
line usage

Off

Segments

Subsystem version (major.minor)
Command-line equivalent = /Vd.d

When you use the /Vd.d command-line option, the linker sets the Windows version ID to
the number specified by d.d.. For example, if you specify / V4. 0, the linker setsthe
Subsystem version field in the .EXE header of the relocatable load module to 4.0.

Default = 4.0

Map file

Linker|Map File options tell the linker what type of map file to produce. Y ou specify the
type of map file created with the Map File options. These options control the information
generated on segment ordering, segment sizes, and public symbols.

Include source line numbers
Command-line equivalent: /I, 16-bit only

When the Include Source Line Numbers option is on, the linker includes source line
numbers in the object map files.

For this option to work, linked .OBJ files must be compiled with debug information
using -v.

When Include Source Line Numbers is on, make sure you turn Jump Optimizations off
in the Optimization|16 bit Specific options page, otherwise the compiler might group
together common code from multiple lines of source text during jump optimization, or it
might reorder lines (which makes line-number tracking difficult).

Default = OFF

Map file
Y ou use the Map File options to choose the type of map file to be produced at link time.

For settings other than Off, the map file is placed in the output directory defined in the
Directories|Output page.

Command-line equivalent = /x
The Off option tells the linker not to create a map file.
Default = OFF

Command-line equivalent = /s

The Segments option adds a “ Detailed map of segments’ to the map file created with the
Publics option (/m). The detailed list of segments contains the segment class, the
segment name, the segment group, the segment module, and the segment ACBP
information. If the same segment appears in more than one module, each module appears
as a separate line.

The ACBP field encodes the A (alignment), C (combination), and B (big) attributesinto
aset of four bit fields, as defined by Intel. PLINK uses only three of thefields: A, C, and
B. The ACBP value in the map is printed in hexadecimal. The following field values must
be ORed together to arrive at the ACBP value printed.

74 Paradigm C++ User's Guide

Table 3-1
Segment field
values

Publics

Field Value Description

A (@ignment) 00 An absol ute segment

20 A byte-aligned segment

40 A word-aligned segment

60 A paragraph-aligned segment

80 A page-aligned segment

AO An unnamed absol ute portion of storage
C (combination) 00 Cannot be combined

08 A public combining segment
B (big) 00 Segment less than 64K

02 Segment exactly 64K

With the Segments options enabled, public symbols with no references are flagged idle.
An idle symbol is a publicly defined symbol in a module that was not referenced by an
EXTDEF record or by any other module included in the link. For example, this fragment
from the public symbol section of a map file indicates that symbols Synbol 1 and
Synbol 3 are not referenced by the image being linked (they can either be deleted or
declared static since no other module requires these symbols):

0002: 00000874 Idle Synbol 1
0002: 00000CE4 Synbol 2
0002: 000000EY7 Idle Synbol 3

Command-line equivalent = /m

This option causes the linker to produce a map file that contains an overview of the
application segments and two listings of the public symbols. The segments listing has a
line for each segment, showing the segment starting address, segment length, segment
name, and the segment class. The public symbols are broken down into two lists, the first
showing the symbols in sorted alphabetically, the second showing the symbolsin
increasing address order. Symbols with absolute addresses are tagged Abs.

A list of public symbolsis useful when debugging: many debuggers use public symbols,
which lets you refer to symbolic addresses while debugging.

For more information, see Linker|Map file.

Print mangled names in map file
Command-line equivalent = /M

Prints the mangled C++ identifiersin the map file, not the full name. This can help you
identify how names are mangled (mangled names are needed as input by some utilities).

Default = OFF

Warnings

Warnings options enable or disable the display of Linker warnings.

32-bit warnings
. No entry point
« Duplicate symbol

Chapter 3, Project options 75

Use the
PLINK32
command-line
option /w-stk to
turn this warning
off.

Use the
PLINK32
command-line
option /w-dpl to
turn this warning
off.

. No def file

« Import does not match previous definition
« Extern not qualified with _import

« Using based linking in DLL

« Self-relative fixup overflowed

« .EXE module built with a.DLL extension
« Multiple stack segments found

"No stack" warning

This option lets you control whether or not the linker emits the "No stack™ warning. The
warning is generated if no stack segment is defined in any of the object files or in any of
the librariesincluded in the link. Except for .DLLSs, thisindicates an error. If a Paradigm
C++ program produces this error, make sure you are using the correct COx startup
object file.

Default = OFF

Warn duplicate symbol in .LIB
Command-line equivalent = /d 16-bit, /wdpl 32-bit

When the Warn Duplicate Symbols option is on, the linker warns you if a symbol appears
in more than one object or library files.

If the symbol must be included in the program, the linker uses the symbol definition from
the first file it encounters with the symbol definition.

Default = OFF

Make options

Make options control the conditions under which the building of a project stops and how
the Project Manager uses autodependency information.

Autodependencies

When the Make]Autodependencies option is selected, the Project Manager automatically
checks dependencies for every target that has a corresponding source file in the project
list.

None
When None is selected, no autodependency checking is performed.

Use

When Use is selected, autodependency checking is performed by reading the
autodependency information out of the .OBJfiles. This option is the default.

Cache
When Cache is selected, autodependency information is stored in the project file.

Cache and display

When Cache and Display is selected, the Project Manager stores the autodependency
information in the project file. Once the autodependency information is generated (after a

76 Paradigm C++ User's Guide

This option stops
a make if the
compiler
encounters
warnings.

compile) the information is displayed in the Project Tree. This makes dependency
checking faster, but is not recommended because it makes project files larger.

Break make on

The MakelBreak Make On options specify the error condition that stops the making of a
project.

Warnings
Command-line equivalent = -w/!

When this compiler option is enabled, the compiler terminates the compile and returns a
non-zero error code if awarning is encountered; an .OBJfile is not created.

Errors
This option stops a make when the compiler encounters errors.

Fatal errors

This option tells the Project Manager to generate alist of errors and warnings for all files
and all targetsin the project. The Project Manager will go on to link if no errors occur.

Default = Errors

New node path

Turn on the Absolute option if you want new nodes to have an absolute, instead of a
relative, path.

Messages options

Table 3-2
ANSI violation
messages

Messages options let you control the messages generated by the compiler. Compiler
messages are indicators of potential trouble spots in your program. These messages can
warn you of many problems that may be waiting to happen, such as variables and
parameters that are declared but never used, type mismatches, and many others.

Setting a message option causes the compiler to generate the associated message or
warning when the specific condition arises. Note that some of the messages are on by
default.

ANSI violations

Compiler Messages|ANSI Violations options enable or disable individual warning
messages about statements that violate the ANS| standard for the C language.

Option Command-line equivalent Default
Void functions may not return avalue -W-VOi ON
Both return and return of a value used -w-r et ON
Suspi cious pointer conversion -W-sus ON
Undefined structure 'ident’ -wstu OFF
Redefinition of 'ident’ is not identical -w-dup ON
Hexadecimal value more than three digits -w-big ON

Bit fields must be signed or unsigned int -wbbf OFF

Chapter 3, Project options 77

Table 3-3
General warning
messages

'ident’ declared as both external and static -w-ext ON

Declare 'ident' prior to usein prototype -w-dpu ON
Division by zero -w-zdi ON
Initializing 'ident’ with 'ident’ -w-bei ON
Initialization isonly partially bracketed -wpin OFF
Non-ANS| keyword used -wnak OFF

Display warnings

Use the Display Warnings options to choose which warnings are displayed.

All
Command-line equivalent: -w

Display all warning and error messages.
Default = OFF

Selected
Command-line equivalent: -waaa

Choose which warnings are displayed. Using pr agma war n in your source code
overrides messages options set either at the command line or in the Paradigm C++ IDE.

To disable a message from the command line, use the command-line option -w-aaa,
where aaa is the 3-letter message identifier used by the command-line option.

Default = ON

None
Suppresses the display of warning messages. Errors are till displayed.

Default = OFF

General

Compiler Messages|General options enable or disable a few general warning messages.

Option Command-line equivalent Default
Unknown assembler instruction -wasm OFF
I11-formed pragma -w-ill ON
Array variable'ident’ is near -w-ias ON
Superfluous & with function -wamp OFF
'ident’ is obsolete -w-obs ON
Cannot create precompiled header -w-pch ON
User-defined warnings -w-msg ON
Default segments required for huge objects -w-hsg ON
Automatic far dataisignored -w-far ON

User-defined warnings
Command-line equivalent: -wmsg

78 Paradigm C++ User's Guide

Table 3-4
Inefficient C++
coding
messages

Table 3-5
Inefficient coding
messages

Table 3-6
Obsolete C++
messages

Chapter 3, Project options

The User-defined warnings option allows user-defined messages to appear in the
Paradigm C++ IDE's Message window. User-defined messages are introduced with the
#pragma message compiler syntax.

In addition to messages that you introduce with the #pragma message compiler syntax,
User-defined warnings displays warnings introduced by third-party libraries. Remember,
if you need Help on a third-party warning, please contact the vendor of the header file
that issued the warning.

Default = ON

Inefficient C++ coding

Compiler Messages|i nefficient C++ Coding options enable or disable individual warning
messages about inefficient C++ coding.

Option Command-line equivalent Default
Functions containing ‘ident' not expanded inline -w-inl ON
Temporary used to initialize 'ident' -w-lin ON
Temporary used for parameter 'ident’ -w-lve ON

Inefficient coding

Compiler Messages|I nefficient Coding options are used to enable or disable individual
warning messages about inefficient coding.

Option Command-line equivalent Default
'ident’ assigned a value which is never used -w-aus ON
Parameter 'ident’ is never used -w-par ON
'ident’ declared but never used -wuse OFF
Structure passed by value -wstv OFF
Unreachable code -w-rch ON
Code has no effect -w-eff ON
Label 'lbl" is declared but never used -w-Ibl OFF

ThewarningsUnr eachabl e Code and Code Has No Effect canindicate
serious coding problems. If the compiler generates these warnings, be sure to examine
the lines of code that cause these warnings.

Obsolete C++

Compiler Messages|Obsolete C++ options choose which specific obsolete items or
incorrect syntax C++ warnings to display.

Option Command-line equivalent Default
Baseinitialization without class nameisobsolete -w-obi ON
This style of function definition is obsolete -w-ofp ON
Overloaded prefix operator used as postfix operator -w-pre ON

79

Table 3-7
Portability
messages

Table 3-8
Potential
C++Errors

Table 3-9
Potential error
messages

Portability

Compiler Messages|Portability options enable or disable individual warning messages
about statements that might not operate correctly in all computer environments.

Option Command-line equivalent Default
Non-portable pointer conversion -w-r pt ON
Non-portable pointer comparison -w-cpt ON
Constant out of range in comparison -w-rng ON
Constant islong -wcln OFF
Conversion may lose significant digits -wsig OFF
Constant declaration 'sym' should beinitialized -wuco OFF
Mixing pointersto signed and unsigned char -wucp OFF
Integral constant overflow with 'op' operation -wico OFF

Potential C++ errors

Compiler Messages|Potential C++ Errors options enable or disable individual warning
messages about statements that violate C++ language implementation.

Option Command-line equivalent Default
Constant member ‘'ident’ is not initialized -W-NCi ON
Assigning 'type' to 'enumeration’ -w-eas ON
'function’ hides virtual function 'function2' -w-hid ON
Non-const function <function> called for const object -w-ncf ON
Base class 'ident’ inaccessible because dso in 'ident’ -w-ibc ON
Array size for 'delete’ ignored -w-dsz ON
Use qualified name to access nested type 'ident’ -w-nst ON
Handler for '<typel>' Hidden by Previous Handler for '<type2>" -w-hch ON
Conversion to 'type will fail for virtual base members -W-mpc ON
Maximum precision used for member pointer type <type> -w-mpd ON
Use "> >' for nested templates instead of '>>' -w-ntd ON
Non-volatile function <function> called for volatile object -w-nvf ON

Potential errors

Compiler Messages|Potential Errors options enable or disable individual warning
messages about potential coding errors.

Option Command-line equivalent Default
Possibly incorrect assignment -w-pia ON
Possible use of 'ident’ before definition -wdef OFF

No declaration for function 'ident' -wnod OFF
Call to function with no prototype -W-pro ON
Function should return avalue -w-rvl ON
Ambiguous operators need parentheses -wamb OFF

80 Paradigm C++ User's Guide

Entering O
causes
compilation to
continue until the
end of the file.

Condition is always (true/false) -W-ccc ON
Continuation character \ found in // -W-com ON
Uninitialized constant declaration -Wuco OFF

Stop after ... errors

Command-line equivalent: -jn

Errors: Stop After causes compilation to stop after the specified number of errors has
been detected. Y ou can enter any number from O to 255.

Default = 25

Stop after ... warnings

Command-line equivalent: -gn

Warnings. Stop After causes compilation to stop after the specified number of warnings
has been detected. Y ou can enter any number from O to 255.

Entering O causes compilation to continue until either the end of the file or the error limit
set in errors. Stop After has been reached, whichever comes first.

Default = 100

Optimization options

Optimization options are the software equivalent of performance tuning. There are two
general types of compiler optimizations:

. Thosethat make your code smaller
. Thosethat make your code faster

Although you can compile with optimizations at any point in your product development
cycle, be aware when debugging that some assembly instructions might be "optimized
away" by certain compiler optimizations.

General settings

The main Optimizations page in the Project Options dialog box contains four radio
buttons that let you select the overall type of optimizations you want to use. Because of
the complexities of setting compiler optimizations, it is recommended that you use either
the Optimize for Size or the Optimize for Speed radio buttons. The general optimization
settings are;

. Disable al optimizations

« Use selected optimizations

« Optimize for size

« Optimize for speed

16- and 32-bit

The 16- and 32-bit compiler options specify optimization settings for all compilations.

Chapter 3, Project options 81

No
optimization

Optimize
locally

Optimize
globally

Common subexpression

The Common subexpressions options tell the compiler how to find and eliminate
duplicate expressions in your code.

When the No optimization option is on, the compiler does not eliminate common
subexpressions. Thisis the default behavior of the command-line compilers.

Command-line equivalent: -Oc

When the Optimize locally option is on, the compiler eliminates common subexpressions
within groups of statements unbroken by jumps (basic blocks).

Command-line equivalent: -Og

When you set this option, the compiler eliminates common subexpressions within an
entire function. This option globally eliminates duplicate expressions within the target
scope and stores the calculated value of those expressions once (instead of recalculating
the expression).

Although this optimization could theoretically reduce code size, it optimizes for speed
and rarely resultsin size reductions. Use this option if you prefer to reuse expressions
rather than create explicit stack locations for them.

Induction variables
Command-line equivalent: -Ov

When this option is enabled, the compiler creates induction variables and it performs
strength reduction, which optimizes for loops speed.

Use this option when you're compiling for speed and your code contains loops. The
optimizer uses induction to create new variables (induction variables) from expressions
used in loops. The optimizer assures that the operations performed on these new
variables are computationally less expensive (reduced in strength) than those used by the
original variables.

Optimizations are common if you use array indexing inside loops, because a
multiplication operation is required to calculate the position in the array that is indicated
by the index. For example, the optimizer creates an induction variable out of the
operationv[i] inthefollowing code becausethev([i] operation requires
multiplication. This optimization also eliminates the need to preserve the value of i :

int v[10];

void f(int x, int y, int z)

{ int i;

for (i =0; i < 10; i++)

v[i] =x *y * z

82 Paradigm C++ User's Guide

With Induction variables enabled, the code changes:
int v[10];
void f(int x, int y, int z)
{
int i,
for (p

*p-

=V, p < &I[9]; p++)
p=x*y*z
}

Inline intrinsic functions
Command-line equivalent: -Oi

When the Inline Intrinsic Functions option is on, the compiler generates the code for
common memory functions like strcpy() within your function's scope. This eliminates
the need for a function call. The resulting code executes faster, but it is larger.

The following functions are inlined with this option:

aloca fabs memchr memcmp
memcpy memset rotl rotr
stpepy streat strchr stremp
strepy strien strncat strncmp
strncpy strnset strrchr

Y ou can control the inlining of these functions with the pragmaintrinsic. For example,
#pragma intrinsic strcpy causesthe compiler to generate inline code for all
subsequent callsto strcpy in your function, and #pragma i ntrinsic -strcpy
prevents the compiler from inlining strcpy. Using these pragmas in a file overrides any
compiler option settings.

When inlining any intrinsic function, you must include a prototype for that function
before you use it; the compiler creates a macro that renames the inlined function to a
function that the compiler recognizes internaly. In the previous example, the compiler
would create amacro #def i ne strcpy _ _strcpy_ _.

The compiler recognizes calls to functions with two leading and two trailing underscores
and tries to match the prototype of that function against its own internally stored
prototype. If you don't supply a prototype, or if the prototype you supply doesn't match
the compiler's prototype, the compiler rejects the attempt to inline that function and
generates an error.

16-bit

The Optimizations|16-bit options pertain to real mode and extended mode applications
only.

Assume no pointer aliasing
Command-line equivalent: -Oa

When the Assume no pointer aliasing option is on, the compiler assumes that pointer
expressions are not aliased in common subexpression evaluation.

Assume no pointer aliasing affects the way the optimizer performs common
subexpression elimination and copy propagation by letting the optimizer maintain copy

Chapter 3, Project options 83

propagation information across function calls and by letting the optimizer maintain
common subexpression information across some stores. Without this option the
optimizer must discard information about copies and subexpressions. Pointer aliasing
might create bugs that are hard to spot, so it is only applied when you enable this option.

Assume no pointer aliasing controls how the optimizer treats expressions that contain
pointers. When compiling with global or local common subexpressions and Assume no
pointer aliasing is enabled, the optimizer recognizes*p * x asacommon
subexpression in function funcl.

int g, v;
int funcl(int *p)

{

i nt x=5;
y:*p*x;
g =3

return (*p * x);

voi d func2(void)

{
g=2;
funcl(&g); // This is incorrect--the assignnment g = 3

/1 invalidates the expression *p * X

}

Copy propagation
Command-line equivalent: -Op

When this option is enabled; copies of constants, variables, and expressions are
propagated whenever possible.

Copy propagation is primarily speed optimization, but it never increases the size of your
code. Like loop-invariant code motion, copy propagation relies on the analysis
performed during common subexpression elimination. Copy propagation means that the
optimizer remembers the values assigned to expressions and uses those values instead of
loading the value of the assigned expressions. With this, copies of constants, expressions,
and variables can be propagated.

Dead code elimination
Command-line equivalent: -Ob

When the Dead code elimination option is on, the compiler reveals variables that might
not be needed. Because the optimizer must determine where variables are no longer used
(live range analysis), you might also want to set Global register allocation (-Oe) when
you use this option.

Global register allocation
Command-line equivalent: -Oe

When this option is enabled, global register allocation and variable live range analysis are
enabled. This option should always be used when optimizing code because it increases
the speed and decreases the size of your application.

Invariant code motion
Command-line equivalent: -Om

84 Paradigm C++ User's Guide

When this option is enabled, invariant code is moved out of loops and your code is
optimized for speed. The optimizer uses information about al the expressionsin the
function (gathered during common subexpression elimination) to find expressions whose
values do not change inside a loop.

To prevent the calculation from being done many times inside the loop, the optimizer
moves the code outside the loop so that it is calculated only once. The optimizer then
reuses the calculated value inside the loop.

Y ou should use loop-invariant code motion whenever you are compiling for speed and
have used global common subexpressions, because moving code out of loops can result
in enormous speed gains. For example, in the following code, x * y * z isevaluated
in every iteration of the loop:
int v[10];
void f(int x, int y, int z)
{
int i;
for (i

v[i]

0; i < 10; i++4)
X *y * z

The optimizer rewrites the code:
int v[10];
void f(int x, int y, int z)
{
toi,t
= X
r (i
i

vl

y * z

i
t
f 0; i < 10; i++)

O r3>
nn *pe

—
=Y

}

Jump optimization
Command-line equivaent: -O

When Jump optimization option is on, the compiler reduces the code size by eliminating
redundant jumps and reorganizing loops and switch statements.

When this option is enabled, the sequences of stepping in the debugger can be confusing
because of the reordering and elimination of instructions. If you are debugging at the
assembly level, you might want to disable this option.

Default = ON

Loop optimization
Command-line equivalent: -Ol)

When this option is enabled, loops are compacted into REP/STOSX instructions.

Loop optimization takes advantage of the string move instructions on the 80x86
processors by replacing the code for aloop with a string move instruction, making the
code faster.

Depending on the complexity of the operands, the compacted loop code can also be
smaller than the corresponding non-compacted loop.

Suppress redundant loads
Command-line equivalent: -Z

Chapter 3, Project options 85

When this option is enabled, the compiler suppresses the reloading of registers by
remembering the contents of registers and reusing them as often as possible.

Exercise caution when using this option; the compiler cannot detect if a value has been
modified indirectly by a pointer.

32-bit

Use the Optimizations|32-bit options to specify options specific to protected mode
applications. The options are:

Pentium instruction scheduling
Command-line equivalent: -OS

When enabled, this switch rearranges instructions to minimize delays that can be caused
by Address Generation Interlocks (AGI) which occur on the i486 and Pentium
processors. This option also optimizes the code so that it takes advantage of the Pentium
paralel pipelines. Best results for Pentium systems are obtained when you use this switch
in conjunction with the 32-bit Compiler|Pentium option in the Project Options dialog box
(-5).

Scheduled code is more difficult to debug at the source level because instructions from a
particular source line may be mixed with instructions from other source lines. Stepping
through the source code is still possible, although the execution point might make
unexpected jumps between source lines as you step. Also, setting a breakpoint on a
source line may result in several breakpoints being set in the code. Thisis especialy
important to note when inspecting variables, since a variable may be undefined even
though the execution point is positioned after the variable assignment.

Sepping through the following function when this switch is enabled demonstrates the
stepping behavior:

int v[10];

void f(int i, int j)

{

int a,b;

<<o®

—

[i
[

}
Execution starts by computing theindex i - j inthe assignment to b (note that ais still
undefined although the execution point is positioned after the assignment to a) . The
index i +j iscomputed, v[i-j] isassignedtob,andv[i +j] isassignedtoa. If a
breakpoint is set on the assignment to b, execution will stop twice: once when
computing the index and again when performing the assignment.

Default = OFF (-O-9)

General optimization settings

Disable all optimizations
Command-line equivalent: -Od

Disables all optimization settings, including ones which you may have specifically set and
those which would normally be performed as part of the speed/size tradeoff.

86 Paradigm C++ User's Guide

Because this disables code compaction (tail merging) and cross-jump optimizations,
using this option can keep the debugger from jumping around or returning from a
function without warning, which makes stepping through code easier to follow.

D Y ou can override this setting using the predefined Style Sheets in the Project Manager.

Use selected optimizations

Does not set any optimization by default, but lets you set the specific optimization
options you need through the settings contained in the Optimization subtopics. The
subtopic pages are

. 16 and 32-hit
. 16-bit specific
« 32-bit specific

D Configuring your own optimization settings should be reserved for expert users only.

Optimize for size

Command-line equivalents: -O1

This radio button sets an aggregate of optimization options that tells the compiler to
optimize your code for size. For example, the compiler scans the generated code for
duplicate sequences. When such sequences warrant, the optimizer replaces one sequence
of code with ajump to the other and eliminates the first piece of code. This occurs most
often with switch statements. The compiler optimizes for size by choosing the smallest
code sequence possible.

This option (-O1) setsthe following optimizations:

« Jump optimizations (-O)

. Dead code elimination (-Ob)

. Duplicate expressions (-Oc)

. Register alocation and live range analysis (-Oe)
« Loop optimizations (-Ol)

« Instruction scheduling (-OS)

« Register load suppression (-Z)

D The compiler options -Ot and -G are supported for backward compatibility only, and are
equivalent to the -O1 compiler option.

Optimize for speed

Command-line equivalent: -O2

This radio button sets an aggregate of optimization options that tells the compiler to
optimize your code for speed. This switch (-O2) sets the following optimizations:
. Dead code elimination (-Ob)

. Register alocation and live range analysis (-Oe)

« Duplicate expression within functions (-Og)

« Intrinsic functions (-Oi)

. Loop optimizations (-Ol)

« Code motion (-Om)

. Copy propagation (-Op)

Chapter 3, Project options 87

« Instruction scheduling (-OS)
« Induction variables (-Ov)
« Register load suppression (-Z)
D The compiler options -Os and -G- are supported for backward compatibility only, and

are equivalent to the -O2 compiler option. The -Ox option is also supported for
backward compatibility and for compatibility with Microsoft make files,

Command-line only options

The options are available only from the command line.

Object search paths

Command-line equivalent =/

This option lets you specify the directories the linker will search if there is no explicit
path given for an .OBJ module in the compile/link statement.This option works with
both PLINK and PLINK32.

The Specify object search path uses the following command-line syntax:
/j <Pat hSpec>[; <Pat hSpec>][...]
The linker uses the specified object search path(s) if there is no explicit path given for the

.OBJfile and the linker cannot find the object file in the current directory. For example,
the command

PLINK32 /jc:\nyobjs;.\objs splash .\comon\logo,,,utils logolib
directs the linker to first search the current directory for SPLASH.OBJ. If it is not found
in he current directory, the linker then searches for the file in the C:\MY OBJS directory,

and then in the \OBJs directory. However, notice that the linker does not use the object
search paths to find the file LOGO.OBJ because an explicit path was given for thisfile.

16- and 32-bit command-line options

The following command-line switches are supported by the command-line compilers
PCC.EXE and PCC32.EXE.

Compile to .ASM, then assemble
Command-line equivalent = -B

This command-line option causes the compiler to first generate an .ASM file from your
C++ (or C) source code (same as the -S command-line option). The compiler then calls
PASM (or the assembler specified with the -E option) to create an .OBJfile from the
ASM file. The .ASM file is then deleted. To use this 32-bit compiler option, you must
install a 32-bit assembler, such as PASM32.EXE, and then specify this assembler with
the -E option. In the Paradigm C++ IDE, right-click the source node in the Project
Manager, then choose Special|C++ to Assembler.

D Y our program will fail to compile with the -B option if your C or C++ source code
declares static global variables that are keywords in assembly. Thisis because the
compiler does not precede static global variables with an underscore (as it does other
variables), and the assembly keywords will generate errors when the code is assembled.

88 Paradigm C++ User's Guide

Compile to .OBJ, no link
Command-line equivalent = -c

Compiles and assembles the named .C, .CPP, and .ASM files, but does not execute a link
on the resulting .OBJfiles. In the Paradigm C++ IDE, choose Project|Compile.

Specify assembler
Command-line equivalent = -Efilename
Assemble instructions using filename as the assembler. The 16-bit compiler uses PASM

as the default assembler. In the Paradigm C++ IDE, you can configure a different
assembler using the Tool menu.

Specify executable file name
Command-line equivalent = -efilename
Link file using filename as the name of the executable file. If you do not specify an

executable name with this option, the linker creates an executable file based on the name
of the first source file or object file listed in the command.

Pass option to linker
Command-line equivalent = -Ix

Use this command-line option to pass option(s) x to the linker from a compile command.
Use the command-line option -I-x to disable a specific linker option.

Create a MAP file
Command-line equivalent = -M

Use this command-line option tells the linker to create a map file.

Compile .OBJ to filename
Command-line equivalent = -ofilename

Use this option to compile the specified source file to filename.OBJ.

C++ compile
Command-line equivalent = -P
The -P command-line option causes the compiler to compile al source files as C++ files,

regardless of their extension. Use -P- to compile all .CPP files as C++ source files and all
other files as C source files.

The command-line option -Pext causes the compiler to compile all source files as C++
filesand it changes the default extension to whatever you specify with ext. This option is
provided because some programmers use different extensions as their default extension
for C++ code.

The option -P-ext compiles files based on their extension (.CPP compilesto C++, al
other extensions compile to C) and sets the default extension (other than .CPP).

Compile to assembler
Command-line equivalent = -S

Chapter 3, Project options 89

This option causes the compiler to generate an .ASM file from your C++ (or C) source
code. The generated .ASM file includes the original C or C++ source lines as comments
inthefile.

Specify assembler option
Command-line equivalent = -Tx

Use this command-line option to pass the option(s) x to the assembler you specify with
the -E option. To disable al previously enabled assembler options, use the -T-
command-line option.

Undefine symbol
Command-line equivalent = -Uname

This command-line option undefines the previous definition of the identifier name.

Linker supported command-line options

The following switches are supported by the 16-bit command-line compiler (PCC.EXE)
and linker (PLINK.EXE).

Generate 8087 instructions
Command-line equivalent = -f87

Use this 16-bit compiler option to create 16-bit real-mode 8087 floating-point code.

Compile to real-mode
Command-line equivalent = -tD

The compiler creates a 20-bit real-mode application (same as -tDe).

Enable backward compatibility options
Command-line equivalent = -Vo

This compiler option enables the following 16-bit backward compatibility options: -Va, -
Vb, -V¢, -Vp, -Vt, -Vv. Use this option as a handy shortcut when linking libraries built
with older versions of Paradigm C++.

Link 20-bit address space
Command-line equivalent = /Tde

PLINK generates a 20-bit (1 MB) address space application.

Link 24-bit address space
Command-line equivalent = /Tee

PLINK generates a 24-bit (16 MB) address space application.

Enable 24-bit extended addressing
Command-line equivalent = -Y

Enables use of the 24-bit extended addressing mode to allow a real-mode address space
of 16MB.

When this option is enabled, the macro _ EXTADDR___ will be defined.

90 Paradigm C++ User's Guide

32-bit command-line options

The following switches are supported by the 32-bit command-line compiler
(PCC32.EXE) and linker (PLINK32.EXE).

The following 32-bit command-line options are not needed if you include a module
definition file in your compile and link commands which specifies the type of 32-bit
application you intend to build.

Generate a multi-threaded target
Command-line equivaent = -tWM

The compiler creates a multi-threaded relocatable load module or .DLL. (The command-
line option -WM is supported for backward compatibility only; it has the same
functionality as-tWM.)

Link using 32-bit Windows API
Command-line equivalent = /aa

PLINK32 generates a protected-mode executable that runs using the 32-bit Windows
API.

Link for 32-bit console application
Command-line equivalent = /ap

PLINK32 generates a protected-mode executable file that runs in console mode.

Link 32-bit .DLL file
Command-line equivalent = /Tpd

PLINK32 generates a 32-hit protected-mode Windows .DLL file.

Link 32-bit relocatable load module file
Command-line equivalent = /Tpe

PLINK32 generates a 32-hit protected-mode Windows relocatable load module.

Compiler command-line options

Table 3-10
Compiler
command-line
options

The following table lists the command-line compiler options in alphabetical order:

Option Description

@filename Read compiler options from the response file "filename"

+filename Use alternate configuration file "filename"

-1- Generate 8086 compatible instructions (16-bit compiler only)

-1 Generate the 80186/286 compatible instructions (Default for 16-hit)

-2 Generate 80286 protected-mode compatible instructions (16-bit
compiler only)

-3 Generate 80386 protected-mode compatible instructions (Default for
32-hit)

-4 Generate 80386/80486 protected-mode compatible instructions

-5 Generate Pentium instructions

-A Use only ANSI keywords

Chapter 3, Project options 91

-Dname
-Dname=string

-Efilename
-efilename

-Ff=size

-H=filename
-H” xxx”

-h

-Hc

-Hu

Align byte (Default: -a- use byte-aligning)
Use only Kernighan and Ritchie keywords

Align to "n" where 1=byte, 2=word (16-bit = 2 bytes) 4=Double word
(32-bit only, 4 bytes), 8=Quad word (32-bit only, 8 bytes)

Use Paradigm C++ keywords (also -A-)

Use only UNIX V keywords

Compileto .ASM (-S), the assemble to .OBJ (command-line compiler
only)

Make enums always integer-sized (Default: -b- make enums byte-sized when
possible)

Turn nested comments on (Default: -C- turn nested comments off)
Compileto .OBJ, no link (command-line compiler only)

Define "name" to the null string

Define "name" to "string”

Merge duplicate strings (Default)

Move string literals from data segment to code segment (16-bit
compiler only)

Make all constant data far

Specify assembler

Specify executable file name

Emulate floating point

No floating point

Generate 8087 floating-point code (command-line compiler only)
Enable page alignment for far segments

Enable Borland C++-compatible far data

Generate COMDEFs (16-bit compiler only)

Create far variables automatically

Create far variables automatically; set the threshold to "size" (16-bit
compiler only)

Fast floating point

Correct Pentium FDIV flaw

Pack far segments

Assume DS=SS in all memory models (16-bit compiler only)
Warnings: stop after "n" messages (Default: 255)
Generate and use precompiled headers (Default)

Set the name of the file for precompiled headers
Stop precompiling after header file xxxx

Uses fast huge pointers

Cache precompiled header

Use but do not generate precompiled headers

Make significant identifier length to be "n" (Default)

Generate definitions for all template instances and merge duplicates
(Default)

Generate public definitions for all template instances; duplicates result
in redefinition errors

Generate external references for all template instances

Paradigm C++ User's Guide

-mm!

-ms
-ms!

-0
-ofilename

Chapter 3, Project options

Errors. stop after "n" messages (Default)

Default character type unsigned (Default: -K- default character type
signed)

Turn on standard stack frame (Default)

Allow only two character types (signed and unsigned). Char istreated as signed.
Pass option “X” to linker (command-line compiler only)

Create a Map file (command-line compiler only)

Compile using compact memory model (16-bit compiler only)
Compile using huge memory model

Compile using large memory model (16-bit or 32-bit compilers)
Compile using medium memory mode (16-bit compiler only)

Compile using medium memory model; assume DS!=SS (16-bit
compiler only. Note: there is no space between the -mm and the!)

Compile using small memory model (Default, 16-bit compiler only)

Compile using small memory model; assume DS! = SS (16-bit
compiler only. Note: there is no space between the -ms and the)

Check for stack overflow

Optimize jumps

Compile .OBJto “filename” (command-line compiler only)
Generate smallest possible code

Generate fastest possible code

Optimize assuming pointer expressions are not aliased on common
subexpression evaluation

Eliminate dead code

Eliminate duplicate expressions within basic blocks
Disable all optimizations

Allocate global registers and analyze variable live ranges
Eliminate duplicate expressions within functions

Expand common intrinsic functions

Compact loops

Move invariant code out of loops

Propagate copies

Pentium instruction scheduling

Enable [oop induction variable and strength reduction

Force C++ compile (command-line compiler only)

Use Pascal calling convention

Use C calling convention (Default: -pc, -p-)

Use fastthis calling convention for passing this parameter in registers
Use fastcall calling convention for passing parametersin registers
Use stdcall calling convention (32-bit compiler only)
Include browser information in generated .OBJ files

Use register variables (Default)

Allow only declared register variables to be kept in registers
Enable run-time type information (Default)

Compileto assembler (command-line compiler only)
Specify assembler option “x” (command-line compiler only)

93

/Tdc
/Tde
/Tee
-tWM
-Uname

-Vms

Compileto a 16-bit real-mode rel ocatable load module (same as -tDe) (command-
line compiler only)

Compileto areal address mode .COM file (command-line compiler only)
PLINK generates a 20-bit address space

PLINK generates a 24-hit address space

Generate a 32-bit multi-threaded target (command-line compiler only)
Undefine any previous definitions of "name" (command-line compiler

only)
Generate underscores (Default)

Use smart C++ virtual tables (Default)
Turn on source debugging

External C++ virtua tables

Public C++ virtua tables

Pass class arguments by reference to atemporary variable (16-bit
compiler only)

Make virtual base class pointer same size as 'this pointer of the class
(Default, 16-bit compiler only)

Calling convention mangling compatibility
Do not add the hidden members and code to classes with pointersto
virtual base class members (16-bit compiler only)

for loop variable scoping

Zero-length empty base classes

Far C++ virtual tables (16-bit compiler only)

Treat “far” classes as “huge”

Control expansion of inline functions

Use the smallest representation for member pointers
Member pointers support multiple inheritance

Honor the declared precision for all member pointer types
Member pointers support single inheritance

Member pointers have no restrictions (most general representation)
(Default)

Enable backward compatibility options (command-line compiler only)
Pass the 'this' parameter to 'pascal’ member functions asthefirst
Local C++ virtua tables

Place the virtual table pointer after nonstatic data members (16-bit
compiler only)

‘deep’ virtual basses

Display warnings on

Enable "xxx" warning message (Default)

Ambiguous operators need parentheses

Superfluous & with function

Unknown assembler instruction

'identifier' isassigned a value that is never used (Default)
Bit fields must be signed or unsigned int

Initializing 'identifier' with 'identifier' (Default)
Hexadecimal value contains more than three digits (Default)

Paradigm C++ User's Guide

-wccee
-wcln
-wept
-wdef
-wdpu
-wdup
-wdsz
-weas
-weff
-wext
-wfar
-whch
-whid
-whsg
-wias
-wibc
-wico
-will
-winl
-wlbl
-wlin
-wlvc
-wmsg
-wmpc

-wmpd
-wnak

-wnci

-wnfc
-wnod
-wnst

-wntd
-wnvf
-wobi

-wobs
-wofp
-wovl

-wpar
-wpch
-wpia
-wpin
-wpre
-wpro
-wrch

Chapter 3, Project options

Condition is always true OR Condition is always false (Default)
Constant islong

Nonportable pointer comparison (Default)

Possible use of 'identifier' before definition

Declare type 'type prior to usein prototype (Default)
Redefinition of 'macro’ is not identical (Default)

Array size for 'delete’ ignored (Default)

Assigning ‘type’ to ‘enum’

Code has no effect (Default)

'identifier' is declared as both external and static (Default)
Automatic far dataisignored

Handler for '<typel>' Hidden by Previous Handler for '<type2>'
'functionl' hides virtual function 'function2' (Default)

Default segments required for huge objects-segment name reset
Array variable 'identifier' is near (Default)

Base class 'basel’ isinaccessible because also in 'base?' (Default)
Integral constant overflow with 'op' operator

[11-formed pragma (Default)

Functions containing reserved words are not expanded inline (Default)
Label 'lbl" is declared but never used

Temporary used to initialize 'identifier' (Default)

Temporary used for parameter 'parameter’ in call to ‘function’ (Default)
User-defined warnings

Conversion to type fails for members of virtual base class base
(Default)

Maximum precision used for member pointer type <type> (Default)

Non-ANSI Keyword Used: '<keyword>' (Note: Use of thisoption isa
requirement for ANSI conformance)

The constant member 'identifier' isnot initialized (Default)
Non-constant function ‘ident’ called for const object

No declaration for function ‘function’

Use qualified name to access nested type 'type’ (Default)

Use'> >' for nested templates instead of '>>' (Default)
Non-volatile function <function> called for volatile object (Default)
Base initialization without a class name is now obsol ete (Default)
'ident’ is obsolete

Style of function definition is now obsolete (Default)

Overload is now unnecessary and obsol ete (Default)

Parameter 'parameter’ is never used (Default)

Cannot create precompiled header: header (Default)

Possibly incorrect assignment (Default)

Initialization is only partially bracketed

Overloaded prefix operator 'operator' used as a postfix operator
Call to function with no prototype (Default)

Unreachable code (Default)

95

-wr et Both return and return of a value used (Default)

-Wrng Constant out of range in comparison (Default)

-wr pt Nonportable pointer conversion (Default)

-wrvl Function should return a value (Default)

-wsig Conversion may lose significant digits

-wstu Undefined structure 'structure

-wstv Structure passed by value

-Wsus Suspicious pointer conversion (Default)

-wuco Constant declaration 'symbol’ should beinitialized

-wucp Mixing pointers to different 'char' types

-wuse 'identifier' declared but never used

-Wvoi Void functions may not return a value (Default)

-WX Creates arelocatable load module for a DOS Protected Mode Interface (DPMI) file

-wzdi Division by zero (Default)

-X Disable compiler autodependency output (Default: -X- use compiler
autodependency output)

-X Enable exception handling (Default)

-XC Enable compatible exception handling

-xd Enable destructor cleanup (Default)

-xf Enable fast exception prologs

-Xp Enable exception location information

-y Line numbers on

-Y Enables 24-bit extended addressing mode

-Z Enable register load suppression optimization

-zAname Code class st to "name”

-zBname BSS class set to "name”

-zCname Code segment set to "name"

-zDname BSS segment set to "name”

-zEname Far data segment set to "name"

-zFname Far data class set to "name”

-zGname BSS group set to "name”

-zHname Far data group set to "name"

-zIname Constant initialized far data segment set to "name"

-zJname Constant initialized far data class set to "name”

-zKname Constant initialized far data group set to "name”

-zPname Code group set to "name"

-zRname Data segment set to "name”

-zSname Data group set to "name"

-zThame Data class set to "name”

-zZVVname Far virtual segment set to "name" (16-bit compiler only)

-ZWname Far virtual class set to "name" (16-bit compiler only)

-zXname Far BSS segment set to "name”

-ZY name Far BSS class set to "name”

-zZname Far BSS group set to "name"

96 Paradigm C++ User's Guide

Command-line options by function

Table 3-11
Command-line
only options

The Paradigm C++ IDE groups the compiler and linker command-line options into the
following categories:

« Compiler

« 16-bit compiler

« 32-bit compiler

. C++ options

« Optimizations

. Messages

. Linker

In addition, there are compiler and linker options that you can set from only the
command-line;

Option Description

Configuration Files

@filename Read compiler options from the response file "filename"

Response Files

+filename Use alternate configuration file "filename"

Compiler|Defines

-Dname Define "name" to the null string

-Dname=string Define "name" to "string"

-Uname Undefine any previous definitions of "name"

Compiler|Code Generation

-b Make enums always integer-sized (Default: -b- make enums byte-sized
when possible)

-K Default character type unsigned (Default: -K- default character type
signed)

-d Merge duplicate strings (Default)

-po Use fastthis calling convention for passing this parameter in registers
(16-bit compiler only)

-r Useregister variables (Default)

-rd Allow only declared register variablesto be kept in registers

-Y Enables 24-bit extended addressing

Compiler |Floating Point

-f- No floating point

-f Emulate floating point

-ff Fast floating point

-fp Correct Pentium FDIV flaw

Compiler|Compiler Output

-X Disable compiler autodependency output (Default: -X- use compiler
autodependency output)

-u Generate underscores (Default)

-Fc Generate COMDEFs (16-bit compiler only)

Chapter 3, Project options 97

Compiler|Source

-C Turn nested comments on (Default: -C- turn nested comments off)

-in Make significant identifier length to be "n" (Default)

-AT Use Paradigm C++ keywords (also -A-)

-A Use only ANSI keywords

-AU Useonly UNIX V keywords

-AK Use only Kernighan and Ritchie keywords

Compiler|Debugging

-k Turn on standard stack frame (Default)

-N Check for stack overflow

-Vi Control expansion of inline functions

-y Line numbers on

-V Turn on source debugging

-R Include browser information in generated .OBJfiles

-vC Enable coverage recordsin object files (Disabled By Default)

Compiler|Precompiled Headers

-H Generate and use precompiled headers (Default)

-Hu Use but do not generate precompiled headers

-Hc Cache precompiled header

-H=filename Set the name of the file for precompiled headers

-H” xxx” Stop precompiling after header file xxxx

16-bit Compiler |Processor

-1- Generate 8086 compatible instructions (Default for 16-bit)

-1 Generate the 80186/286 compatible instructions (16-bit only)

-2 Generate 80286 protected-mode compatible instructions (16-bit
compiler only)

-3 Generate 80386 protected-mode compatible instructions (Default for
32-hit)

-4 Generate 80386/80486 protected-mode compatible instructions

-5 Generates Pentium instructions

-a Align byte (Default: -a- use byte-aligning)

-an Align to"n" where 1=byte, 2=word (16-hit = 2 bytes), 4=Double word

(32-bit only, 4 bytes), 8=Quad word (32-bit only, 8 bytes)
16-bit Compiler|Calling Convention

-pc Use C calling convention (Default: -pc, -p-)

-p Use Pascal calling convention

-pr Use fastcall calling convention for passing parametersin registers

16-bit Compiler|M emory Model

-ms Compile using small memory mode (Default, 16-bit compiler only)

-msl Compile using small memory model; assume DS! = SS (16-bit
compiler only. Note: there is no space between the -ms and the !)

-mm Compile using medium memory model (16-bit compiler only)

-mml Compile using medium memory model; assume DSI=SS (16-bit
compiler only. Note: there is no space between the -mm and the!)

-mc Compile using compact memory model (16-bit compiler only)

-ml Compile using large memory modd (16-bit compiler only)

98 Paradigm C++ User's Guide

-mh Compile using huge memory model

-Fa Enable page alignment for far segments

-Fb Enable Borland C++-compatible far data

-Fs Assume DS=SS in all memory models (16-bit compiler only)

-dc Move string literals from data segment to code segment (16-bit
compiler only)

-dx Make all constant data far

-Vf Far C++ virtual tables (16-bit compiler only)

-h Uses fast huge pointers

-Ff Create far variables automatically

-Ff=size Create far variables automatically; set the threshold to "size" (16-bit
compiler only)

-Fp Pack far segments

16-bit Compiler|Segment Names Data

-zRname Data segment set to "name"

-zSname Data group set to "name"

-ZThame Data class set to "name”

-zDname BSS segment set to "name”

-zGname BSS group set to "name”

-zBname BSS class set to "name”

16-bit Compiler|Segment Names Far Data

-zEname Far data segment set to "name"

-zHname Constant initialized far data segment set to "name "

-zIname Constant initialized far data class set to "name "

-zJname Constant initialized far data group set to "name "

-zKname Far data group set to "name"

-zFname Far data class set to "name”

-zZVVname Far virtual segment set to "name" (16-bit compiler only)

-ZWname Far virtual class set to "name" (16-bit compiler only)

-zXname Far BSS segment set to "name”

-zY name Far BSS class set to "name”

-zZname Far BSS group set to "name"

16-bit Compiler|Segment Names Code

-zCname Code segment set to "name"

-zPname Code group set to "name"

-zAname Code class st to "name”

32-bit Compiler |Processor

-3 Generate 80386 instructions. (Default for 32-hit)

-4 Generate 80486 instructions

-5 Generate Pentium instructions

32-bit Compiler|Calling Convention

-pc Use C calling convention (Default: -pc, -p-)

-p Use Pascal calling convention

-pr Use fastcall calling convention for passing parametersin registers

-ps Use stdcall calling convention (32-bit compiler only)

Chapter 3, Project options

99

C++ OptiongM ember Pointer

-Vmp Honor the declared precision for all member pointer types

-Vmv Member pointers have no restrictions (most general representation)
(Default)

-Vmm Member pointers support multiple inheritance

-Vms Member pointers support single inheritance

-Vmd Use the smallest representation for member pointers

C++ OptiongC++ Compatibility

-vd for loop variable scoping

-K2 Allow only two character types (signed and unsigned). Char istreated
assigned.

-VC Calling convention mangling compatibility

-Vb Make virtual base class pointer same size as 'this pointer of the class
(Default, 16-bit compiler only)

-Va Pass class arguments by reference to atemporary variable (16-bit
compiler only)

-Vc Do not add the hidden members and code to classes with pointersto
virtual base class members (16-bit compiler only)

-Vp Pass the 'this' parameter to 'pascal’ member functions asthefirst

-Vv ‘deep’ virtual basses

-Vt Place the virtual table pointer after nonstatic data members (16-bit
compiler only)

-Vh Treat “far” classes as “huge”

C++ OptiongVirtual Tables

-V Use smart C++ virtual tables (Default)

-Vs Local C++ virtual tables

-VO External C++ virtual tables

-V1 Public C++ virtual tables

C++ Optionsg|Templates

-Jg Generate definitions for all template instances and merge duplicates
(Default)

-Jod Generate public definitions for all template instances; duplicates result
in redefinition errors

-Jgx Generate external references for all template instances

C++ Options|Exception Handling

-X Enable exception handling (Default)

-Xp Enable exception location information

-xd Enable destructor cleanup (Default)

-xf Enable fast exception prologs

-XC Enable compatible exception handling

-RT Enable run-time type information (Default)

C++ Options|General

-Ve Zero-length empty base classes

Optimizations

-Od Disable all optimizations

-01 Generate smallest possible code

100 Paradigm C++ User's Guide

-02

Generate fastest possible code

Optimizations|16- and 32-bit

Eliminate duplicate expressions within basic blocks
Eliminate duplicate expressions within functions
Expand common intrinsic functions

Enable loop induction variable and strength reduction

Optimizations|16-bit

Optimize jumps

Compact loops

Enable register load suppression optimization
Eliminate dead code

Suppress the inc bp/dec bp on windows far functions (16-bit compiler
only)
Allocate global registers and analyze variable live ranges

Optimize assuming pointer expressions are not aliased on common
subexpression evaluation

Move invariant code out of loops
Propagate copies

Optimizations|32-bit

-0S
M essages

-jn

Pentium instruction scheduling

Display warnings on

Enable "xxx" warning message (Default)
Warnings: stop after "n" messages (Default: 255)
Errors: stop after "n" messages (Default)

M essages|Portability

-wr pt
-wept
-Wrng
-wcln
-wsig
-wucp
-wico

Nonportable pointer conversion (Default)
Nonportable pointer comparison (Default)
Constant out of range in comparison (Default)
Constant islong

Conversion may lose significant digits
Mixing pointers to different 'char' types
Integral constant overflow with 'op' operator

M essages/ANSI Violations

-WVoi
-wr et
-wsus
-wstu
-wdup
-whig
-whbf
-wext
-wdpu
-wzdi
-wbei

Chapter 3, Project options

Void functions may not return a value (Default)

Both return and return of a value used (Default)
Suspicious pointer conversion (Default)

Undefined structure 'structure

Redefinition of 'macro’ is not identical (Default)
Hexadecimal value contains more than three digits (Default)
Bit fields must be signed or unsigned int

'identifier' is declared as both external and static (Default)
Declare type 'type prior to usein prototype (Default)
Division by zero (Default)

Initializing 'identifier' with 'identifier' (Default)

101

-wpin Initialization is only partially bracketed

-wnak Non-ANSI Keyword Used: '<keyword>' (Note: Use of thisoption isa
requirement for ANSI conformance)

M essages|Obsolete C++

-wobi Base initialization without a class name is now obsol ete (Default)

-wofp Style of function definition is now obsolete (Default)

-wpre Overloaded prefix operator 'operator' used as a postfix operator

-wovl Overload is now unnecessary and obsol ete (Default)

M essages|Potential C++ Errors

-wnci The constant member ‘identifier' isnot initialized (Default)

-weas Assigning ‘type’ to ‘enum’

-whid 'functionl' hides virtual function 'function2' (Default)

-wnfc Non-constant function ‘ident’ called for const object

-wibc Base class 'basel’ isinaccessible because also in 'base?' (Default)

-wdsz Array size for 'delete’ ignored (Default)

-wnst Use qualified name to access nested type 'type’ (Default)

-whch Handler for '<typel>' Hidden by Previous Handler for '<type2>'

-wmpc Conversion to type fails for members of virtual base class base
(Default)

-wmpd Maximum precision used for member pointer type <type> (Default)

-wntd Use "> >' for nested templates instead of '>>' (Default)

-wnvf Non-volatile function <function> called for volatile object (Default)

M essages| nefficient C++ Coding

-winl Functions containing reserved words are not expanded inline (Default)

-wlin Temporary used to initialize 'identifier' (Default)

-wlvc Temporary used for parameter 'parameter' in call to 'function' (Default)

M essages|Potential Errors

-wpia Possibly incorrect assignment (Default)

-wdef Possible use of 'identifier' before definition

-wnod No declaration for function 'function'

-wpro Call to function with no prototype (Default)

-wrvl Function should return a value (Default)

-wamb Ambiguous operators need parentheses

-wcee Condition is always true OR Condition is always false (Default)

-wuco Constant declaration 'symbol’ should beinitialized

M essages|I nefficient Coding

-waus 'identifier' isassigned a value that is never used (Default)

-wpar Parameter 'parameter’ is never used (Default)

-wuse 'identifier' declared but never used

-wstv Structure passed by value

-wrch Unreachable code (Default)

-weff Code has no effect (Default)

-wibl Label 'lbl" is declared but never used

M essages|Gener al

-wasm Unknown assembler instruction

102 Paradigm C++ User's Guide

-will [11-formed pragma (Default)

-wias Array variable 'identifier' is near (Default)

-wamp Superfluous & with function

-wobs 'ident’ is obsolete

-wpch Cannot create precompiled header: header (Default)
-wmsg User-defined warnings

-whsg Default segments required for huge objects-segment name reset
-wfar Automatic far dataisignored

Linker options

Generd

Map file

16-bit linker

16-bit optimizations

32-hit linker

Warnings

Command-line only options

16- and 32-bit command-line options
Linker supported command-line options
32-bit command-line options

Command-line options

When you start PCW, you can specify options that direct Paradigm C++'s behavior. You
can type these options on the command line or specify them as properties of the
Paradigm C++ icon.

PCW has the following command-line syntax:
pcw [options] [fil enane]

options Y ou can use either a hyphen (-) or adlash (/) to specify the options listed
in the following table.

filename If youarenotinthedirectory wheref i | enamne islocated, you must
specify the full path to the file. PCW loadsf i | enane into the most logical
environment based on the extension of the file. For example:

pcw cpp\ project.ide
Displays the project in the Project Manager.

pcw \ PARADI GM exanpl es\ real \ cppdeno\ cppdeno. cpp
Digplays the C++ source file in the Edit window.

pcw wor k\ proj ect. c

Displays the C source file in the Edit window.

Y ou can specify the following PCW options in either upper- or lowercase: Add table
header Table 3.12, Paradigm C++ options)

Chapter 3, Project options 103

Option

Description

-b project_filename

-iini_filename

-m project_filename

-q

-sscript_filename

104

Uses the Paradigm C++ IDE to build the specified project_filename. If the
project consists of multiple targets, all targets are built. Once the targets are
built, the Paradigm C++ IDE is closed. This option allows you to invoke the
Paradigm C++ IDE environment from a batch file so you can automate builds.
For example;

pcw -b project.ide

Starts PCW and specifies an INI file other than PCWx.INI. For

example:

pcw -imyini.ini

Uses the Paradigm C++ |DE to make the specified project_filename. If the
project consists of multiple targets, all targets are brought up to date.

Once the targets are made, the Paradigm C++ IDE is closed. This option allows

you to invoke the Paradigm C++ environment from a batch file so you can
automate makes. For example:

pcw -m project.ide

Starts PCW quietly (with no splash screen or About box on
gtartup).

Starts PCW and runs the specified script_filename. For example:
pcw -s script.spp

Paradigm C++ User's Guide

Chapter

4

Browsing through your code

The browser lets you search through your object hierarchies, classes, functions,
variables, types, constants, and labels that your program uses. The browser also lets you:

. Graphically view the hierarchiesin your application, then select the object of your
choice and view the functions and symbols it contains.

« List the variables your program uses, then select one and view its declaration, list all
referencesto it in your program, or go to where it is declared in your source code.

. List all the classes your program uses, then select one and list al the symbolsin its
interface part. From thislist, you can select a symbol and browse as you would with
any other symbol in your program.

Using the browser

If the program in the current Edit window or the first file in your project has not yet been
compiled, the Paradigm C++ IDE must first compile your program before invoking the
browser.

If you try to browse a variable or class definition (or any symbol that does not have
symbolic debug information), the Paradigm C++ | DE displays an error message.

If you changed the following default settings on the Project options dialog box, before
you use the browser, be sure to:
1. Choose Options|Project.
2. Choose Compiler|Debugging and check
« Debug information in OBJs
« Browser reference information in OBJs
3. Choose Linker|Genera and check Include debug information.
4. Compile your application.

Starting the browser

To start browsing through your code, choose one of the following menu or SpeedBar
commands: From the main menu or the SpeedBar:

« Search|Browse symbol
. Search|Browse Classes
. Search|Browse Globals

Browser views
The browser provides the following views:

. Global symbols
. Objects (Class overview)
« Symbol declaration

Chapter 4, Browsing through your code 105

« Classinspection
« References

Browsing objects (class overview)

Choose Search|Browse classes to see an overall view of the object hierarchiesin your
application, as well as the small details.

The browser draws your objects and shows their ancestor-descendant relationshipsin a
horizontal tree. The red lines in the hierarchy help you see the immediate ancestor-
descendant relationships of the currently selected object more clearly.

To see more detail about a particular object, double-click it. (If you are not using a
mouse, select the object by using your arrow cursor keys and press Enter.) The browser
lists the symbols (the procedures, functions, variables, and so on) used in the object.

One or more letters appear to the left of each symbol in the object that describe what
kind of symbol it is. "See Browser filters and letter symbols'.

Browsing global symbols

Choose Search|Browse globals to open a window that lists every global symbol in your
application in alphabetical order.

To see the declaration of a particular symbol listed in the browser, use one of the
following methods:

« Double-click the symbol

. Select the symbol and press Enter

+ Select the symbol, choose Browse symbol from the SpeedMenu

Search

The Search input box at the bottom of the window lets you quickly search through the
list of global symbols by typing the first few letters of the symbol name. Asyou type, the
highlight bar in the list box moves to a symbol that matches the typed characters.

Browser SpeedMenu

Once you select the global symbol you are interested in, you can use the following
commands on the Browser SpeedMenu:

. Edit Source

« Browse Symbol

. Browse References

. Returnto Previous View

. Print Class Hierarchy

. Toggle Window Mode

Browsing symbols in your code

Y ou can browse any symbol in your code without viewing object hierarchies or lists of
symbols first.

To do so, highlight or place the insertion point on the symbol in your code and choose
Browse symbol. from the Search menu or the Edit window SpeedMenu.

106 Paradigm C++ User's Guide

If the symbol you select is a structured type, the browser shows you all the symbolsin
the scope of that type. Y ou can then choose to inspect any of these further. For example,
if you choose an object type, you will see all the symbols listed that are within the scope
of the object.

Symbol declaration window
This Browser window shows the declaration of the selected symbol.

Y ou can use the following commands on the Browser SpeedMenu:

. Edit Source

. Browse References

. Browse Class Hierarchy
« Returnto Previous View
. Toggle Window Mode

Browsing references
This Browser window shows the references to the selected symbol.

Y ou can use the following commands on the Browser SpeedMenu:

. Edit Source

. Browse Class Hierarchy
. Returnto Previous View
. Toggle Window Mode

. Set Options

Class inspection window
This Browser window shows the symbols (functions and variables) used in the selected
class.

Once you select the symbol you are interested in, you can use the following commands
on the Browser SpeedMenu:

. Edit Source

« Browse Symbol

. Browse References

« Browse Class Hierarchy

. Returnto Previous View

« Toggle Window Mode

. Set Options

Browser filters and letter symbols

When you browse a particular symbol, the same letters that appear on the left that
identify the symbol appear in a Filters matrix at the bottom of the Browser window. The
Filters matrix has a column for each letter which can appear in the top or bottom row of
the column.

Use the filters to select the type of symbols you want to see listed. (Y ou can also use the
Browser options settings to specify the types of symbols you want to see listed.)

Chapter 4, Browsing through your code 107

Table 4-1
Browser letter
symbols

[]

Click the top cell
of the column.

Click the bottom
cell of the letter
column.

L etter Symbol

Function

Type

Variable

Integral constants
Debuggable

Inherited from an ancestor
Virtual method

< — w00 <4dm

In some cases, more than one letter appears next to a symbol. Additional letters appear
to the right of the letter identifying the type of symbol and further describe the symbol:

To view all instances of a particular type of symbol

For example, to view all the variables in the currently selected object, click the top cell in
the V column. All the variables used in the object appear.

To hide all instances of a particular type of symbol

For example, to view only the functions and procedures in an object, you need to hide all
the variables. Click the bottom cell in the V column, and click the top cellsin the F and P
columns.

To change several filter settings at once

Drag your mouse over the cells you want to select in the Filters matrix.

Customizing the browser

Use the Environment Options dialog box to select the Browser options you want to use.
1. Choose Options|Environment.
2. Choose Browser.

3. Specify the types of symbols you want to have visible in the Browser using the
Visible symbols option.

4. Specify how many browser views you can have open at one time. See single or
multiple Browser window mode in the Browser window behavior option.

108 Paradigm C++ User's Guide

Chapter
9

Using the integrated debugger

No matter how careful you are when you code, your programis likely to have errors or
bugs that prevent it from running the way you intended. Debugging is the process of
locating and fixing the errorsin your program.

The Paradigm C++ IDE contains an integrated debugger that lets you debug 16- and 32-
bit embedded applications without leaving the development environment. Among other
things, the integrated debugger lets you control the execution of your program, inspect
the values of variables and items in data structures, modify the values of data items while
debugging. Y ou can access the functionality of the integrated debugger through two
menus. Debug and View aong with local menus and keystrokes. This chapter introduces
you to the functionality of the integrated debugger and gives a brief overview of the
debugging process.

Types of bugs

The integrated debugger can help find two basic types of programming errors. run-time
errors and logic errors,

Run-time errors

If your program successfully compiles, but fails when you run it, you've encountered a
run-time error. Your program contains valid statements, but the statements cause errors
when they're executed. For example, your program might be trying to open a nonexistent
file, or might be trying to divide a number by zero. The operating system detects run-
time errors and stops your program execution if such an error is encountered.

Without a debugger, run-time errors can be difficult to locate because the compiler
doesn't tell you where the error is located in your source code. Often, the only clue you
have to work with is where your program failed and the error message generated by the
run-time error.

Although you can find run-time errors by searching through your program source code,
the integrated debugger can help you quickly track down these types of errors. Using the
integrated debugger, you can run to a specific program location. From there, you can
begin executing your program one statement at a time, watching the behavior of your
program with each step. When you execute the statement that causes your program to
fail, you have pinpointed the error. From there, you can fix the source code recompile
the program, and resume testing your program.

Logic errors

Logic errors are errors in design and implementation of your program. Y our program
statements are valid (they do something), but the actions they perform are not the actions
you had in mind when you wrote the code. For instance, logic errors can occur when
variables contain incorrect values, or when the output of your program isincorrect.

Chapter 5, Using the integrated debugger 109

Logic errors are often the most difficult type or errorsto find because they can show up
in places you might not expect. To be sure your program works as designed, you must
thoroughly test all of its aspects. Only by scrutinizing each portion of the user interface
and output of your program can you be sure that its behavior corresponds to its design.
As with run-time errors, the integrated debugger helps you locate logic errors by letting
you monitor the values of your program variables and data objects as your program
executes.

Planning a debugging strategy

After program design, program development consists of a continuous cycle of program
coding and debugging. Only after you thoroughly test your program should you
distribute it to your end users. To ensure that you test all aspects of your program, it's
best to have athorough plan for your debugging cycles.

One good debugging method involves breaking your program down into different
sections that you can systematically debug. By closely monitoring the statements in each
program section, you can verify that each areais performing as designed. If you do find a
programming error, you can correct the problem in your source code, recompile the
program, and then resume testing.

Starting a debugging session

To start adebugging session:
1. Build your program with debug information.
2. Run your program from within the Paradigm C++ IDE.

When debugging, you have complete control of your program's execution. Y ou can
pause the program at any point to examine the values of program variables and data
structures, to view the sequence of function calls, and to modify the values of program
variables to see how different values affect the behavior of your program.

Compiling with debug information

Before you can begin a debugging session, you must compile your program with
symbolic debug information. Symbolic debug information, contained in a symbol table,
enables the debugger to make connections between your program's source code and the
machine code that's generated by the compiler. This lets you view the actual source code
of your program while running the program through the debugger.

To generate symbolic debug information for your project:

1. Inthe Project window, select the project node.
2. Choose Optiong|Project to open the Project Options dialog box.

3. From the Compiler|Debugging topic, check Debug Information in .OBJs to include
debug information in your project .OBJ files (this option is checked by default).

4. From the Linker|General topic, check Include Debug Information. This option
transfers the symbolic debug information contained in your .OBJfilesto the .ROM
file (this option is checked by default).

Adding debugging information to your files increases their file size. Because of this,
you'll want to include debug information in your files only during the development stage
of your project. Once your program is fully debugged, compile your program without
debug information to reduce the final .AXE file size.

110 Paradigm C++ User's Guide

D Not all .OBJfilesin your project need symbolic debug information - only those modules
you need to debug must contain a symbol table. However, since you can't statement step
into amodule that doesn't contain debug information, it's best to compile al your
modules with a minimum of line number debug information during the development
stages of your project.

Running your program in the Paradigm C++ IDE

Once you've compiled your program with debug information, you can begin a debugging
session by running your application in the Paradigm C++ IDE. By running your
application in the Paradigm C++ debugger, you have control of when the application
runs and when it pauses. Whenever the program is paused in the Paradigm C++ IDE, the
debugger takes control.

When your program is running under the Paradigm C++ IDE, it behaves as it normally
would if it were running in a stand-alone target. During the time that your application is
not running, the debugger has control, and you can use its features to examine the
current state of the program. By viewing the values of variables, the functions on the call
stack, and the program output, you can ensure that the area of code you're examining is
performing as it was designed.

The actual behavior of the application depends on the target system being used. 16-bit
applications can only be debugged on remote target systems running PDREMOTE/ROM
or with an in-circuit emulator. 32-bit applications can be debugged locally in emulation
mode or can be debugged remotely using PDREMOTE/ROM or an in-circuit emulator.

Specifying program arguments
If the program you want to debug uses command-line arguments, you can specify those
arguments in the Paradigm C++ IDE in two ways.

First:
1. Choose Options|Environment then select the Debugger topic.

2. Inthe Arguments text box, type the arguments you want to use when you run your
program under the control of the integrated debugger.

Second:

1. Choose Debug|Load.
2. Type your program name and arguments in the Load dialog box.

Controlling program execution

An important advantage of a debugger isthat it lets you control the execution of your
program; you can control whether your program will execute a single machine
instruction, a single line of code, an entire function, or an entire program block. By
dictating when the program should run and when it should pause, you can quickly move
over the sections that you know work correctly and concentrate on the sections that are
causing problems.

The integrated debugger lets you control the execution of your program in the following
ways:

« Running to the cursor location

« Stepping through code

« Running to a breakpoint

Chapter 5, Using the integrated debugger 111

. Pausing your program

When running code through the debugger, program execution can be based on lines of
source code or on machine instructions. When debugging at the source level, the
integrated debugger lets you control the rate of debugging to the level of a single line of
code. However, the debugger considers multiple program statements on one line of text
to be asingle line of code; you cannot individually debug multiple statements contained
on asingle line of text. In addition, the debugger regards a single statement that's spread
over several lines of text as a single line of code.

There are a number of options you can select to control the behavior of the integrated
debugger while you work. See Options | Environment | Debugger in the Paradigm C++
IDE for these options and their descriptions. See also "Debugger options’ in the online
Help of the Paradigm C++ IDE.

Running to the cursor location

Often when you start a debugging session, you'll want to run your program to a spot just
before the suspected location of the problem. At that point, use the debugger to ensure
that all data values are as they should be. If everything is OK, you can run your program
to another location, and again check to ensure that your program is behaving as it
should.

To runto a specific source line:
1. Inthe Edit window or CPU window, position the cursor on the line of code where
you want to begin (or resume) debugging.
2. Run to the cursor location in one of the following ways:
. Click the Run To Here button on the SpeedBar.
« Choose Run To Current from the Edit window SpeedMenu
« Choose Run To Current in the Disassembly pane of the CPU window.

To run to a specific machine instruction:

1. After your processis loaded, open a CPU view and position the disassembly pane so
that the highlight is on the address to which you want to run.

2. Choose Run To Current from the disassembly pane SpeedMenu, or click the Run To
Here button on the SpeedMenu.

When you run to the cursor, your program executes at full speed until the execution
reaches the location marked by the cursor in the Edit window, or highlight in the CPU
window. When the execution encounters the code marked by the text cursor or
highlighted, the debugger regains control and places the execution point on that line of
code.

The execution point

The execution point marks the next line of source code to be executed by the debugger.
Whenever you pause your program execution within the debugger (for example,
whenever you run to the cursor or step to a program location), the debugger highlights a
line of code using a green arrow and colored background (depending on your color
setup), marking the location of the execution point.

The execution point aways shows the next line of code to be executed, whether you are
going to step through, step into, or run your program at full speed. If there is no source

112 Paradigm C++ User's Guide

Step Into

Step Over

associated with the code at the current execution point, a CPU window is opened
showing the instruction with the instruction at the current execution point.

Finding the execution point

While debugging, you're free to open, close, and navigate through any file in an Edit
window. Because of this, it's easy to lose track of the next program statement to execute,
or the location of the current program scope. To quickly return to the execution point,
choose Debug|Source At Execution Point or click the SpeedBar button. Even if you've
closed the Edit window containing the execution point, Find Execution Point opens an
Edit window, and highlights the source code containing the execution point.

If there is no source associated with the code at the current execution point, you will get
an error stating that no line corresponds to the address. If this happens, you can see the
current execution point by opening the CPU window.

Stepping through code

Stepping is the simplest way to move through your code one statement at a time.
Stepping lets you run your program one line (or instruction) at a time — the next line of
code (or instruction) will not execute until you tell the debugger to continue. After each
step, you can examine the state of the program, view the program output, and modify
program data values. Then, when you are ready, you can continue executing the next
program statement.

There are two basic ways to step through your code:

The Step Into command is available on the SpeedMenu in the Edit window or by using
F8. Step Into causes the debugger to walk through your code one statement at atime. If
the execution point is located on a function call, the debugger moves to the first line of
code that defines that function. From here, you can execute that function, one statement
at atime. When you step past the return of the function, the debugger resumes stepping
from the point where the function was called. Using the Step Into command to step
through your program one statement at a time is known as single stepping.

The Step Over command is also available on the SpeedMenu in the Edit window or by
using F7. Step Over isthe same as Step Into, except that if you issue the Step Over
command when the execution point is on a function call, the debugger executes the
function at full speed, and pauses the execution on the line of code following the function
call.

Stepping rules
The debugger steps over single lines of lines of code based on the following rules:

. If you string several statements together on one line, you cannot debug those
statements individually; the debugger treats all statements as a single line of code.

. If you spread a single statement over multiple lines in your source file, the debugger
executes all the lines as a single statement.

To ensure that the debugger accurately represents your C++ source code while stepping,
choose Options|Project|Compiler|Debugging and click Out-of-Line Inline Functions.

Stepping into
To Step Into code, choose Statement|Step Into from the Edit window SpeedMenu or
press F7 (default keyboard mapping).

Chapter 5, Using the integrated debugger 113

When you choose Step Into, the debugger executes the code highlighted by the
execution point. If the execution point is highlighting a function call, the debugger moves
the execution point to the first line of code that defines the function being called.

If the executing statement calls a function that does not contain debug information, the
debugger opens the CPU window and positions the execution point on the disassembled
instruction that corresponds to the function definition in memory.

Example

The following code fragment shows how Step Into works. Suppose these two functions
arein aprogram that was compiled with debug information:
func_1() {
statenent _a;
func_2();
statement _b;

}

func_2() {
int custoners;
stat ement _m

}

If you choose Step Into when the execution point ison st at enent ainfunc 1, the
execution point movesto highlight the call to f unc 2. Choosing Step Into again
positions the execution point at the first line in the definition of f unc 2. Another Step
Into command moves the execution point to st at ement _m, the first executable line
of codeinf unc_2.

When you step past afunction return statement (in this case, the closing function brace),
the debugger positions the execution point on the line following the original function
call. Here, the debugger would highlight st at ement _b with the execution point.

As you debug, you can choose to Step Into some functions and Step Over others. Use
Step Into when you need to fully test the function highlighted by the execution point.

Stepping over
To Step Over code, choose Statement|Step Over from the Edit Window SpeedMenu or
press F8 (default keyboard mapping).

When you choose the Step Over command, the debugger executes the code highlighted
by the execution point. If the execution point is highlighting a function call, the debugger
executes that function at full speed, including any function calls within the function
highlighted by the execution point. The execution point then moves to the next complete
line of code.

Example

The following code fragment shows how Step Over works. Suppose these two functions
arein aprogram that was compiled with debug information:
func_1() {
statenent _a;
func_2();
statement _b;

}
func_2() {

statenent _m
func_3();

114 Paradigm C++ User's Guide

If you choose Step Over when the execution point ison st at ement ainfunc 1,
the execution point movesto highlight the call to f unc 2. Choosing Step Over again
runsf unc 2 at full speed, moving the execution point to st at ement b. Notice that
whenyou step over f unc 2, func 3 isalso run at full speed.

As you debug, you can choose to Step Into some functions and Step Over others. Step
Over isgood to use when you have fully tested a function, and you do not need to single
step through its code.

Debugging member functions and external code

If you use classes in your programs, you can still use the integrated debugger to step
through the member functionsin your code. The debugger handles member functions the
same way it would step through functions in a program that is not object-oriented.

D If you define a member function inline, then you should check Out-of-line inline
functions to facilitate debugging the inline function.

Y ou can also step through or step over externa code written in any language (including
C, C++, Object Pascal, and assembly language) as long as the code meets all the
requirements for external linking and contains full Paradigm symbolic debugging
information. If the external code does not contain debug information, you can still step
through the code using the CPU window.

Running to a breakpoint

Y ou set breakpoints on lines of source code where you want the program execution to
pause during a run. Running to a breakpoint is similar to running to a cursor position that
the program runs at full speed until it reaches a certain source-code location. However,
unlike Run to Cursor, you can have multiple breakpoints in your code and you can
customize each one so it pauses the program's execution only when a specified condition
is met. For more information on breakpoints, see “Examining program data values,”

page 5-127.

Pausing a program

In addition to stepping over or through code, you can also pause your program while it
is running. Choosing Debug|Pause Process causes the debugger to pause your program.
Y ou can use the debugger to examine the value of variables and inspect data at this state
of the program. When you are done, choose Debug|Run to continue the execution of
your program.

Terminating the program

Sometimes while debugging, you will find it necessary to restart the program from the
beginning. For example, you might need to restart the program if you step past the
location of a bug, or if variables or data structures become corrupted with unwanted
values.

Choose Debug|Terminate debug session (or press Ctrl-F2) to end the current program
run. Terminating a program closes all open program files, releases al memory allocated
by the program, and clears al variable settings. However, terminating a program does
not delete any breakpoints or watches that you might have set. This makesit easy to
resume a debugging session.

Chapter 5, Using the integrated debugger 115

Using breakpoints

Y ou use breakpointsis similar to using the Run to Cursor command in that the program
runs at full speed until it reaches a certain point. But, unlike Run to Cursor, you can have
multiple breakpoints and you can choose to stop at a breakpoint only under certain
conditions. Once your program’s execution is paused, you can use the debugger to
examine the state of your program.

The Paradigm C++ IDE keeps track of all your breakpoints during a debugging session
and associates them with your current project. Y ou can maintain all your breakpoints
from a single Breakpoints window and not have to search through your source code files
to look for them.

Debugging with breakpoints

When you run your program from the Paradigm C++ IDE, it will stop whenever the
debugger reaches the location in your program where the breakpoint is set, but before it
executes the line or instruction. The line that contains the breakpoint (or the line that
most closely corresponds to the program location where the breakpoint is set) appearsin
the Edit window highlighted by the execution point. At this point, you can perform any
other debugging actions.

Setting breakpoints

Y ou can set a breakpoint the following ways:

To set an unconditional breakpoint on aline in your source code, use one of the
following methods:

« Placetheinsertion point on aline in an Edit window and choose Toggle|Breakpoint
from the Edit window SpeedMenu. or press F5 (default keyboard setting).

«+ Click the gutter in an Edit window next to the line where you want to set a
breakpoint.

Setting an unconditional breakpoint
To set an unconditional breakpoint on a machine instruction:
1. Highlight a machine instruction in the Disassembly pane in the CPU window.

2. Choose Toggle Breakpoint on the SpeedMenu or press F5 (default keyboard
Setting).

Setting a conditional breakpoint
To set aconditional breakpoint on aline or machine instruction:
1. Place the insertion point on aline in an Edit window or highlight alinein the
Disassembly pane of the CPU window.
2. Choose Debug|Add Breakpoint or choose Add Breakpoint from the SpeedMenu.
3. Complete the information on the Add Breakpoint dialog box.
4. Do one of the following:
. Click the Advanced button to display the Breakpoint Condition/Action Options
dialog box.

. Supply the conditions and action settings you want. See “Creating conditional
breakpoints,” page 5-117.

116 Paradigm C++ User's Guide

. Specify option set in the Options input box.

Setting other breakpoints
To set other types of breakpoints:

1. Choose Debug|Add Breakpoint (or press F5 in the default keyboard setting) from
anywhere in the Paradigm C++ IDE or choose Add Breakpoint from the SpeedMenu
in an active Edit or Breakpoint window, or the Disassembly pane of the CPU
window.

2. Select a breakpoint type on the Add Breakpoint dialog box and supply any additional
information associated with the type of breakpoint selected.

3. Either

. Click OK to set an unconditional breakpoint.

. Click the Advanced button to display the Breakpoint Condition/Action Options
dialog box. See * Creating conditional breakpoints,” page 5-117.

To view a breakpoint
Choose View|Breakpoint to display the Breakpoints window.

Setting breakpoints after program execution begins

While your program is running, you can switch to the debugger (just like you switch to
any Windows application) and set a breakpoint. When you return to your application, the
new breakpoint is set, and your application will pause or perform a specified action when
it reaches the breakpoint.

Creating conditional breakpoints

Use a conditional breakpoint when you want the debugger to activate a breakpoint only
under certain conditions. For example, you may not want a breakpoint to activate every
time it is encountered, especidly if the line containing the breakpoint is executed many
times before the actual occurrence in which you are interested. Likewise, you may not
always want a breakpoint to pause program execution. In these cases, use a conditional
breakpoint.

To set a conditional breakpoint:
1. Choose Debug|Add Breakpoint to open the Add Breakpoint dialog box.

Chapter 5, Using the integrated debugger 117

Figure 5-1 Add Breakpoint dialog box

E}'i' Add Breakpoint Kl E3 |

— Breakpaint Type: — Other:
% Source e = Dptionz; |JAtionSet] [
" Address Line #: | Group: -
i Data'watch —
(" C++ Exception
i~ Hardware

|! ak. X Ear‘u:ell ? Hep |Eédvanced

2. Select a breakpoint type and supply the applicable information.
. Click Advanced to display the Breakpoint Condition/Action Options dialog box.

4. Click Expr. True and enter an expression that tells the debugger when to trigger the
breakpoint. If the condition is not met, the debugger ignores the breakpoint along
with any of its actions.

5. If you want the debugger to activate a breakpoint only after it has been reached a
certain number of times, click Pass count and enter the number of passes. Otherwise,
your program will pause every time the breakpoint is activated.

6. If you want program execution to pause when the breakpoint is activated, click Break
(the default). Otherwise, your program will not pause when the debugger activates
the breakpoint.

7. 1f you want the debugger to perform various actions when the breakpoint activates,
use the Actions settings. Otherwise, click OK.

w

118 Paradigm C++ User's Guide

Figure 5-2 Breakpoint Condition/Action Options dialog box

" Breakpoint Condition/Action Dptions

MNarmes: - Corditions -
B9 [OptionSett I~ Expr. True:] =l
I~ Bass Count:
Up tn:lﬂ ﬂ
Cusrent: [0 =l
— Achions:

¥ Break [Stopleog [Statleg

I™ ' Log Expr: El
[~ Exal Exps: i
I Log Message: ll
[~ Enable Group: |
W T] |

gh Add | = Delete |[w# 0K | X Cancel | [2 H

o

Removing breakpoints

Y ou can remove a breakpoint the following ways:

From an Edit window

Double-click the gutter in an Edit window next to the line that contains the breakpoint
you want to remove.

From an Edit window or the Disassembly pane of the CPU window
1. Place the insertion point on the line or highlight the instruction where the breakpoint
IS Set.
2. Choose Toggle Breakpoint from the SpeedMenu.

From the Breakpoints window
1. Choose View|Breakpoint to display the Breakpoints window.
2. Select one or more breakpoints.
3. Choose Remove Breakpoint(s) from the SpeedMenu.

Chapter 5, Using the integrated debugger 119

To select multiple breakpoints in the Breakpoints window, hold down the Shift or Ctrl
key as you select each breakpoint.

Disabling and enabling breakpoints

Disable a breakpoint when you prefer not to activate it the next time you run your
program, but want to save it for later use. The breakpoint remains listed in the
Breakpoints window and available for you to enable when you want.

To enableor disable a breakpoint

1. Choose View|Breakpoint to open the Breakpoints window.

2. Click the checkbox next to the breakpoint to enable it or clear the checkbox to
disableit.

To disable or enable selected breakpoints

1. Inthe Breakpoints window, hold down the Shift or Ctrl key as you select each
breakpoint.

2. Choose Enable/Disable Breakpoints from the SpeedMenu.
To use abreakpoint to disable or enable a group of breakpoints
1. Choose Debug|Add Breakpoint to open the Add Breakpoint dialog box.
2. Click Options to open the Breakpoint Condition/Action Options dialog box.
3. Click Enable Group or Disable Group and enter a group name.

Viewing and editing code at a breakpoint

Even if a breakpoint is not in your current Edit window, you can quickly locate it in your
source code.

Viewing code at a breakpoint
1. Choose View|Breakpoint to display the Breakpoints window.
2. Select a breakpoint.
3. Choose View Source on the Breakpoints window SpeedMenu.
The source code displays in an Edit window at the breakpoint line and the Breakpoints

window remains active. If the source code is not currently open in an Edit window, the
Paradigm C++ IDE opens a new Edit window.

Editing code at a breakpoint
1. Choose View|Breakpoint to display the Breakpoints window.
2. Select a breakpoint.
3. Choose Edit Source from the Breakpoints window SpeedMenu.
The source code displays in an active Edit window with your cursor positioned on the

breakpoint line, ready for you to edit. If the source code is not currently open in an Edit
window, the Paradigm C++ IDE opens a new Edit window.

Resetting invalid breakpoints

A breakpoint must be set on executable code; otherwise, it isinvalid. For example, a
breakpoint set on a comment, a blank line, or a declaration isinvalid. A common error is
to set a breakpoint on code that is conditionalized out using #if or #ifdef.

120 Paradigm C++ User's Guide

To remove a
breakpoint from
a group, select
the group name
and press
Delete.

You can also
create an option
set when you
create or edit a
breakpoint.

If you set an invalid breakpoint and run your program, the debugger displays an Invalid
Breakpoint dialog box.

Toreset an invalid breakpoint
1. Close the Invalid Breakpoint dialog box.
2. Open the Breakpoints window.
3. Find the invalid breakpoint and delete it.
4. Set the breakpoint in a proper location and continue to run your program.

If you ignore the Invalid Breakpoint (by dismissing the dialog box) and then choose Run,
the Paradigm C++ IDE executes your program, but does not enable the invalid
breakpoint.

Using breakpoint groups

The integrated debugger lets you group breakpoints together so you can enable or
disable them with a single breakpoint action.

Creating a breakpoint group
1. Choose Debug|Add Breakpoint to open the Add Breakpoint dialog box.

2. Enter aname in the Group input box.

Disabling or enabling a breakpoint group
1. Choose Debug|Add Breakpoint to open the Add Breakpoint dialog box.
2. Click Options to open the Breakpoint Condition/Action Options dialog box.
3. Click Enable Group or Disable Group and enter a group name.

Using breakpoint option sets

To quickly specify the behavior of one more breakpoints as you create or modify them,
store breakpoint settings in an option set.

Creating a breakpoint option set
1. Choose Debug|Breakpoint options to open the Breakpoint Condition/Action Options
dialog box.

2. Enter the conditions and actions. See “ Creating conditional breakpoints,” page
5-117.

3. Click Add.
4. Enter aname in the dialog box that displays and click OK.

Associating a breakpoint with an option set
. Enter an Option name in the Add or Edit Breakpoints dialog box.

Deleting an option set

1. Choose Debug|Breakpoint options to open the Breakpoint Condition/Action Options
dialog box.

2. Select an Option set and click Delete.

Chapter 5, Using the integrated debugger 121

Changing breakpoint options

To change the conditions and actions of a breakpoint:

1. Choose View|Breakpoint to open the Breakpoints window.

2. Double-click on a breakpoint or choose Edit Breakpoint from the SpeedMenu.

3. Change the option set in the Options input box on the Edit Breakpoint dialog box.
or

Add new information as described in “Creating conditional breakpoints,” page 5-117.

Changing the color of breakpoint lines

Tousecolorstoindicateif a breakpoint is enabled, disabled, or invalid:
1. Choose Options|Environment.
2. Select Syntax Highlighting and choose Customize.
3. From the Element list, select the following breakpoint options you want to change:

« Enabled Break
. Disabled Break
« Invalid Break

4. Select the background (BG) and foreground (FG) colors you want.
5. If you want highlighting, choose Default Color.

Using the Breakpoints window

The Breakpoints window lists all breakpoints currently set in the loaded project (or the
file in the active Edit window if a project is not loaded) and contains a tab for each of the
following breakpoint types.

D To display the Breakpoints window, choose View|Breakpoint (Figure 5-3)

Figure 5-3 Breakpoints window

=' Breakpoints _|O]

X [~paradignexanplessenbedded cppdenccppdenc . cpp, 29 Breal:
X - ~paradigmn~exanplessenbedded cppdenccppdenc . cpp. 46 Breal
X = ~paradigmn~exzanples-emnbedded cppdenc~cppdeno . cpp. 4 Breali<——
X c:~paradigm-examnplesemnbedded-cppdeno cppdeno. cpp, 17 Breal:

_Source ;ﬂdrﬂ& ! [1ata M atch ,!'_I;++ Exception f_ﬂardware [

The Breakpoints window lets you perform the following actions:

122 Paradigm C++ User's Guide

Choose a
command from
the Breakpoint

window
SpeedMenu.

Options
Group

. Click the checkbox beside a breakpoint to enable it or clear the checkbox to disable
the breakpoint.

. Double-click on a breakpoint or press Enter to open the Edit Breakpoint dialog box
to change breakpoint settings.

About the Breakpoints window
The Breakpoints window provides the following information about each breakpoint:

« Name of the source code file in which the breakpoint is set (for source breakpoints).

« Location (such as line number, file name, module, or address number) where the
breakpoint is set.

« Current state of the breakpoint:
Verified - The breakpoint is legal and validated when the process was loaded.
Unverified - The process has not been loaded since you added the breakpoint.

Invalid - The breakpoint isillegal. The line on which you set the breakpoint does not
contain executable code (such as a blank line, comment, or declaration) and the
debugger will ignore it.

. Number of times the debugger must reach the breakpoint before activating the
breakpoint. This information appears after a breakpoint has been activated. See “Pass
Count,” page 5-125.

. Associated option set and group name as well as the conditions/action options
specified. See “Creating conditional breakpoints,” page 5-117.

. Last Event Hit shows the breakpoint last encountered.

Integrated debugger features

Add breakpoint

Use the Add Breakpoint dialog box to create a breakpoint. The options that appear in
the middle of the dialog box change according to the breakpoint type selected:

. Source
. Address
. DataWatch

« C++ Exception
The following options aways display on the right side of the dialog box:
. Other

If you want to set conditions and actions that control breakpoint behavior, click
Advanced to open the Breakpoint Conditiorn/Action Options dialog box.

Other
Contains the following options:

Indicates the name of the option set that defines breakpoint behavior.
Indicates the name of group to which the breakpoint belongs.

Chapter 5, Using the integrated debugger 123

File
Line #

Offset

Type

Stop on
Throw

Stop on
Catch

Stop on
Destructor

Names

Source breakpoint
Sets a breakpoint on aline in your source code.

Indicates the file that contains the source code where the breakpoint is set.
Indicates the line in the source file on which the breakpoint is set.

If you select aline of code in an Edit window and choose Add Breakpoint from the
SpeedMenu, the debugger completes these settings for you.

Address breakpoint
Sets a breakpoint on a machine instruction.

Indicates the address of the machine instruction on which the breakpoint is set.

C++ exception breakpoint
Sets a breakpoint that pauses your program when it throws or catches a C++ exception.
Specifies the data type (such asint, long, char, or a class name) used with the

exception. If you enter an ellipses (...) into the Type field, the debugger will trap any
C++ exception that is thrown or caught by your program.

Pauses program execution when an exception is thrown.
Pauses program execution when an exception is caught.

Pauses program execution when any object is destroyed (when a destructor is called)
after an exception isthrown.

Breakpoint Condition/Action Options
Use this dialog box to:
. Specify settings that control the behavior of one or more breakpoints, such as the

conditions under which a breakpoint is activated and the type of actions that take
place when it does.

. Enable and disable breakpoint groups
To display thisdialog box, use any of the following methods:

« Choose Debug|Breakpoint Options.

. Choose Debug|Add Breakpoint and click the Advanced button on the Add
Breakpoint window.

« Choose View|Breakpoint and double-click a breakpoint listed in the Breakpoints
window. Then click the Advanced button on the Edit Breakpoint window.

The Breakpoint Condition/Action Options dialog box contains the following options:

Names Lists the names of Option sets that have been created.

Conditions Provides settings that determine when and where a breakpoint is
activated.

Actions Provides settings that determine what actions take place when a

breakpoint is activated.

Lists the names of existing option sets. Use the checkbox next to each option set to
enable or disableiit.

124 Paradigm C++ User's Guide

Conditions

Tir»>

Expr. True

Pass Count

For example, if you clear the checkbox next to an option set called MyOpt i onSet , the
debugger ignoresits settings and all breakpoints that use this option set behave like
unconditional breakpoints. To reactivate the breakpoint settingsin MyQOpt i onSet so
that they will used by the debugger, click its checkbox.

This group of settings determines when and where a breakpoint is activated:

Expr. True Each time the debugger encounters the breakpoint, it evaluates an
expression to determine if the breakpoint should activate.

Pass Count Indicates the number of times the debugger encounters the breakpoint line
before it activates.

Click Add or Delete to create or remove an option set.

Enter the expression you want to evaluate each time the debugger reaches the
breakpoint. If the expression becomes true (nonzero) when the breakpoint is
encountered, the debugger activates the breakpoint and carries out any actions specified
for it. You can enter a Boolean expression that, for instance, testsif a value falls within a
certain range or if aflag has been set.

For example:
If you enter the expression
X ==
the debugger activates the breakpoint only if x has been assigned the value 1 at the time
the breakpoint is encountered.
If you enter the expression
x >3

and select Break, when the debugger reaches the breakpoint, your program pauses if the
current value of x is greater than 3. Otherwise, the breakpoint isignored.

This option includes the following settings:

Upto Specifies the number of times you want the debugger to reach the
breakpoint before it is activated.
Current Shows the actual number of times the debugger has reached the

breakpoint so far. Y ou can change this setting if you want to.
Unconditional breakpoint example

Suppose Break is checked, and in the Pass Count box you enter 2. In this case, your
program does not stop until the second time the debugger reaches the breakpoint.

Conditional breakpoint example

Suppose Break is checked, plus you enter the expression x>3 and in the Pass Count box
you enter 2. Inthis case, your program does not stop until the second time the
debugger reaches the breakpoint (that is, when the value of x is greater than 3).

Chapter 5, Using the integrated debugger 125

Actions

Break

Stop Log

Start Log

Log Expr

[]

Eval Expr

You cannot use
this technique to
directly modify
your compiled
program.

This group of options lets you specify the actions you want carried out each time the
breakpoint is activated:

Break Pauses program execution

Stop Log Stops posting debugger generated messages

Start Log Starts posting debugger generated messages

Log Expr Displays the value of an expression in the message window
Eval Expr Evaluates an expression

Log Message Displays a message in the message window

Enable Group Reactivates a group of breakpoints

Disable Group Disables a group of breakpoints

Click Break (the default) to pause program execution when the debugger activates the
breakpoint. Clear this checkbox if you do not want your program to pause at the
breakpoint.

Stops displaying debugger messages in the Run-time Tab of the Message window when
the breakpoint is activated.

Starts displaying debugger messages in the Run-time Tab of the Message window when
the breakpoint is activated.

Click Log Exp if you want to display the value of an expression in the Run-time tab of
the Message window. Then, enter the expression in the input box next to it. The
debugger logs the value each time the breakpoint activates. Use this option when you
want to output a value each time you reach a specific place in your program — this
technique is known as instrumentation.

For example, you can place a breakpoint at the beginning of aroutine and set it to log
the values of the routine arguments. Then, after running the program, you can determine
where the routine was called from, and if it was called with erroneous arguments. This
will give you no idea where it was called from, but will tell you what the arguments are.

When you log expressions, be careful of expressions that unexpectedly change the values
of variables or data objects (side effects).

Click Eval Expr if you want the breakpoint to evaluate an expression. Then, enter an
expression in the input box next to it. For best results, use an expression that changes the
value of avariable or data object (side effects).

By “splicing in” a piece of code before a given source line, you can effectively test a
simple bug fix; you do not have to go through the trouble of compiling and linking your
program just to test aminor change to aroutine.

126 Paradigm C++ User's Guide

Log
Message

Disable
Group

[]

Enable
Group

Add
Conditions/
Actions

Edit

Breakpoint
dialog box

[]

Click Log message if you want the breakpoint to display a message in the Run-time tab
of the Message window when the breakpoint is activated. Then, enter the text of the
message in the input box next to it.

Click Disable group if you want the breakpoint to disable a group of breakpoints. Then,
enter agroup name in the input box next to it.

When a group of breakpoints is disabled, the breakpoints are not erased, they are simply
hidden from the debugger until you enable them.

Click Enable group if you want the breakpoint to reactivate a group of breakpoints that
have been previously disabled. Then, enter a group name in the input box next to it.

Enter a name for the option set and click OK to create a new set of breakpoint options.
Then enter your selections using the Breakpoint Condition/Action options dialog box.

Use this dialog box to modify an existing breakpoint. The options that appear on left side
of the dialog box change according to the breakpoint type selected.

The integrated debugger provides the following types of breakpoints:

. Source
. Address
. Datawatch

+ C++ Exception
The following options aways display on the right side of the dialog box:
. Other

If you want to set conditions and actions that control breakpoint behavior, click
Advanced to open the Breakpoint Condition/Action options dialog box.

Examining program data values

Even though you can discover many interesting things about your program by running
and stepping through it, you'll usually need to examine the values of program variables to
uncover bugs. For example, it's helpful to know the value of the index variable as you
step through afor loop, or the values of the parameters passed to a function call.

After you have paused your application within the integrated debugger, you can examine
the different symbols and data structures with regards to the location of the current
execution point.

Y ou can view the state of your program by:

« Watching program values

« Inspecting data elements.

« Evaluating expressions

. Viewing the low-level state of your program
« Viewing functionsin the Call Stack window

Chapter 5, Using the integrated debugger 127

Figure 5-4
Watches
window

The Watches
window will be
blank if you have
not added any
watches.

[]

Y ou can aso use the Browser to view the global variables and classes contained in your
program.

Modifying program data values

Sometimes you will find that a programming error is caused by an incorrect data value.
Using the integrated debugger, you can test a "fix" by modifying the data value while
your program is running. Y ou can modify program data values using:

. The Evaluate dialog box.

. TheInspector window's Change SpeedMenu command

. A breakpoint's Evaluate action, set from the Breakpoint Conditiorn/Action dialog box
« The CPU window's Dump pane

. TheRegister & Stack window

Understanding watch expressions

Y ou use watches to monitor the changing values of a variables or expressions during
your program run. After you enter a watch expression, the Watches window displays the
current value of the expression based on the scope of the execution point. Each time
your program pauses (such as when it encounters a breakpoint), the value of the watch
changes to reflect the current value of the expression according to the values of the
variables in your program.

Using Watches window
To display the Watches window, choose View|Watch.

@ Watches =]
m[C

¥ pas=scount

The Watches window lists the watches you are currently monitoring. Check the
checkbox beside awatch to enable it. Clear the checkbox beside a watch to disable it.

The left side of the Watches window lists the expressions you enter as watches and their
corresponding data types and values appear on the right. The values of compound data
objects (such as arrays and structures) appear between braces ({ }).

If the execution point steps out of the scope of awatch expression, the watch expression
is undefined. When the execution point re-enters the scope of the expression, the
Watches window again displays the current value of the expression.

128 Paradigm C++ User's Guide

Figure 5-5
Add Watch
dialog box

Adding a watch

Y ou can add a watch the following ways:

. Place the insertion point on aword in an Edit window and choose Watch from the
Edit window SpeedMenu. The debugger adds a watch on the expression at the
insertion point and opens the Watches window.

« From the Watches window, right-click to bring up the Watches window SpeedMenu
and choose Add Watch. In the Add Watch dialog box, create awatch expression on
any variable or expression available to the program you are debugging.

. Bring up the Add Watch dialog box by choosing Debug|Add Watch and enter a
variable or expression you would like to watch.

Add Watch dialog box

The Add Watch dialog box lets you monitor the value of both simple variables (such as
integers) and compound data objects (such as arrays). In addition, you can watch the
values of calculated expressions that do not refer directly to memory locations. For
example, you could watch the expressionx * y + 4.

To create a watch expression using the Add Watch dialog box:

1. Choose Debug|Add Watch or choose Add Watch from the Watches window
SpeedMenu.

|'|E:-cpressicun: j V oK
x Cancel
2 Help

B Advanced

2. Enter an expression into the Expression input box.
3. Click OK to add the watch or choose any of the following optional settings:

« Advanced

After you add the watch expression, the Paradigm C++ I DE automatically opens the
Watches window if it is not already open.

Formatting watch expressions

Y ou can format the display of a watch expression using the Watch Properties dialog box.
Click Advanced from the Add Watch dialog box to bring up the Watch Properties dialog
box.

Chapter 5, Using the integrated debugger 129

Figure 5-6
Watch
Properties dialog
box

ﬁi' Watch Properties

|_ ?Qecimaﬁ [T Hexadecimal

— Dizplay as:
% Default " Character ™ Sting
™ Stucture ™ Pairter ™ Floating point

[~ Memory dump

Repeat count: ID Signifizant digits: I?
V O, x Eann:ell ? Help

By default, the debugger displays integer values in decimal form. However, by checking
the Hexadecimal button in the Watch Properties dialog box, you can specify that an
integer watch be displayed as hexadecimal. Y ou can also vary the display of the watches
using the Display As buttons in the Watch Properties dialog box.

For more on Display As buttons in the Watch Properties dialog box, select the Display
As button you would like help on and hit F1 for online Help.

To format a floating-point expression, click the Floating Point button, then indicate the
number of significant digits you want displayed in the Watch window by typing this
number in the Significant Digits text box.

If you're setting up awatch on an element in a data structure such as an array), you can
display the values of consecutive data elements. For example, suppose you have an array
of five integers named xarray. Type the number 5 in the Repeat Count text box of the
Watch Properties dialog box to see all five values of the array.

Y ou can also format watch expressions using the expression format specifiers shown in
Table 5-1, page 5-133. Format specifiers settings override any settings specified in the
Watch Properties dialog box. Format specifiers use the following syntax:

expression [, format_specifier]

Changing watch properties

To change the properties of awatch:

1. Choose View|Watch, to open the Watches window.
2. Double-click awatch to open the Edit Watch dialog box.

130 Paradigm C++ User's Guide

Figure 5-7
Edit Watch
dialog box

& Edit Watch EE|

Expreszion:
(]
B | ¥
x Cancel

? Help

B sdvanced

Edit Watch dialog box
Use this dialog box to change the settings for a watch expression:
1. Either accept or change the information in either of the following options:
2. Either
. Choose OK to save your changes and close the dialog box.
. Click Advanced to open the Watch Properties if you want to change how a
watch expression displays in the Watches window.

Disabling and enabling watches

Evaluating many watch expressions can slow down the process of debugging. Disable a
watch expression when you prefer not to view it in the Watches window, but want to
saveit for later use.

To enableor disable a watch

1. Choose View|Watch to open the Watch window.
2. Either
« Click the checkbox next to awatch to enableit.

« Clear the checkbox next to awatch to disable it.
To disable or enable selected watches

1. Hold down the shift or Ctrl key and click on one or more watches in the Watch
window.

2. Choose Enable or Disable watches from the Watch window SpeedMenu.

Deleting a watch

Y ou can delete a watch the following ways:

1. Choose View|Watch to display the Watches window.

2. Select one or more watch expressions. (To make multiple selections, hold down the
Shift or Ctrl key and click.)

3. Choose Remove Watch(es) on the SpeedMenu.

Chapter 5, Using the integrated debugger 131

Dynamic updates

The Dynamic update dialog box controls the behavior of memory reads and peripheral
register reads while running. Inspector and Watch windows can be updated dynamically
while running, if the option Allow memory reads while running is enabled. Peripheral
register viewers can also be dynamically updated while running if the option Allow
peripheral reads while running is enabled. Enabling these options will interrupt target
execution. Do not enable these options if you wish non-intrusive execution of your
application.

These options only apply to remote debugging solutions with the ability to interrupt
target execution.

Inspecting data elements

Y ou can use inspect windows to examine and modify data values. Inspect windows are
extremely useful because they format the data according to the type of data being
viewed; there are different types of Inspect windows for scalars, arrays, structures,
functions, and classes with and without member functions.

The easiest way to inspect a dataitem isto highlight the expression you want to inspect
(or just position the text cursor on the token) in the Edit window, and choose I nspect
Object from the SpeedMenu (or press Alt-F5). If you inspect expressions using this
method, the expression is always evaluated within the scope of the line on which the
expression appears.

You can also inspect data expressions using the following method,

1. Choose Debug|Inspect to display the Inspect Expression window.

2. Type the expression you want to inspect, then choose a previously entered
expression from the drop down list.

3. Choose OK to display an Inspector window.

If the execution point isin the scope of the expression you are inspecting, the value
appears in the Inspect window. If the execution point is outside the scope of the
expression, the value is undefined.

If you are inspecting a compound data item, such as an array or a structure, you can
view the details of the dataitem by opening another Inspect window on the element you
want to inspect.

Toinspect an element of a compound data item:

1. Inthe Inspector window, select the item you want to inspect.
2. Choose Inspect on the Inspector window SpeedMenu, or press Enter.

You can also use Inspector windows to change the value of a single data item:

1. Select the data item whose value you want to modify.
2. Choose Change on the Inspect window SpeedMenu.
3. Typethe new value into the Change value dialog box and click OK.

If you are inspecting a data structure, it is possible the number of items displayed might
be so great that you will have to scroll in the Inspector window to see the data you want.
For easier viewing,

Narrow the display to a range of data items:
1. Left-click in the Inspect window or choose Set Range from the SpeedM enu.

132 Paradigm C++ User's Guide

Figure 5-8
Evaluator dialog
box

Table 5-1
Expression
format specifiers

2. Inthe Starting Index text box, enter the index of the first item you want to view.

3. Inthe Count text box, enter the number of items you want to see in the Inspect
window.

Evaluating and modifying expressions

Y ou can evaluate expressions using the Expression Evauator dialog box. The
Expression Evaluator dialog box has the advantage that it lets you change the values of
variables and items in data structures during the course of your debugging session. This
can be useful if you think you've found the solution to a bug, and you want to try it out
before exiting the debugger, changing the source code, and recompiling the program.

Evaluating expressions

Choose Debug|Evaluate to open the Expression Evaluator dialog box. By default, the
token at the cursor position in the current Edit window is placed in the Expression text
box. Y ou can accept or modify this expression, enter another one, or choose an
expression from the history list of expressions you've previously evaluated.

lﬁ E valuator _ O]

— Expreszsion:

Hl
— Result:
— Mew Value:

Hl

MEva_Iuatel X= Mndifyl V Cloze | ? Help |

To evaluated the expression, click the Evaluate button. Using this dialog box, you can
evaluate any valid language expression, except ones that contain:

. Local or static variables that are not accessible from the current execution point

« Symbols or macros defined with #define

When you evauate an expression, the current value of the expression is displayed in the
Result field of the dialog box. If you need to, you can format the result by adding a

comma and one or more format specifiers to the end of the expression entered in the
Expression text box. Table 5.1 details the legal format specifiers.

Character Types affected Function

Hor X Integers Hexadecimal. Shows integer values in hexadecimal
with the Ox prefix, including those in data structures.

Chapter 5, Using the integrated debugger 133

C Char, strings Character. Shows special display characters for
ASCII 0-31. By default, such characters are shown
using the appropriate C escape sequences (/n, /t, and

S0 on).

D Integers Decimal. Shows integer valuesin decimal form,
including those in data structures.

Fn Floating point Floating point. Shows n significant digits (wherenis
in therange of 2-18, and 7 is the default).

nM All Memory dump. Shows n bytes starting at the address

of theindicated expression. If nisnot specified, it
defaultsto the sizein bytes of the type of the variable.
By default, each byte displays as two hex digits. The
C, D, H, S, and X specifiers can be used with M to
change the byte formatting.

P Pointers Pointer. Shows pointersin seg:ofsinstead of the
default Ptr(seg: ofs). It tells you the region of memory
in which the segment is located and, if appropriate,
the name of the variable at the offset address.

R Structures, unions Structure/Union. Shows field names and values such
as (X:1;Y:10;Z:5) instead of (1,10,5).
S Char, strings String. Shows ASCII 0-31 as C escape sequences.

Use only to modify memory dumps (see nM above).

For example, to display aresult in hexadecimal, type ,H after the expression. To seea
floating-point number to 3 decimal places, type ,F3 after the expression.

You can aso use arepeat count to reference a specific number of dataitemsin arrays
and structures. To specify arepeat count, follow the expression with acomma and the
number of data items you want to reference. For example, suppose you declared the
following array in your program:

int nmy_array[10] ;

The following expression evaluates the first 5 elements of this array and displays the
result in hexadecimal:

nmy_array, 5h

Modifying the values of variables

Once you've evaluated a variable or data structure item, you can modify its value.
Modifying the value of data items during a debugging session lets you test different bug
hypotheses and see how a section of code behaves under different circumstances.

To modify the value of a data item:
1. Open the Expression Evauator dialog box and enter the name of the variable you
want to modify into the Expression input box.
2. Click Evauate to evaluate the data item.
3. Type avalue into the New Value text box (or choose a value from the drop down
list), then click Modify to update the data item.

When you modify the value of a data item through the debugger, the modification is
effective for that specific program run only; the changes you make through the
Expression Evaluator dialog box do not affect your program source code or the
compiled program. To make your change permanent, you must modify your program
source code in the Edit window, then recompile your program.

134 Paradigm C++ User's Guide

K eep these pointsin mind when you modify program data values:

Y ou can change individual variables or elements of arrays and data structures, but you
cannot change the entire contents of an array or data structure.

« The expression in the New Value text box must evaluate to aresult that is
assignment-compatible with the variable to which you want to assigniit. A good
guideline isif that assignment would cause a compile-time or run-time error, it is not
alegal modification value.

Warning! Modifying values (especially pointer values and array indexes), can have undesirable
effects because you can overwrite other variables and data structures. Use caution
whenever you modify program values from the debugger.

CPU window

The CPU window consists of five separate panes. Each pane gives you aview into a
specific low-level aspect of your running application:

. The Disassembly pane displays the assembly instructions that have been
disassembled from your application's machine code. In addition, the Disassembly
pane displays the original program source code above the associated assembly
instructions.

. The Dump pane displays a memory dump of any memory accessible to the currently
loaded executable module. By default, memory is displayed as hexadecimal bytes.

. The Stack Pane displays the current contents of the program stack. By defaullt, the
stack is displayed as hexadecimal bytes.

. TheRegisters pane displays the current values of the CPU registers.
. The Flags pane displays the current values of the CPU flags.

Each pane has an individual SpeedMenu that provides commands specific to the contents
of that pane and the target processor.

Chapter 5, Using the integrated debugger 135

Figure 59 CPU window

.......... =Y Am186EM O
CF 0
gr 1258 push bp FF 1
1DDD.DDA9 mow bp.=p CX o000 AF 0O
1000:00AB =sub =p.0=z016a DX 0100 ZF 1
1000:00AF push =1 SI 0000 SFE 0
1000:00B0 push di DI 0024 TF 0
c“»paradigaexamples~eabedded™>~c |EF 0000 IF 1
1000:00B1 fld= SP O0C9E DF 0
1000:00B4 f=tp [3] TP 00AS OF 0
1000:00B2 £1d41 FL F24c&
1000:00BC fstp gword ptr [bp-0=xz001lr= 1000

c: “paradigm’examplesheabedded™c M 70 0000 m_.—
1000:00C21 f£14 gword ptr [0x0024] DDFF:FFFE FiiFE

1000:00Ce f=stp [pi])
c:“paradiga*ezamsples:eabedded:c g ggg : Eggg Egﬁg
1000:00C4a f1d gword ptr [0=002c] DDFF:FFFE 011EE

1000 00CF fStD fl] 00FF :FFF& COG8E o
01000000 00 00 00 4E G5 4C 4C lf' 00FF:FFF4 FR2SE .
01000008 20 43 48 45 43 4B 00 00 00FF:FFF2 39CD . 9
0100:0010 00 00 00 00 00 0o 00 oo .. | OOFF:FFFO OOEA

Resizing the CPU window panes

Y ou can customize the layout of the CPU window by resizing the panes within the
window. Drag the pane borders within the window to enlarge or shrink the windows to
your liking.

The Disassembly pane

The left side of the Disassembly pane lists the address of each disassembled instruction.
An arrow to the right of the memory address indicates the location of the current
execution point. To the right of the memory addresses, the Disassembly pane displays
the assembly instructions that have been disassembled from the machine code produced
by the compiler. If you are viewing code that has been linked with a symbol table, the
debugger displays the source code that is associated with the disassembled instructions.

The Disassembly pane SpeedMenu
The Disassembly pane supports the following keyboard commands:

« PresscCtri-N to set the instruction pointer (the value of |P/EIP register) to the
beginning of the statement that you have highlighted in the Disassembly pane. Note
that thisis not the same as stepping through the instructions; the debugger does not
execute any instructions that you might skip.

« PressCtri+LeftArrow and Ctrl+RightArrow to shift the starting point of the display up or
down one byte. Beware that changing the starting point of the display in the
Disassembly pane changes where the debugger begins disassembling the machine
code.

136 Paradigm C++ User's Guide

Run to
Current

Set PCto
current

[]

Toggle
Breakpoint

Goto
Address

[]

Goto
current PC

The debugger displays dashes if you view a program memory location in which nothing
is loaded.

The Disassembly pane has the following SpeedMenu commands:

« RunTo Current

. Set PC To Current

« Toggle Breakpoint

. Goto Address

. Goto Current PC

« Follow jump <address> into Disassembly pane

. Follow address <address> into Memory Dump pane
. Show previous address

. Goto source

The Run To Current command lets you run your program at full speed to the instruction
that you have selected in the Disassembly pane. After your program is paused, you can
use this command to resume debugging at a specific program instruction.

The Set PC to Current command changes the location of the program counter (the value
held in the IP/EIP register) to the currently highlighted line in the Disassembly pane.
When you resume program execution in the debugger, it starts at the new address. This
command is useful when you want to skip certain machine instructions.

Use this command with extreme care; it is easy to place your system in an unstable state
when you skip over program instructions.

When you choose Toggle Breakpoint, the debugger sets an unconditional or "simple”
breakpoint at the instruction which you have selected in the Disassembly pane. A smple
breakpoint has no conditions, and the only action isthat it will pause the program's
execution.

If asimple breakpoint exists on the selected instruction, then Toggle Breakpoint will
delete the breakpoint at that code location.

The Go to Address command prompts you for a new area of memory to display in the
Code, Dump, or Machine Stack panes of the CPU window. Enter any expression that
evaluates to a memory location, such as main(). Be sure to precede hexadecimal values
with Ox.

The debugger displays dashes if you try to access an address that is not within the scope
of the application you are debugging.

Y ou can also press Ctri+LeftArrow and Ctrl+RightArrow to shift the starting point of the
display up or down one byte.

This command positions the Disassembly pane at the location of the current program
counter (the location indicated by the |P/EIP register). This location indicates the next
instruction to be executed by your program.

Chapter 5, Using the integrated debugger 137

Follow

jump into
Disassembly
pane

Follow
address into
Dump pane

Show
previous
address

Go to source

This command is useful when you have navigated through the Disassembly pane, and
you want to return to the next instruction to be executed.

This command highlights in the Disassembly pane the destination address of the currently
highlighted instruction. Use this command in conjunction with instructions that cause a
transfer of control (suchas CALL, JMP, and INT) and with conditional jump
instructions (such as JZ, JNE, L OOP, and so forth). For conditional jumps, the address
is shown asif the jump condition is TRUE. Use the Show Previous Address SpeedMenu
command to return to the origin of the jump.

From the Memory Dump pane, set the display to Longs for best results.

This command highlights in the Memory Dump pane the address of the currently
highlighted address. The Show Previous Address SpeedMenu command returns you to
the address from where you jumped.

This command restores the CPU window to the display it had before you issued the last
Follow Address command. The Follow Address commands are found on the
SpeedMenus of the Disassembly pane, the Machine Stack pane, and the Memory Dump
pane of the CPU window.

The Go to source command activates the Edit window and positions the insertion point
at the source code that corresponds to the disassembled instruction selected in the
Disassembly pane. If there is no corresponding source code (for example, if you're
examining Windows kernel code), this command has no effect.

Memory Dump pane

The Dump pane displays the raw values contained in addressable areas of your program.
The display is broken down into three sections. the memory addresses, the current values
in memory, and an ASCI| representation of the values in memory.

By default, the Dump pane displays the memory values in hexadecimal notation. The
leftmost part of each line shows the starting address of the line. Following the address
listing is an 8-byte hexadecimal listing of the values contained at that location in memory.
Each byte in memory is represented by two hexadecimal digits. Following the
hexadecimal display isan ASCII display of the memory. Non-printable values are
represented with a period.

The format of the memory display depends on the format selected with the Display As
SpeedMenu command. If you choose one of the floating-point display formats (Floats or
Doubles), a single floating-point number is displayed on each line. The Bytes format
displays 8 bytes per line, Words displays 4 words per line, and Longs displays 2 long
words per line.

Y ou can press Ctrl+LeftArrow and Ctrl+RightArrow to shift the starting point of the display
up or down one byte. Using these keystrokes is often faster than using the Go to
Address command to make small adjustments to the display.

The Dump pane SpeedMenu
The Dump pane has the following SpeedM enu commands:

138 Paradigm C++ User's Guide

Display as

Table 5-2
Data formats

Follow
address into
Disassembly

pane

Follow
address into
Stack pane

The

debugger
displays dashes
if you view an
unloaded
program
memory
location.

. Goto Address

. Display As

. Follow address <address> into Disassembly pane

. Follow address <address> into Memory Dump pane

. Follow address <address> into Machine Stack pane

. Show previous address

Y ou can change the values of memory displayed in the Dump pane by pressing the Ins
key and typing into the display (when you press Ins, the insertion point in the pane
shrinks to highlight a single nibble in memory). Be extremely careful when changing

program memory values; even small changes in program values can have disastrous
effects on your running program.

Use the Display As command to format the data that’s listed in the Dump or Stack pane
of the CPU window. Y ou can choose any of the data formats listed in the following
table:

Datatype Display format

Bytes Displays data in hexadecimal bytes

Words Displays data in 2-byte hexadecima numbers

Longs Displays data in 4-byte hexadecima numbers

Floats Displays data in 4-byte floating-point numbers using scientific notation

Doubles Displays data in 8-byte floating-point numbers using scientific notation

This command highlights in the Disassembly pane the address of the currently
highlighted address. The Show Previous Address SpeedMenu command returns you to
the address from where you jumped.

From the Memory Dump pane, set the display to Longs for best results.

This command highlights in the Machine Stack pane the address of the currently
highlighted address. The Show Previous Address SpeedMenu command returns you to
the address from where you jumped.

Set the display to Longs for best results.

Machine Stack pane

The Stack pane displays the raw values contained in the your program stack. The display
is broken down into three sections: the memory addresses, the current values on the
stack, and an ASCII representation of the stack values.

By default, the Machine Stack pane displays the memory values in hexadecimal notation.
The leftmost part of each line shows the starting address of the line. Following the
address listing is a 4-byte listing of the values contained at that memory location. Each
byte is represented by two hexadecimal digits. Following the hexadecimal display isan
ASCII display of the memory; non-printable values are represented with a period.

The format of the memory display depends on the format selected with the Display As
SpeedMenu command. If you choose one of the floating-point display formats (Floats or
Doubles), a single floating-point number is displayed on each line. The Bytes format

Chapter 5, Using the integrated debugger 139

Go to top
frame

Go to top of
stack

displays 4 bytes per line, Words displays 2 words per line, and Longs (the default)
displays 1 long word per line.

Y ou can press Ctrl+LeftArrow and Ctrl+RightArrow to shift the starting point of the display
up or down one byte. Using these keystrokes is often faster than using the Go to
Address command to make small adjustments to the display.

The Stack pane SpeedMenu
The Stack pane has the following SpeedMenu commands:

. Goto Address

. Goto Top Frame

. Goto Top of Stack

. Display As

. Follow address <address> into Disassembly pane

. Follow address <address> into Memory Dump pane

. Follow address <address> into Machine Stack pane

. Show previous address

Y ou can change the values of memory displayed in the Stack pane by pressing the Ins
key and typing into the display (when you pressins, the insertion point in the pane
shrinks to highlight a single nibble in memory). Be extremely careful when changing

program memory values; even small changes in program values can have disastrous
effects on your running program.

Positions the insertion point in the Stack pane at the address of the frame pointer (the
address held in the BP/EBP register).

Positions the insertion point in the Stack pane at the address of the stack pointer (the
address held in the SP/ESP register).

Registers pane

The Registers pane displays the contents of the CPU registers of the 8086 and greater
processors. These registers consist of eight 32-bit general purpose registers, six 16-bit
segment registers, and the 32-hit program counter (EIP), and the 32-bit flags register
(EFL).

After you execute an instruction, the Registers pane highlightsin red any registers that
have changed value since the program was last paused.

The Registers pane SpeedMenu

The Registers pane has the following SpeedMenu commands:
« Increment Register

. Decrement Register

. Zero Register

. Change Register

. Show Old Registers/Show Current Registers

140 Paradigm C++ User's Guide

Increment
register

Decrement
register

Zero register
Change

register

Show old
registers

[]

Table 5-3
Flags pane
indicators

Chapter 5, Using the integrated debugger

Increment Register adds 1 to the value in the currently highlighted register. This lets you
test “off-by-one” bugs by making small adjustments to the register values.

Decrement Register subtracts 1 from the value in the currently highlighted register. This
lets you test “off-by-one” bugs by making small adjustments to the register values.

The Zero Register command sets the value of the currently highlighted register to 0.

Lets you change the value of the currently highlighted register. This command opens the
Change Register dialog box where you enter a new value. Y ou can make full use of the
expression evaluator to enter new values. Be sure to precede hexadecimal values with
0x.

This command toggles between Show old Registers and Show current registers. When
you select Show old registers, the Registers pane displays the values which the registers
had before the execution of the last instruction. The menu command then changes to
Show current registers, which changes the display back to the current register values.

Y ou can change the values of memory displayed in the Registers pane by pressing the Ins
key and typing into the display (when you pressins, the insertion point in the pane
shrinks to highlight a single nibble in memory). Be extremely careful when changing
register values; even small changes can have disastrous effects on your running program.

Flags pane

The Flags pane shows the current state of the flags and information bits contained in the
processor flags register. After you execute an instruction, the Flags pane highlightsin red
any flags that have changed value since the program was last paused.

The processor uses the following bits in this register to control certain operations and
indicate the state of the processor after it executes certain instructions:

Lettersin pane Flag/bit name EFL register bit number
CF Carry flag 0

PF Parity flag 2

AF Auxiliary carry 4

ZF Zero flag 6

SF Sign flag 7

TF Trap flag 8

IF Interrupt flag 9

DF Direction flag 10

OF Overflow flag 11

10 1/O privilege level 12 and 13
NF Nested task flag 14

RF Resume flag 16

VM Virtua mode 17

AC Alignment check 18

141

The Flags pane SpeedMenu
The Flag pane has the following SpeedM enu commands:

. Toggle Flag

D Y ou can change the values of memory displayed in the Flags pane by pressing the Ins key
and typing into the display (when you press Ins, the insertion point in the pane shrinks to
highlight a single binary value in memory).

Toggle flag Theflag and information bits in the Flags pane can each hold a binary value of O or 1.
This command toggles the selected flag or bit between these two binary values.

Viewing function calls

While debugging, it can be useful to know the order of function calls that brought you to
your current program location. Using the Call Stack window, you can view the current
sequence of function calls. The Call Stack window is also helpful when you want to view
the arguments passed to a function call; each function listing in the window is followed
by alisting that details the arguments with which the call was made. Use View|Call Stack
to display the Call Stack window.

Figure 5-10 Call Stack window

..L‘i': Call S5tack _ (O] x|
| gqetport (3]
_maint)

In the Call Stack window, the function that is currently executing is listed on top, with all
previoudly called functions listed in sequence below. The bottom of the list always shows
the first function in the calling sequence.

The call stack is particularly useful if you accidentally step through code that you wanted
to step over. Using the Call Stack window, you can return to the point where the current
function was called from, and then resume debugging from there:

142 Paradigm C++ User's Guide

1. Inthe Call Stack window, double-click the function that called the function you
accidentally stepped into (it will be the second function listed in the Call Stack
window). The Edit window becomes active with the cursor positioned at the location
of the function call.

2. Inthe Edit window, move the cursor to the statement following the function call.
3. Choose Run to Cursor on the Edit window SpeedMenu (or press F4).

Navigating to function calls

Using the Call Stack window, you can view or edit the source code located at a
particular function call. Right-clicking a function in the Call Stack window displays the
SpeedMenu, from where you can choose either View Source or Edit Source. Each of
these commands causes the Edit window to display the selected function; however, Edit
Source gives focus to the Edit window so you can modify the source code at that
function location.

If you select the top function in the Call Stack window, these commands cause the Edit
window to display the location of the execution point in the current function. Selecting
any other function call causes the debugger to display the actual function call in the Edit
window.

Summary of Emulator .EMU file commands

The .EMU filesloaded by the integrated debugger of Paradigm C++ can be used to
automatically save and restore emulator memory map configurations, chip select and
DRAM refresh values, and emulator control values. An .EMU file specific to a particular
debugging interface (such as PCWPDREM.EMU when debugging with
PDREMOTE/ROM) can be placed into the \PARADIGM\BIN directory to be loaded
before debugging any application. The .EMU can also be placed into the application's
directory to be loaded before the application is loaded, automatically.

The .EMU files are currently in standard text format, and can be created or modified
with atext editor. In most casesthisis not necessary and also not recommended, as the
integrated debugger expects a specific syntax. These files are generated/|oaded from
save/restore menu entries of buttons within the memory map, chip select, or debug
control viewer. There are some commands supported in a.EMU file that are NOT
automatically generated by the integrated debugger.

The .EMU files are subdivided by the following bracketed commands.

[IDENT] Debugger identifier that created the .EMU file
[MAP] Memory map settings

[CONTROLS] Debugger and emulator controls
[REGISTER] Chip selects and DRAM refresh values
[USER] Custom user commands

To add custom EMU commandsto the .EMU file, edit the .EMU file in your text editor,
and add the [USER] bracketed command followed by the desired custom EMU
command.
For example:
[USER]
out port 0x100: Ox0=0xf ff f

Below is a summary of EMU commands that are supported by Paradigm C++.

Chapter 5, Using the integrated debugger 143

Table 5-4
Summary of
.EMU file
commands

Command Command Function Abbreviated
M nemonic Arguments Commands
file filename Paradigm C++ identifier file

map saddr eaddr type Set up memory mapping map

control variable value set control variable to value c

register regname value set peripheral register to value reg

read address read word from memory r

readb address read byte from memory rb

write address value(s) write word to memory w

writeb address value(s) write byte to memory wb

inport ioport read word from port in

inportb ioport input byte from port inb

outport ioport value output word to port out

outportb ioport value output byte to port outb

fill saddr eaddr value fill memory block f

copy saddr eaddr byte count copy memory block copy

Abbreviated commands can be used in the .EMU file to save keystrokes. For example,
"inb" and "inportb" are equivalent. Abbreviated commands are listed in Table 5-4.

Standard EMU file commands

The following list contains detailed descriptions of the EMU commands. The first four
commands (file, map, control, and register) are standard .EMU file commands. These
commands are automatically saved when Paradigm C++ isinstructed to save the . EMU
file. An example of how each command can be used follows its description.

file

map

control

144

This command contains the name of the debugger that created the .EMU
file.

file PCWPDREM

This command sets up the memory map. SADDR and EADDR are hex
start and end addresses for the memory map command, and TY PE can be
one of the following:

RESERVED Maps memory as guarded (no access)
RDWR Maps memory as overlay read/write
RDONLY Maps memory as overlay read-only
TARGET Maps memory as target read/write
ROM Maps memory as target read-only

In automeatically generated .EMU files, the first memory map command
will always map the entire memory space out of emulator memory. This
allows emulator memory reallocation without worrying about the
previous map state setup.

map O fffff

This command sets the debug control variables. Most debug control
values are specified with a"1" to enable the control and a"0" to disable

reserved 0 O

Paradigm C++ User's Guide

the control. Some may take a numeric value, hex address, or a string. If
you have any doubt about what value string to use, save an example
.EMU file and take alook - the formats should be easy to understand.

control cache 1

register This command is used to set up peripheral control block registers. While
Paradigm C++ will automatically save the chip select and DRAM refresh
registers; al peripheral control block registers can be specified in this
fashion. REGNAME is the name of the register to be modified, and
VALUE isthe hex value to be written. Register names are the same as
the oneslisted in the View|Target peripherals.

register relreg Oxff

Custom [USER] EMU commands

The following list contains a detailed description of the cussom EMU commands. These
commands will not be saved by Paradigm C++ unless they are manually added to the
.EMU file and preceded by the [USER] bracketed identifier. Once added, the debugger
will save the custom commands each time the .EMU file is saved.

Examples follow each description.

read This command causes a single word to be read from the specified
ADDRESS. Since the read value is discarded, this command is useful
only for memory-mapped 1/0 accesses.

read OxOf f0: Ox0

readb This command causes a single byte to be read from ADDRESS. Since the
read value is discarded, this command is useful only for memory-mapped
|/O accesses.
readb OxOf f 0: Ox0

write This command causes one or more word values to be written at
ADDRESS. Multiple values will be written to sequential locationsin
memory.
write OxOff0:0x0 0x1234

writeb This command causes one or more word values to be written at
ADDRESS. Multiple values will be written to sequential locationsin
memory.
witeb OxOffO0: 0x0 Ox11

inport This command reads a single word from IOPORT. The read value is
discarded.
i nport 0x1000

inportb This command reads a single byte from IOPORT. The read value is
discarded.
i nportb 0x1010

outport This command causes a single word to be output to IOPORT.

out port Oxff0a=0x0f 00
outportb This command causes a single byte to be output to IOPORT.

Chapter 5, Using the integrated debugger 145

out portb Oxff04=0x19

fill This command fills a block of memory with a byte value.
fill OxOff1l:0x0 OxOff3:0x0 Oxcc
copy This command copies a memory range from target memory space to

emulator overlay memory space.
copy 0x1000 0x2000 0x16

146 Paradigm C++ User's Guide

Chapter

6

Paradigm C++ compiler

If you prefer to develop your applications outside of the Paradigm C++ IDE, you can
compile and link your programs from the command line using the Paradigm command-
line tools. When you develop applications using this method, you must first write your
program source code using atext editor, then compile the code into an object (.OBJ) file
using the appropriate command-line compiler. After the .OBJfile is generated, you must
link all the necessary files to create the final executable program.

Using the command-line compiler

Paradigm C++ includes the following compilers:

« PCC.EXE isthe real mode and extended mode compiler.
« PCC32.EXE isthe 32-bit protected mode compiler.

In general, these two compilers work the same, but have different defaults and generate
different code.

Command-line compiler syntax

The general syntax for the Paradigm C++ command-line compiler is:
PCC | PCC32 [option [option...]] filenane [fil enane...]

D Items enclosed in brackets are optional. The option items refer to the command-line
options and filename refers to the source-code files you want to compile. A complete
summary of command-line options can be found under "command-line options” in the
online Help index. A list of command-line options is also on page 3-91.

To see alist of the commonly used compiler options, type PCC or PCC32 at the
command line (without any options or file names), then press Enter. Thislist displays the
options that are enabled by defaullt.

The command-line compiler name and each option and file name must be separated by at
least one space. Precede each option by either a hyphen (-) or aforward slash (/); for
example:

PCC -l1c:\code\hfiles
Options and file names entered on the command line override settings in configuration
files.

Y ou can use PCC to send filesto PLINK (.OBJfiles) or PASM (.ASM). PCC32 sends
.OBJfilesto PLINK32.

Default settings

PCC.EXE and PCC32.EXE each have options that are on by default. To turn off a
default option or to override options in a configuration file, follow the option with a
minus (-) sign.

Chapter 6, Paradigm C++ compiler 147

Files without extensions and files with the .CPP extension compile as C++ files. Files
with a.C extension or with extensions other than .CPP, .OBJ, .LIB, or .ASM compile as
Cfiles.

Compiler configuration files

If you repeatedly use a certain set of options, you can list them in a configuration file
instead of continually typing them on the command line. A configuration fileisa
standard ASCI| text file that contains one or more command-line options. Each option
must be separated by a space or anew line.

Whenever you issue a compile command, PCC.EXE searches for a configuration file
caled PCC.CFG, and PCC32.EXE searches for PCC32.CFG. The compilerslook for the
.CFG filesfirst in the directory where you issue the compile command, then in the
directory where the compilers are located.

Y ou can create and use multiple configuration files in addition to using the default .CFG
file. To use a configuration file, use the following syntax where you would place the
compiler options:

+[path] fil enanme

For example, you could use the following command line to use a configuration file called
MY CONF G.CFG:

PCC +C. \ MYPRQJ\ MYCONFI G. CFG nycode. cpp
Options typed on the command line override settings stored in configuration files.

Compiler response files

Response files let you list both compiler options and file names in a single file (unlike
configuration files, which accept only compiler options). A response file is a standard
ASCII text file that contains one or more command-line options and/or file names, with
each entry in the file separated by a space or anew line. In addition to simplifying your
compile commands, response files let you issue alonger command line than most
operating systems alow.

The syntax for using a single response fileis:

PCC @ path]respfile.txt

The syntax for using multiple response files is;
PCC @path]respfile.txt @ path]otheresp.txt

Response files shipped with Paradigm C++ have an .RSP extension.
Options typed at the command line override any option or file name in a response file.

Compiler-option precedence rules
The command-line compilers evaluate options from left to right, and follows these rules:

« If you duplicate any option except -D, -U, -I, or -L, the last option typed overrides
any earlier one. (-D, -U, -1, and -L are cumulative.)

. Optionstyped at the command line override configuration and response file options.

148 Paradigm C++ User's Guide

Entering directories for command-line options

Paradigm C++ can search multiple directories for include and library files. This means
that the syntax for the library directories (-L) and include directories (-1) command-line
options, like that of the #define option (-D), allows multiple listings of a given option.
Here is the syntax for these options:

- Ldi rnane[; di rnamne; .. .]

-l di rnanme[; dirname;...]
The parameter dirname used with -L and -I can be any directory or directory path. You
can enter these multiple directories on the command line in the following ways:

« You can stack multiple entries with asingle -L or -1 option by using a semicolon:
PCC. EXE - Ldi rnanel; di rnane2; di rname3 -lincl;inc2;inc3 nyfile.c

. You can place more than one of each option on the command line, like this:
PCC. EXE - Ldi rnanel; di rnanme2; dirnanme3 -lincl;inc2;inc3 nyfile.c

« You can mix listings:

PCC. EXE - Ldi rnanel; di rnane2; dirname3 -lincl;inc2 -l1inc3
nyfile.c

If you list multiple -L or -1 options on the command line, the result is cumulative: The
compiler searches all the directories listed, in order from left to right.

Paradigm C++ PLINK uses a configuration file called PLINK.CFG (PLINK32 uses PLINK32.CFG), a
also supports response file (optional), and command-line options to link object modules, libraries, and

multiple brary reqnyrees into a relocatable load module.
directories.

Using PLINK and PLINK32

PLINK and PLINK32 are command-line tools that combines object modules (.OBJ
files), library modules (.LIB files), and resources to produce relocatable load modules
(.ROM and .DLL files).

PLINK and PLINK32 are invoked from the command line to link a configuration file
called PLINK.CFG, (PLINK32 uses PLINK32.CFG), an optional response file, and
command-line options to link object modules, libraries, and resources into a relocatable
load module.

PLINK and PLINK32 command-line syntax

The linker syntax controls how the linkers work. Linker command-line options are case-
sengitive. Unless specified, instructions and options for PLINK also apply to PLINK32.

The linker can aso use a configuration file called PLINK.CFG (or PLINK32.CFG) for
options that you’d normally type at the command-line.

Syntax

PLINK | PLINK32 [@espfile][options] startup myobjs, [relfile],
[mapfile], [libraries], [deffile]

Where items enclosed in brackets are optional.

[@respfile] A response fileisan ASCII file that lists linker options
and file names that you would normally type at the
command line. By placing options and files namesin a
response file, you can save the amount of keystrokes
you need to type to link your application.

Chapter 6, Paradigm C++ compiler 149

[options] Linker options that control how the linker works. For example,
options specify whether to produce a.ROM or DLL file. Linker
options must be preceded by either a dlash (/) or a hyphen (-).

startup A Paradigm initialization module for executable and DLLs that
arranges the order of the various segments of the program. Failure
to link in the correct initialization module usually resultsin along
list of error messages telling you that certain identifiers are
unresolved, or that no stack has been created.

myobjs The .OBJ files you want linked. Specify the path if the
filesaren't in the current directory. (The linker appends
an .OBJ extension if no extension is present.)

[relfile] The name you want given to the executable file (relocatable load
module). If you don’'t specify an executable file name, PLINK
derives the name of the executable by appending .EXE to the first
object file name listed. (The linker assumes or appends an .EXE
extension for executable files if no extension is present.

[mapfile] I's the name you want given to the map file. If you
don’'t specify a name, the map file name is given the
same as exefile (but with the .MAP extension). (The
linker appends a.MAP extension if no extension is
present.)

[libraries] The library files you want included at link time. Do not
use commas to separate the libraries listed. If afileis
not in the current directory or the search path (see the
/L option) then you must include the path in the link
statement. (The linker appends a .L1B extension if no
extension is present.)

The order in which you list the libraries is very important; be sure to use the order
defined in thislist:

. List any of your own user libraries, noting that if a function is defined more than
once, the linker uses the first definition encountered

. Mathlibraries (if needed)

« Run-time libraries associated with your memory model and platform

[deffile] The module definition file for a 32-bit executable. If you
don't specify a module definition (.DEF) file, and you have
have used the /Twe or /Twd option, the linker creates an
application based on default settings (the linker appends a .DEF
extension if no extension is present).

PLINK.CFG file

PLINK uses a configuration file called PLINK.CFG (or PLINK32.CFG) for options that
you would normally type at the command line (note that configuration files can contain
only options, not file names). Configuration files let you save options you use frequently,
S0 you do not have to continually retype them.

PLINK looks for PLINK.CFG in the current directory, then in the directory from which
it was loaded.

150 Paradigm C++ User's Guide

The following PLINK.CFG file tells PLINK to:

« Look for librariesfirst in the directory C\PARADIGM\LIB
« Include debug information in the executables it creates
. Create adetailed segment map.

PLINK.CFG

/Lc\PARADIGM\LIB

Ivlis

[Twe ;/Tpefor 32-bit links

D If you specify command-line options in addition to those recorded in a configuration file,
the command-line options override any conflicting configuration options.

Linker response files

Y ou can use response files with the command-line linkers to specify linker options.

Response files are ASCI | files that list linker options and file names that you would
normally type at the command line. Response files allow you longer command lines than
most operating systems support, plus you don’t have to continually type the same
information. Response files can include the same information as configuration files, but
they also support the inclusion of file names.

Unlike the command line, a response file can be several lineslong. To specify an added
line, end a line with a plus character (+) and continue the command on the next line.
Note that if aline ends with an option that uses the plus to turnit on (such as/v+), the +
is not treated as a line continuation character (to continue the line, use /v+ +).

If you separate command-line components (such as .OBJfilesfrom .LIB files) by linesin
aresponse file, you must leave out the comma used to separate them on the command
line. For example,

/c cOws+
nypr og, nyexe +
nymap +

nylib cws

leaves out the commas you'’ d have to type if you put the information on the command
line:

PLINK /¢ cOws myprog, nyexe, mynap, nylib cws
To use responsefiles,

1. Type the command-line options and file names into an ASCI| text file and save the
file. Response files shipped with Paradigm C++ have the .RSP extension.

2. Type
PLI NK @ pat h] RESFI LE. RSP

. where RESFILE.RSP is the name of your responsefile.

Y ou can specify more than one response file as follows:
plink /c @istobjs.rsp, nyexe, mynap, @i stlibs.rsp

D Y ou can add comments to response files using semicolons; the linker ignores any text on
aline that follows a semicolon.

Chapter 6, Paradigm C++ compiler 151

Table 6-1
Library and
startup files for
16-bit
applications

[]

Table 6-2
Startup files for
32-bit
applications

Using PLINK with PCC.EXE

Y ou can pass options and files to PLINK through the command-line compiler
(PCC.EXE and PCC32.EXE) by typing file names on the command line with explicit
.OBJand .LIB extensions. For example,

PCC mainfile.obj subl.obj nylib.lib

links MAINFILE.OBJ, SUB1.0BJ, and MYLIB.LIB to produce the executable
MAINFILE.EXE.

By default, PCC starts PLINK with the files C0S.OBJ and CS.LIB (initialization module,
and run-time library). PCC32 starts PLINK 32 with the files C0X32.0BJ, CW32.L1B and
IMPORT32.LIB (Windows import library). In addition, the compiler always passes the
linker the /c (case-sensitive link) option.

Linking libraries

Y ou must always link the Paradigm C++ run-time library that contains the standard C
and C++ library functions for the type of application you are linking. The following
tables show the different .OBJ and .LIB files you need to use when linking 16-bit
executables. In addition to the files listed, you'll also need to link:

« FP87.LIB or EMU.LIB for DOS applications that use floating-point math.

M odel Regular Math library Run-time Noexception
startup module library (RTL) RTL

Small C0S.0BJ MATHS.LIB CS.LIB NOEHS.LIB

Compact COC.OBJ MATHC.LIB CC.LIB NOEHC.LIB

Medium COM.OBJ MATHM.LIB CM.LIB NOEHM.LIB

Large COL.OBJ MATHL.LIB CL.LIB NOEHL.LIB

Huge COH.OBJ MATHH.LIB CH.LIB NOEHH.LIB

Builds with exception handling include regular startup module, math library and run-time
library. Builds without exception handling include regular startup module, math library,
noexception RTL module and run-time library.

File Description

C0D32.0BJ DLL startup code

C0X32.0BJ Regular startup code

COE16.0BJ Protected mode executabl e boot code
COE32.0BJ Protected mode executable startup code
Cwa32.LIB Run-time library

CW32MT.LIB Multi-threaded run-time library
EMBED32.LIB Import library for embedded applications
IMPORT32.LIB Import library for Win32 native applications
NOEH32.LIB No exception run-time library

152 Paradigm C++ User's Guide

Module definition file reference

The module definition fileis an ASCII text file that provides information to PLINK and
PLINK32 about the contents and system requirements of a Windows application. Y ou
can create a module definition file using IMPDEF, and you can create import libraries
from module definition files using IMPLIB.

The module definition file

« Namestherelocatable load module or .DLL
. ldentifies the application type
. Listsimported and exported functions

. Describes the code and data segment attributes, and lets you specify attributes for
additional code and data segments

. Specifiesthe size of the stack
« Providesfor the inclusion of a stub program.

This section describes module definition files and the statements that appear in them. An
example module definition file is provided at the end of the chapter.

Module definition file defaults

If no module definition file is specified, the following defaults are assumed:

CODE PRELOAD MOVEABLE DI SCARDABLE

DATA PRELOAD MOVEABLE MULTIPLE ; (for applications)
PRELOAD MOVEABLE SI NGLE - (for DLLs)

HEAPSI ZE 4096

STACKSI ZE 5120 © (1048576 for PLI NK32)

To change an applications attributes from these defaults, you will need to create a
module definition file.

To replace the EXETY PE statement, the Paradigm C++ linker can discover what kind of
executable you want to produce by checking settings in the IDE or options on the
command line.

Y ou can include an import library to substitute for the IMPORTS section of the module
definition.

You can use the _export keyword in the definitions of export functionsin your C and
C++ source code to remove the need for an EXPORTS section.

D If _export isused to export afunction, that function is exported by name rather than by
ordinal (ordinal is usually more efficient).

CODE statement

CODE defines the default attributes of code segments. Code segments can have any
name, but must belong to segment classes whose name ends in CODE (such as CODE or
MY CODE). The 32-bit syntax is:

CODE [PRELOAD | LOADONCALL]
[EXECUTEONLY | EXECUTEREAD]

The 16-bit syntax is.

CODE [FI XED | MOVEABLE]
[DI SCARDABLE | NONDI SCARDABLE]
[PRELOAD | LOADONCALL]

Chapter 6, Paradigm C++ compiler 153

. PRELOAD means code is loaded when the calling program is loaded.

. LOADONCALL (the default) means the code is loaded when called by the program.
. EXECUTEONLY means a code segment can only be executed.

« EXECUTEREAD (the default) means the code segment can be read and executed.

« FIXED (the default) means the segment remains at a fixed memory location.

. MOVEABLE means the segment can be moved.

. DISCARDABLE means the segment can be discarded if it is no longer needed (this
implies MOVEABLE).

. NONDISCARDABLE (the default) means the segment can not be discarded.

DATA statement

DATA defines attributes of data segments. The syntax is:

DATA [NONE | SINGLE | MULTI PLE]
[READONLY | READWRI TE]
[PRELOAD | LOADONCALL]
[SHARED | NONSHARED]

« NONE means that there is no data segment created. This option is available only for
libraries.

« SINGLE (the default for .DLLS) means a single data segment is created and shared
by all processes.

« MULTIPLE (the default for relocatable load modules) means that a data segment is
created for each process.

. READONLY means the data segment can be read only.
. READWRITE (the default) means the data segment can be read and written to.

« PRELOAD means the data segment is loaded when a module that usesit isfirst
loaded.

. LOADONCALL (the default) means the data segment is loaded when it isfirst
accessed (thisisignored for 32-bit applications).
. SHARED means one copy of the data segment is shared among all processes.

« NONSHARED (the default for programs and 32-bit .DLLS) means a copy of the
data segment is loaded for each process needing to use the data segment.

DESCRIPTION statement

DESCRIPTION (optional) insertstext into the application module and is typically used
to embed author, date, or copyright information. The syntax is:

DESCRI PTI ON ' Text'
Text isan ASCII string delimited with single quotes.

EXETYPE statement

EXETY PE defines the default executable file (.EXE) header type for 16-bit applications.
Y ou can leave this section in for 32-bit applications for backward compatibility, but if
you need to change the EXETY PE, see the NAME statement. The syntax for
EXETYPE is

EXETYPE [W NDOMPI] | [W NDOACOVPAT] | [NOTW NDOACOVPAT]
. WINDOWAPI isaWindows executable, and is equivalent to the PLINK option /aa.

154 Paradigm C++ User's Guide

.« WINDOWCOMPAT is a Windows-compatible character-mode executable, and is
equivalent to the PLINK option /ap.

. NOTWINDOWCOMPAT is a character-mode application which won't run under
Windows. It is equivalent to the PLINK option /ai.

EXPORTS statement

EXPORTS defines the names and attributes of functions to be exported. The EXPORTS
keyword marks the beginning of the definitions. It can be followed by any number of
export definitions, each on a separate line. The syntax is:

EXPORTS

Export Nane [Ordinal]
[RESI DENTNAME] [Par anet er]

« ExportName specifies an ASCI|I string that defines the symbol to be exported as
follows:
EntryNane [=I nt er nal Nane]

InternalName is the name used within the application to refer to this entry.

EntryName is the name listed in the executable file's entry table and is externally
visible.

« Ordinal defines the function's ordinal value as follows:
@r di nal

where ordinal is an integer value that specifies the function's ordinal value.

When an application or DLL module calls a function exported fromaDLL, the
calling module can refer to the function by name or by ordinal value. It's faster to
refer to the function by ordinal because string comparisons aren't required to locate
the function. To use less memory, export a function by ordinal (from the point of
view of that function's DLL) and import/call afunction by ordinal (from the point of
view of the calling module).

When a function is exported by ordinal, the name resides in the nonresident name
table. When a function is exported by name, the name resides in the resident name
table. The resident name table for a module is in memory whenever the module is
loaded; the nonresident name table isn't.

. RESIDENTNAME specifies that the function's name must be resident at all times.
Thisis useful only when exporting by ordinal (when the name wouldn't be resident by
default).

. Parameter is an optional integer value that specifies the number of words the
function expects to be passed as parameters.

HEAPSIZE statement

HEAPSIZE defines the number of bytes the application needs for itslocal heap. An
application uses the local heap whenever it allocates local memory. The support for
HEAPSIZE is dlightly different for 16-bit or 32-bit applications.

The 16-bit syntax for HEAPSIZE is:
HEAPSI ZE Al | ocat e

Chapter 6, Paradigm C++ compiler 155

. Allocateis an integer value which specifies the amount of heap allocated at program
startup. For 16-hit applications, this size cannot exceed the physical segment size of
65,535 bytes (64K).

The 32-bit syntax for HEAPSIZE is:
HEAPSI ZE Reserve[, Conmit]

« Reserve can be adecimal or hex value, the default of whichis IMB. To help with
backward (16-bit) compatibility, the linker uses the default value of IMB if you
specify in the .DEF file areserve value less than 64K.

« Commit isadecimal or hex value. The commit size is optional, and if not specified
defaults to 4K. The minimum commit size you can specify is 0. In addition, the
specified or default commit size must always be smaller or equal to the reserve size.

Reserved memory refers to the maximum amount of memory that can be allocated either
in physical memory or in the paging file. In other words, reserved memory specifies the
maximum possible heap size. The operating system guarantees that the specified amount
of memory will be reserved and, if necessary, allocated.

The meaning of committed memory varies among operating systems. In Windows NT,
committed memory refers to the amount of physical memory allocated for the heap at
application load/initialization time. Committed memory causes space to be allocated
either in physical memory or in the paging file. A higher commit value saves time when
the application needs more heap space, but increases memory regquirements and possible
startup time.

Y ou can override any heap reserve or commit size specified in the .DEF file with the /H
or /Hc command-line options. /H lets you specify a heap reserve size less than the 64K
minimum allowed in the .DEF file.

IMPORTS statement

IMPORTS defines the names and attributes of functions to be imported from DLLSs.
Instead of listing imported DLL functionsin the IMPORTS statement, you can do either
of the following:

. Specify animport library for the DLL in the PLINK command line

« Include the import library for the DLL in the project manager in the IDE.

If you are programming for 32 bits, you must use __import to import any function,
class, or data you want imported. For 16 bits, you must use __import with the classes
you want imported.

The IMPORTS keyword marks the beginning of the definitions followed by any number
of import definitions, each on a separate line. The syntax is:

| MPORTS
[I nt er nal Nane=] Mbdul eNane. Entry

. InternalNameisan ASCII string that specifies the unique name the application uses
to call the function.

. ModuleName specifies one or more uppercase ASCII characters that define the name
of the executable module containing the function. The module name must match the
name of the executable file. For example, the file SAMPLE.DLL has the module
name SAMPLE.

156 Paradigm C++ User's Guide

« Entry specifies the function to be imported--either an ASCII string that names the
function or an integer that gives the function's ordinal value.

LIBRARY statement

LIBRARY defines the name of a DLL module. A module definition file can contain
aeither aLIBRARY statement to indicate a.DLL or aNAME statement to indicate a
relocatable load module.

A library's module name must match the name of the executable file. For example, the
library MYLIB.DLL hasthe module name MYLIB. The syntax is:

LI BRARY Li braryNanme [I N TGLOBAL | | NI TI NSTANCE]

« LibraryName (optional) isan ASCII string that defines the name of the library
module. If you don't include a LibraryName, PLINK uses the file name with the
extension removed. If the module definition file includes neither a NAME nor a
LIBRARY statement, PLINK assumes a NAME statement without a ModuleName
parameter

. INITGLOBAL meansthe library-initialization routine is called only when the library
module isfirst loaded into memory.

« INITINSTANCE meansthe library-initialization routine is called each time a new
process uses the library

NAME statement

NAME is the name of the application's executable module. The module name identifies
the module when exporting functions. For 32-bit applications, NAME must appear
before EXETY PE. If NAME and EXETY PE don’t specify the same target type, the
linker uses the type listed with NAME. The syntax is:

NAMVE Modul eNare [W NDOABAPI] | [W NDONCOVPAT]

« ModuleName (optional) specifies one or more uppercase ASCII characters that name
the executable module. The name must match the name of the executable file. For
example, an application with the executable file SAMPLE.EXE has the module name
SAMPLE.

If ModuleName is missing, PLINK assumes that the module name matches the file
name of the executable file. For example, if you do not specify a module name and
the executable file is named MY APP.EXE, PLINK assumes that the module name is
MY APP.

If the module definition file includes neither aNAME nor a LIBRARY statement,
PLINK assumes a NAME statement without a ModuleName parameter.

« WINDOWSAPI specifies a Windows executable, and is equivalent to the PLINK 32
option /aa.

« WINDOWCOMPAT specifies a Windows-compatible character-mode executable,
and is equivalent to the PLINK 32 option /ap.

SECTIONS statement

The SECTIONS statement lets you set attributes for one or more section in the image
file. You can use this statement to override the default attributes for each different type
of section. The syntax for SECTIONS is:

Chapter 6, Paradigm C++ compiler 157

SECTI ONS
<section_name> (CLASS 'classnane'] attributes
« SECTIONS marks the beginning of alist of section definitions.

« After the SECTIONS keyword, each section definition must be listed on a separate
line. Note that the SECTIONS keyword can be on the same line as the first definition
or on a preceding line. In addition, the .DEF file can contain one or more
SECTIONS statements. The SEGMENTS keyword is supported as a synonym for
SECTIONS. The syntax for the individual section listingsis as follows:

« Inthissyntax, section_name is case sensitive.

« The CLASS keyword is supported for compatibility but is ignored.

. The attributes argument can be one or more of the following:
EXECUTE, READ, SHARED, and WRITE.

SEGMENTS statement

SEGMENTS defines the segment attributes of additional code and data segments. The
syntax is.
SEGVENTS
Segrent Nane [CLASS ' O assNange']
[M nAll oc]
[SHARED | NONSHARED]
[PRELOAD | LOADONCALL]
[M XED1632]

. SegmentName is a character string that names the new segment. It can be any name,
including the standard segment names_TEXT and _DATA, which represent the
standard code and data segments.

. ClassName (optional) is the class name of the specified segment. If no class name is
specified, PLINK uses the class name CODE.

« MinAlloc (optional) is an integer that specifies the minimum allocation size for the
segment. PLINK and PLINK32 ignore this value.

. SHARED means one copy of the segment is shared among all processes.

« NONSHARED (the default for relocatable load modules and 32-bit .DLLS) meansa
copy of the segment is loaded for each process needing to use the data segment.

« PRELOAD means that the segment is loaded immediately.

« LOADONCALL meansthat the segment is loaded when it is accessed or called (this

isignored by PLINK32). The Resource Compiler may override the LOADONCALL
option and preload segments instead.

« MIXED1632 (optional) is supported by the 16-bit linker only, and lets you link 32-
bit modules with your 16-bit Windows 95 applications. The Windows 95 16-bit
loader supports 32-bit segments when the 2000H bit is set in the segment table of the
application.

STACKSIZE statement

STACKSIZE defines the number of bytes the application needs for itslocal stack. An
application uses the local stack whenever it makes function calls. The support for
STACKSIZE is dlightly different for 16-bit or 32-bit applications.

The 16-bit syntax for STACKSIZE is:
STACKSI ZE Al | ocat e

158 Paradigm C++ User's Guide

. Allocateis an integer value which specifies the amount of stack allocated at program
startup. For 16-hit applications, this size cannot exceed the physical segment size of
65,535 bytes (64K).

The 32-bit syntax for STACKSIZE is:

STACKSI ZE Reserve[, Comit]

« Reserve can be adecimal or hex value, the default of whichis IMB. To help with
backward (16-bit) compatibility, the linker uses the default value of IMB if you
specify in the .DEF file areserve value less than 64K.

« Commit isadecimal or hex value. The commit size is optional, and if not specified
defaults to 8K. The minimum commit size you can specify is 4K. In addition, the
specified or default commit size must always be smaller or equal to the reserve size.

Reserved memory refers to the maximum amount of memory that can be allocated either
in physical memory or in the paging file. In other words, reserved memory specifies the
maximum possible stack size. The operating system guarantees that the specified amount
of memory will be reserved and, if necessary, allocated.

The meaning of committed memory varies among operating systems. In Windows NT,
committed memory refers to the amount of physical memory allocated for the stack at
application load/initialization time. Committed memory causes space to be allocated
either in physical memory or in the paging file. A higher commit value saves time when
the application needs more stack space, but increases memory requirements and possible
startup time.

Y ou can override any stack reserve or commit size specified in the .DEF file with the /S
or /Sc command-line options. /S lets you specify a stack reserve size less than the 64K
minimum allowed in the .DEF file.

D Do not use the STACKSIZE statement when compiling .DLLs.

STUB statement

STUB appends an executable file specified by FileName to the beginning of the module.
The executable stub displays a warning message and terminates if the user attemptsto
run the executable stub in the wrong environment (running a Windows application under
DOS, for example).

Paradigm C++ adds a built-in stub to the beginning of a Windows application unless a
different stub is specified with the STUB statement. Y ou should not use the STUB
statement to include WINSTUB.EXE because the linker does this autometically.

The syntax is:
STUB ' Fi | eNane'

FileName is the name of the executable file to be appended to the module. The name
must have the file name format.

If the file named by FileName is not in the current directory, PLINK searches for thefile
in the directories specified by the PATH environment variable.

SUBSYSTEM statement

SUBSY STEM lets you specify the Windows subsystem and subsystem version number
for the application being linked. The syntax for SUBSY STEM is.

SUBSYSTEM [subsyst em] subsyst enl D

Chapter 6, Paradigm C++ compiler 159

The optional parameter subsystem can be any one of the following values:
WINDOWS, WINDOWAPI, WINDOWCOMPAT, NOTWINDOWCOMPAT. If
you do not specify a subsystem, the linker defaults to a WINDOWS subsystem.

Y ou must specify the subsysteml D parameter using the format d.d whered isa
decimal number. For example, if you want to specify Windows 4.0, you could use
either one of the following two SUBSY STEM statements:

SUBSYSTEM 4. 0
SUBSYSTEM W NDOW5, 4. 0

Y ou can override any SUBSY STEM statement in a .DEF file using the /a and /V
command-line options.

Example module definition file

Following is an example module definition file.

NAME VWHELLO

DESCRI PTI ON 'C++ Wndows Hello World'
EXETYPE W NDOWNB

CODE MOVEABLE

DATA MOVEABLE MULTI PLE

HEAPSI ZE 1024

STACKSI ZE 5120

EXPORTS Mai nW ndowPr oc

Let's describe this file statement by statement:

NAME specifies a name for an application. If you want to build a.DLL instead of an
application, you would use LIBRARY instead of NAME. Every module definition
file should have either aNAME or aLIBRARY statement, but never both. The name
specified must be the same name as the executable file.

DESCRIPTION lets you specify a string that describes your application or library.

EXETY PE can be either WINDOWS or OS2. Only WINDOWS is supported in this
version of Paradigm C++.

CODE defines the default attributes of code segments. The MOVEABLE option
means that the code segment can be moved in memory at run time.

DATA defines the default attributes of data segments. MOVEABLE meansthat it
can be moved in memory at run time. Windows lets you run more than one instance
of an application at the same time. In support of that, the MULTIPLE options
ensures that each instance of the application has its own data segment.

HEAPSI ZE specifies the size of the application's local heap.

STACKSIZE specifies the size of the application'slocal stack. Y ou can't use the
STACKSIZE statement to create a stack for a.DLL.

EXPORTS lists those functions in the WHELL O application that can be called by
other applications or by Windows. Functions that are intended to be called by other
modules are called callbacks, callback functions, or export functions.

To help you avoid the necessity of creating and maintaining long EXPORTS
sections, Paradigm C++ providesthe _export keyword. Functions flagged with
_export are identified by the linker and entered into an export table for the module.

If the Smart Callbacks option isused at compile time (/WS on the PCC command-
line, or Options|Compiler|Entry/Exit Code]Windows Smart Callbacks), then callback

160 Paradigm C++ User's Guide

functions do not need to be listed either in the EXPORTS statement or flagged with
the _export keyword. Paradigm C++ compiles them in such away so that they can
be callback functions.

« This application doesn't have an IMPORTS statement, because the only functions it
calls from other modules are those from the Windows API; those functions are
imported via the automatic inclusion of the IMPORT.LIB import library. When an
application needs to call other external functions, these functions must be listed in the
IMPORTS statement, or included via an import library.

This application doesn't include a STUB statement. Paradigm C++ uses a built-in stub
for Windows applications. The built-in stub simply checks to see if the application was
loaded under Windows, and, if not, terminates the application with a message that
Windows is required. If you want to write and include a custom stub, specify the name
of that stub with the STUB statement.

Paradigm C++ tools overview

Table 6-1
Paradigm C++
tools

Paradigm C++ includes many toolsto help you create C++ programs. While you can
access many of these tools through the Paradigm C++ IDE, you can aso run the tools
from the command line. See “Running the command-line tools,” page 6-162, for more

details.

The following table lists the Paradigm tools that come with your Paradigm C++ package:

File Description

32RTM.EXE 32-hit run-time manager

CAPDOS32.EXE Utility used by the IDE to interface with transfer macros
CPP.EXE C preprocessor (16-hit)

CPP32.EXE C preprocessor (32-hit)

GREP.COM File search utility

IMPDEF.EXE Utility used when building apps with Libraries
IMPLIB.EXE Utility used when building apps with Libraries
MAKE.EXE Make utility

MAKER.EXE Real-mode MAKE utility

MAKESWAP.EXE Creates swap file to use with 32-bit command-line tools
OBJXREF.EXE Utility to examine contents of .OBJand .LIB files
PASM.EXE Paradigm Assembler

PCC.EXE Paradigm C++ 16-bhit command-line compiler
PCC32.EXE Paradigm C++ 32-bit command-line compiler
PCW.EXE Paradigm C++ IDE

PDADDREG.EXE Enables, disables, installs and deletes Paradigm C++ add-on .DLLs
PLIB.EXE Utility for maintaining static-link libraries
PLINK.EXE Paradigm 16-bit linker

PLINK32.EXE Paradigm 32-bit linker

RTM.EXE 16-bit run-time manager

TOUCH.COM Change files stampsto current date/time

Chapter 6, Paradigm C++ compiler 161

Running the command-line tools

MAKESWAP
applies to DOS
only, not to DOS
boxes opened
under Windows.

Many Paradigm command-line tools (such as the command-line compiler) use DPMI
(DOS Protected Mode Interface) to run in protected mode. Protected mode tools run on
80386 and greater machines with at least 640K conventional RAM and at least 4AMB
extended memory.

Although the compilers run in protected mode, they generate applications that runin real
mode. Protected-mode tools have the advantage that they can access more memory than
real-mode tools. This helps to compile large projects at faster speeds, without the cost of
extensive disk-swapping.

Memory and MAKESWAP.EXE

If you get “Out of Memory” errors from DOS when running Paradigm command-line
tools (or if you have 8MB of RAM and are running the 32-bit command-line tools),
create a swap file with the MAKESWAP utility. Describe the size of the swap filein
kilobytes. For example, the following command creates a 12MB swap file:

MAKESWAP 12000

In addition, MAKESWAP supports the following syntax:

MAKESWAP 12M
Both commands create a 12MB swap file in the current directory (named EDPMI.SWP)
which the Paradigm command-line tools use when they need additional memory. To

enable the swap file, use the DPMI132 environment variable at the DOS prompt, or add
thisline to your AUTOEXEC.BAT file:

set DPM 32=SWAPFI LE <SwapFi | ePat h>EDPM . SWP

Y ou must clear the DPMI132 environment variable before you use any 16-bit DPMI-
hosted tools with the following command:

set DPM 32=

The run-time manager and tools

The Paradigm C++ protected-mode tools (such as PCC and PCC32) use the run-time
managers RTM.EXE and 32RTM.EXE. The tools that use run-time managers first load
the run-time manager if needed, then do their work, and then unload the run-time
manager.

162 Paradigm C++ User's Guide

Chapter
v

Using MAKE

MAKE.EXE is a command-line utility that helps you manage project compilation and
link cycles. MAKE helps you quickly build projects by compiling only the files you have
modified since the last compilation. In addition, you can set up rulesthat specify how
MAKE should deal with the special circumstancesin your builds.

This chapter covers the following topics:
. MAKE basics

. Makefile contents

. Using explicit and implicit rules

. Using MAKE macros

« Using MAKE directives

MAKE basics

If you need to
compile in real
mode, use the

program
MAKER.EXE.

MAKE uses rules you write along with its default settings to determine how it should
compile the files in your project. For example, you can specify when to build your
projects with debug information and to compile your .OBJfiles only if the date/time
stamps of a source file is more recent than the .OBJ itself. If you need to force the
compilation of a module, use TOUCH.EXE to modify the time stamp of one of the
modul€’ s dependents.

In an ASCII makefile, you write explicit and implicit rules to tell MAKE how to treat the
filesin your project; MAKE determinesiif it should execute a command on afile or set of
files using the rules you set up. Although your commands usually tell MAKE to compile
or link a set of files, you can specify nearly any operating system command with MAKE.

The general syntax for MAKE is
MAKE [options...] [target[targets]]

where opt i ons are MAKE optionsthat control how MAKE worksand t ar get s are
the names of the files in the makefile that you want to build.

Y ou must separate the MAKE command and the opt i ons and target arguments with
spaces. When specifying t ar get s, you can use wildcard characters (such as* and ?) to
indicate multiple files. To get command-line help for MAKE, type MAKE -?.

Default MAKE actions

When you issue a MAKE command, MAKE looks in the current directory for the file
BUILTINS.MAK, which contains the default rules for MAKE (use the -r option to
ignore this set of default rules). After loading BUILTINS.MAK, MAKE looks for afile
caled MAKEFILE or MAKEFILE.MAK (use the -f option to specify afile other than
MAKEFILE). MAKE looks for these files first in the current directory, then in the
directory where MAKE.EXE is stored. If MAKE can't find either of thesefiles, it
generates an error message.

Chapter 7, Using MAKE 163

1. After loading the makefile, MAKE tries to build only the first target listed in the
makefile by checking the time and date of the dependent files of the first target. If the
dependent files are more recent than the target file, MAKE executes the commands
to update the target.

2. If one of thefirst target’s dependent files as atarget elsewhere in the makefile,
MAKE checks that target’ s dependencies and builds it before building the first target.
This chain reaction is called alinked dependency.

3. If something during the build process fails, MAKE deletes the target file it was
building. Use the .precious directive if you want MAKE to keep atarget after a build
fails.

Y ou can stop MAKE after issuing the make command by pressing Ctrl+Break or Ctrl+C.

To place MAKE instructions in a file other than MAKEFILE, see the section titled
"MAKE options."

BUILTINS.MAK

The file BUILTINS.MAK contains standard rules and macros that MAKE uses when it
builds the targets in a makefile. To ignore thisfile, use the -r MAKE option.

Hereisthe default text of BUILTINS.MAK:

#
<Default 9§ Font>Paradi gm C++ - © Copyright 1997 by Paradi gm Syst ens
#

default is to target 16BI T
#pass -DWN32 to nake to target 32BIT

i f 1$d(W N32)
cc

= pcc
AS = pasm
lel se
cC = pcc32
AS = pasnB2
lendi f
.asm obj :

$(AS) $(AFLAGS) $& asm
. C. exe:

$(CC $(CFLAGS) $&.c
.C.obj:

$(CC) $(CFLAGS) /c $& ¢C
. Cpp. exe:

$(CC) $(CFLAGS) $& cpp
. Cpp. obj :

$(CC $(CPPFLAGS) /c $& cpp
. SUFFI XES: .exe .obj .asm.c
lif !$d(PARADI GVEXAMPLEDI R)

PARADI GVEXAMPLEDI R = $(MAKEDI R) \ . . \ EXAMPLES
lendi f

Using TOUCH

TOUCH.EXE updates afile's date stamp so that it reflects your system’s current time
and date.

164 Paradigm C++ User's Guide

[]

Table 7-1
TOUCH options

Use the -W
option to set
default MAKE
options.

Table 7-2
MAKE options

Sometimes you might need to force atarget to be recompiled or rebuilt even though you
haven't changed its source files. One way to do thisisto use the TOUCH utility to
update the time stamp of one or more of the target’ s dependency files. To touch afile (or
files), type the following at the command prompt:

touch [options] filenane [filenane...]

Because TOUCH is a 32-bit executable, it accepts long file names. In addition, you can
use file names that contain the wildcard characters* and ?to “touch” more than asingle
fileat atime.

Before you use TOUCH, make sure your system’sinternal clock is set correctly.
TOUCH.EXE supports several command-line options:

Option Description

dmm-dd-yy Sets the date of the file to the specified date

ffilename Sets the time and date of files to match those of filename

h Displays help information (same as typing TOUCH without options or file names)
thh: mm:ss Sets the time of the file to the specified time

\Y Verbose mode, shows each file TOUCHed

MAKE options

Y ou can use command-line options to control the behavior of MAKE. MAKE options
are case-sensitive and must be preceded with either a hyphen (-) or slash (/). For
example, to use afile called PROJECTA.MAK as the makefile, type MAKE -

f PRQJECTA. MAK. Many of the command-line options have equivalent directives that
you can use within the makefile.

Option Description

-a Checks dependencies of include files and nested include fil es associated with .OBJ
files and updates the .OBJif the .h file changed. See also -c.

-B Builds all targets regardless of file dates.

-C Caches autodependency information, which can improve MAKE's speed. Use with

-a. Do not use this option if MAKE modifies include files (which can happen if
you use TOUCH in the makefile or if you create header or include files during the
MAKE process).

-Dmacro Defines macro as a single character, causing an expression !ifdef macro written
in the makefile to return true.

[-D]macro=[string] Defines macro as string. If string contains any spaces or tabs, enclose string in
quotation marks. The -D is optional.

-ddirectory Use this option with -S to specify the drive and directory that MAKER (therea
mode version of MAKE) uses when it swaps out of memory. MAKE ignores this
option.

-e Ignoresamacro if its name is the same as an environment variable (MAKE uses
the environment variable instead of the macro).

-ffilename Uses filename or filename.MAK instead of MAKEFILE (a space after -f is
optional).

-hor -? Displays MAKE options. Default settings are shown with atrailing plus sign.

-ldirectory MAKE searches for include filesin the current directory first, then in directory you

specify with this option.

Chapter 7, Using MAKE 165

Warning!

-i MAKE ignores the exit status of all programs run from the makefile and continues
the build process.

-K Keeps temporary files that MAKE creates (MAKE usually deletes them). See also
“KEEP,” page 7-167.

This may be helpful during debugging of your makefiles.

-m Displays the date and time stamp of each file as MAKE processesiit.

-N Causes MAKE to mimic Microsoft's NMAKE.

-n Prints the MAKE commands but does not perform them, thisis helpful for
debugging makefiles.

-p Displays all macro definitions and implicit rules before executing the makefile,

-q Returns O if the target is up-to-date and nonzero if it is not (for use with batch
files).

-r Ignores any rules defined in BUILTINS.MAK.

-S Swaps MAKER out of memory while commands are executed, reducing memory
overhead and allowing compilation of large modules. MAKE ignores this option.

-S Suppresses onscreen command display.

-Umacro Undefines the previous macro definition of macro.

-W Writes the specified non-string options to MAKE.EXE, making them defaults.

Setting default MAKE options
The -W option lets you set the default options for MAKE. Use the following syntax to
set the default options:

make [-option[-] ...] -W
For example, you could type MAKE - m - Wto turn the -m option on by default (which
causes MAKE to aways display file dates and times). When you use the -W option,
MAKE asks you to write changesto MAKE.EXE. Type Y to accept the new defaults.
To turn off an option that’s on by default, follow the option with a hyphen. For example,
to undo the -m option change, type

MAKE -m -W
The -W option doesn’t work with the following MAKE options:

-Dmacro -Dmacro=string
-ddirectory -Usymbol
-ffilename -?or-h
-Idirectory

If you attempt to use the -W option when the real address mode SHARE programis
loaded, MAKE displaysthe message Fat al : unabl e to open file
MAKE. EXE.

Compatibility with Microsoft’'s NMAKE

Use the -N option if you want to use a makefile that was originaly crested for
Microsoft's NMAKE. The following changes occur when you use -N:

. The $d macro istreated differently-use !lifdef or lifndef instead.

« Macrosthat return paths won't return the last \. For example, if $(<D) normally
returns C. \ CPP\ , the -N option causes MAKE to return C:\CPP.

166 Paradigm C++ User's Guide

« Unlessthere is a matching .suffixes directive, MAKE begins searching for rules from
the bottom of the makefile and works its way to the top.

« Inimplicit rules, MAKE expands $* macrosto the target name instead of to the
dependent name.

« MAKE interprets the << operator asif it were the && operator; MAKE uses
temporary files as response files. These files are then deleted. To keep afile, either
use the -K MAKE command-line option or use K EEP in the makefile.

MAKE usually deletes temporary files it creates.
<<Fi | eNane. Ext
t ext
<<KEEP
If you don’t want to keep atemporary file, type NOKEEP or type only the temporary

(optional) file name. If you don't type a file name, MAKE creates a name for you. If you
use NOK EEP, it will override the -K command-line option.

Using makefiles

The AllFiles
target has no
commands.

A makefileis an ASCII file that contains the set of instructions that MAKE usesto build
acertain project. Although MAKE assumes your makefile is called MAKEFILE or
MAKEFILE.MAK, you can specify a different makefile name with the -f option (see
page 7-165).

MAKE either builds the target(s) you specify at the MAKE command or it builds only
the first target it finds in the makefile (to build more than one target, see the section
"Symbolic targets'). Makefiles can contain:

. Comments

. Explicit rules

« Implicit rules

. Macros

. Directives

Symbolic targets

A symbolic target forces MAKE to build multiple targets in a makefile. When you
specify a symbolic target, the dependency line lists all the targets you want to build (a
symbolic target basically uses linked dependencies to build more than one target).

For example, the following makefile uses the symbolic target allFilesto build both
FILEL1.EXE and FILE2.EXE:
AllFiles: filel.exe file2.exe
filel.exe: filel.obj
pcc filel. obj
file2.exe: file2.obj
pcc file2. obj

Rules for symbolic targets
Observe the following rules when you use symbolic targets:
« Do not type aline of commands following the symbolic target line.

« A symbolic target must have a unique name; it cannot be the name of afilein your
current directory.

Chapter 7, Using MAKE 167

. Symbolic target names must follow the operating system rules for naming files.

Explicit and implicit rules

Y ou write explicit and implicit rules to instruct MAKE how build the targets in your
makefile. In general, these rules are defined as follows:

« Explicit rules are instructions for specific files.
. Implicit rules are general instructions for files that don’t have explicit rules.

All the rules you write follow this general format:

Dependency |ine

Commands
?

While the dependency line uses a different syntax for explicit and implicit rules, the
command line syntax stays the same for both rule types. For more information on linked
dependencies see page 7-164.

MAKE supports multiple dependency lines for a single target, and a single target can
have multiple command lines. However, only one dependency line should contain a
related command line. For example:

Target 1: dependentl dep2 dep3 dep4 dep5

Targetl: dep6 dep7 dep8
pcc -c $**

Explicit rule syntax

Explicit rules specify the instructions that MAKE must follow when it builds specific
targets. Explicit rules name one or more targets followed by one or two colons. One
colon means one rule is written for the target(s); two colons mean that two or more rules
are written for the target(s).

Explicit rules follow this syntax:

target [target...]:[:]1[{path}] [dependent[s]...]
[commands]
2

target The name and extension of the file to be built (atarget must begin aline
in the makefile - you cannot precede the target name with spaces or tabs).
To specify more than one target, separate the target names with spaces or
tabs. Also, you cannot use atarget name more than once in the target
position of an explicit rule.

path A list of directories that tells MAKE where to find the dependent files.
Separate multiple directories with semicolons and enclosed the entire path
specification in braces.

dependent Thefile (or files) whose date and time MAKE checksto seeif it is newer
thant ar get . Each dependent file must be preceded by a space. If a
dependent appears elsewhere in the makefile as a target, MAKE updates
or creates that target before using the dependent in the original target
(thisin known as a linked dependency).

commands Any operating system commands. Y ou must indent the command line by
at least one space or tab, otherwise they are interpreted as atarget.
Separate multiple commands with spaces (see the section on commands,
page 7-170)

168 Paradigm C++ User's Guide

If a dependency or command line continues on the following line, use a backslash (\) at
the end of thefirst line to indicate that the line continues. For example,
MYSOURCE. EXE: FI LE1. OBJ\ #Dependency |ine

FI LE3. OBJ #Dependency | ine continued
pcc filel.obj file3.0obj #Command |ine

Single targets with multiple rules

A single target can have more than one explicit rule. To specify more than asingle
explicit rule, use adouble colon (::) after the target name. The following example shows
targets with multiple rules and commands.

cpp. obj :
pcc -c -ncobj $<

.asm obj :
pasm /nx $<, asnobj\

nylib.lib :: f1.0bj f2.
echo Adding Cfiles
plib nmylib -+cobjfl -+cobjf2

nylib.lib :: f3.0bj f4.obj

echo Adding ASMfiles
plib nylib -+asnobjf3 -+asnobjf4

Implicit rule syntax

An implicit rule specifies a general rule for how MAKE should build files that end with
specific file extensions. Implicit rules start with either a path or a period. Their main
components are file extensions separated by periods. The first extension belongs to the
dependent, the second to the target.

If implicit dependents are out-of-date with respect to the target, or if the dependents
don't exist, MAKE executes the commands associated with the rule. MAKE updates
explicit dependents before it updates implicit dependents.

Implicit rules follow this basic syntax:

[source dir].source ext[target dir].target ext:
[commands]

{source dir} Thedirectory (or directories) where MAKE can find the dependent files.
Separate multiple directories with a semicolon.

.source_ext The dependent filename extension.

{target_dir} Thedirectory where MAKE places the target files. Separate multiple
directories with a semicolon.

target ext Thetarget filename extension. Macros are allowed here.
Marks the end of the dependency line.

commands Any operating system command or commands. Y ou must indent the
command line by at least one space or tab, otherwise they are interpreted
as atarget. Separate multiple commands with spaces (see the section on
commands, page 7-170)

If two implicit rules match atarget extension but no dependent exists, MAKE uses the
implicit rule whose dependent’ s extension appearsfirst in the .SUFFIXES list. See
“suffixes,” page 7-178.

Chapter 7, Using MAKE 169

Explicit rules with implicit commands

See page 7-173 A target in an explicit rule can get its command line from an implicit rule. The following
for information example shows an implicit rule followed by an explicit rule without a command line.

on default .
macros. . C.obj: . .
pcc -c $< #This command uses a nacro $< descri bed
I ater
nyprog. obj: #This explicit rule uses the command: pcc
-C nyprog.c
The implicit rule command tells MAKE to compile MY PROG.C (the macro $< replaces
the name my pr og. obj withnypr og. c).
Command syntax
Commands immediately follow an explicit or implicit rule and must begin on a new line
with a space or tab.
Commands can be any operating system command, but they can also include MAKE
macros, directives, and special operators that your operating system won't recognize
(however, note that | can’t be used in commands). Here are some sample commands:
cd. .
pcc -c nysource.c
COPY *. OBJ C. PRQJECTA
pcc -c¢ $(SOURCE) #Macros are explained later in the
chapter.
Commands follow this general syntax:
[prefix...] conmands
Command prefixes
Commands in both implicit and explicit rules can have prefixes that modify how MAKE
treats the commands. Table 7-3 lists the prefixes you can use in makefiles:
Table 7-3 Prefix Description
Command
prefixes @ Don't display the command while it’s being executed.

-num Stop processing commands in the makefile when the exit code returned from command
exceeds the integer num. Normally, MAKE aborts if the exit code is nonzero. No white space
is allowed between - and num.

- Continue processing commands in the makefile, regardless of the exit codes they return.

& Expand either the macro $**, which represents all dependent files, or the macro $?, which
represents all dependent files stamped later than the target. Execute the command once for
each dependent filein the expanded macro.

Using @
The following command uses the @ prefix, which prevents MAKE from displaying the
command onscreen.

diff.exe : diff.obj
@cc diff. obj

170 Paradigm C++ User's Guide

Using -num and -

The -num and - prefixes control the makefile processing when errors occur. Y ou can
choose to continue with the MAKE process if an error occurs or you can specify a
number of errorsto tolerate.

In the following example, MAKE continues processing if PCC returns errors:

target.exe : target.obj
target.obj : target.cpp
pcc -c target.cpp

Using &
The & prefix issues a command once for each dependent file. It is especially useful for
commands that don't take alist of files as parameters. For example,

copyall : filel.cpp file2. cpp
© $** c:\tenp
resultsin COPY being invoked twice as follows:

copy filel.cpp c:\tenp
copy file2.cpp c:\tenp

Without the & modifier, MAKE would call COPY only once.

Command operators

While you can use any operating system command in a MAKE command section, you
can also use special operators. MAKE supports the normal operators (such as +, -, and
so on) as well as the following special operators:

Table 7-4 Operator Description

Command
operators < Useinput from a specified file rather than from standard input
Send the output from command to file
>> Append the output from command to file
<< Create atemporary inline file and use its contents as standard input to command
&& Create atemporary response file and insert its name in the makefile

delimiter Use deimiters with temporary responsefiles. You can use any character other than # asa
delimiter. Use << and & & as a starting and ending delimiter for atemporary file. Any
characters on the same line and immediately following the starting delimiter areignored.
The closing delimiter must be written on aline by itself.

Debugging with temporary files
MAKE can create temporary response files when your command lines become too long
to place on asingle line.

To begin writing to aresponse file, place the MAKE operator & & followed by a
delimiter of your choice (| makes a good delimiter) in the makefile. To finish writing to
the file, repeat your delimiter.

The following example shows &&| instructing MAKE to create afile for the input to
PLINK.

Chapter 7, Using MAKE 171

prog. exe: A obj B.obj
PLINK /c @& # &8 opens temp file, @for PLINK
c0s. obj $**
pr og. exe
pr og. map
maths.lib cs.lib
| # | closes tenp file, must be on first colum

The response file created by &&| contains these instructions:

c0s. obj a.obj b.obj
pr og. exe

pr og. map

maths.lib cs.lib

MAKE names temporary file starting at MAKEOOOO.MAK where the 0000 increments
by one with each temporary file you create. MAKE then deletes the temporary file when
it terminates.

Using MAKE macros

A macro is avariable that MAKE expands into a string whenever MAKE encounters the
macro in amakefile. For example, you can define a macro called LIBNAME that
represents the string “mylib.lib.” To do this, typethelineLl BNAVE = nylib.lib at
the beginning of your makefile. Then, when MAKE encounters the macro

$(LI BNAME) , it substitutesthe string myl i b. | i b. Macros let you create template
makefiles that you can change to suit different projects.

To use amacro in amakefile, type $(Macr oNane) where MacroName is a defined
macro. Y ou can use braces or parentheses to enclose MacroName.

MAKE expands macros at various times depending on where they appear in the
makefile:

. Nested macros are expanded when the outer macro is invoked.

. Macrosinrules and directives are expanded when MAKE first looks at the makefile.
. Macrosin commands are expanded when the command is executed.

If MAKE finds an undefined macro in a makefile, it looks for an operating-system
environment variable of that name (usually defined with SET) and uses its definition as
the expansion text. For example, if you wrote $(PATH) in a makefile and never defined

PATH, MAKE would use the text you defined for PATH in your AUTOEXEC.BAT.
See your operating system manuals for information on defining environment variables.

Defining MAKE macros

The general syntax for defining a macro in a makefileis:
Macr oNane = expansi on_t ext.

« MacroName is case-sensitive (MACROL is different from Macrol).

. MacroNameislimited to 512 characters.

. expansion_text islimited to 4096 characters. Expansion characters may be
alphanumeric, punctuation, or whitespace.

Y ou must define each macro on a separate line in your makefile and each macro
definition must start on the first character of the line. For readability, macro definitions
are usualy put at the top of the makefile. If MAKE finds more than one definition for
macroName, the new definition overwrites the old one.

172 Paradigm C++ User's Guide

[]

Table 7-5
Command line
vs. makefile
macros

Table 7-6
Default macros

Y ou can also define macros using the -D command-line option (see page 7-165). No
spaces are allowed before or after the equal sign (=), however, you can define more than
one macro can by separating the definitions with spaces. The following examples show
macros defined at the command line:

nmake - Dsourcedir=c: projecta

make - Dcomand="pcc -c”
nmake - Dcomand=pcc option=-c

Macros defined in makefiles overwrite those defined on the command line.
The following differences in syntax exist between macros entered on the command line
and macros written in a makefile.

Syntax M akefile Command line
Spaces allowed before and after = Yes No
Spaces allowed before macroName No Yes

String substitutions in MAKE macros

MAKE lets you temporarily substitute charactersin a previously defined macro. For
example, if you defined the macro

SQURCE = fl.cpp f2.cpp f3.cpp

you could substitute the characters .obj for the characters .cpp by using the make
command $(SOURCE: . cpp=. obj) . This substitution does not redefine the macro.

Rules for macro substitution:

. Syntax: $(Macr oNane: ori gi nal _t ext =new_t ext)

. No whitespace before or after the colon

. Charactersin original_text must exactly match the charactersin the macro definition
(text is case-sengitive)

MAKE also lets you use macros within substitution macros. For example,

MYEXT=. C
SOURCE=f 1. cpp f2.cpp f3.cpp
$(SOURCE: . cpp=$(MYEXT)) #Changes fl.cpp to f1.C, etc.

Default MAKE macros

MAKE contains several default macros you can use in your makefiles. Table 7-6 liststhe
meacro definition and what it expands to in explicit and implicit rules.

Macro Expandsin implicit Expandsin explicit
$* path\dependent file path\target file
$< path\dependent filet+ext path\target file+ext

X path for dependents path for target
$. dependent filet+ext target file + ext
$& dependent file target file
$@ path\target filet+ext path\target file+ext
$+* path\dependent filet+ext all dependents filet+ext
$? path\dependent filet+ext old dependents

Chapter 7, Using MAKE 173

Table 7-7
Other default
macros

Table 7-8
Filename macro
modifiers

Macro Expandsto Comment

__MAKE__ 0x0370 MAKE's hex version number

MAKE make MAKE's executable file name

MAKEFLAGS options The options typed at the command line

MAKEDIR directory Directory where MAKE.EXE is located

PCPPROOT Will be defined to be the Paradigm C++ root directory if this can

be determined by MAKE.

If PCPPROOT is defined, you will find the following BIN, INCLUDE, and LIB
directories:

$(PCPPROOT) \ BI N
$(PCPPROOT) \ | NCLUDE
$(PCPPROOT) \ LI B

Modifying default MAKE macros

When the default macros listed in Table 7-6, page 7-173 don’'t give you the exact string
you want, macro modifiers let you extract parts of the string to suit your purpose.

To modify a default macro, use this syntax:
$(MacroNane [nodifier])

Table 7-8 lists macro modifiers and provides examples of their use.

Modifier Part of file name expanded Example Result

D Drive and directory $(<D) C:\PROJECTA\

F Base and extension $(<F) MY SOURCE.C

B Base only $(<B) MY SOURCE

R Drive, directory, and base $(<R) C:\PROJA\SOURCE

Using MAKE directives

Table 7-9
MAKE directives

MAKE directives resemble directives in languages such as C and Pascal. In MAKE, they
perform various control functions, such as displaying commands onscreen before
executing them. MAKE directives begin either with an exclamation point or a period,
and the override any options given on the command line.

Table 7-9 lists the MAKE directives and their corresponding command-line options
(directives override command-line options). Each directive is described in more detail
following the table.

Directive Option Description

.autodepend -a Turns on autodependency checking
.cacheautodepend -c Turns on autodependency caching

leif ActslikeaC dseif

lelse ActslikeaC else

lendif Endsan !if, lifdef, or lifndef statement
lerror Stops MAKE and prints an error message
lif Begins a conditional statement

174 Paradigm C++ User's Guide

lifdef Actslike a C #ifdef, testing whether a given macro has

been defined

lifndef Actslike a C #ifndef, testing whether a given macro is undefined

.ignore -i MAKE ignores the return value of a command

linclude Actslike a C #include, specifying a fileto include in the makefile

Imessage Prints a message to stdout while MAKE runs the makefile

.noautodepend -a- Turns off autodependency checking

.nocacheautodepend -c- Turns off autodependency caching

.nolgnore -i- Turns off .Ignore

.nosilent -s Displays commands before MAKE executes them

.noswap -S Tells MAKE not to swap itself out of memory before executing a
command

.path.ext Tells MAKE to search for files with the extension .ext in path
directories

.precious Saves thetarget or targets even if the build fails

Slent -S MAKE executes commands without printing them first

.suffixes Determines the implicit rule for ambiguous dependencies

.Swap -S Tells MAKE to swap itself out of memory before executing a
command

lundef Clearsthe definition of a macro. After this, the macro is undefined

.autodepend

Autodependencies are the files that are automatically included in the targets you build,
such as the header files included in your C++ source code. With .autodepend on,
MAKE compares the dates and times of all the files used to build the .OBJ, including the
autodependency files. If the dates or times of the files used to build the .OBJ are newer
than the date/time stamp of the .OBJfile, the .OBJfile is recompiled. Y ou can use
.autodepend (or -a) in place of forming linked dependencies (see page 7-164 for
information on linked dependencies).

lerror

The syntax of the lerror directiveis:
lerror nessage
MAKE stops processing and prints the following string when it encounters this directive:
Fatal mnekefile exit code: Error directive: message
Embed !error in conditional statements to abort processing and print an error message,
as shown in the following example:

if !$d(MYMACRO

#if MYMACRO i sn't defined
lerror WWMACRO isn’t defined
lendi f

If MYMACRO isn't defined, MAKE terminates and prints:
Fatal makefile 4: Error directive: MYMACRO isn't defined

Chapter 7, Using MAKE 175

Table 7-10
Conditional
operators

Error-checking controls

MAKE offers four different controls to control error checking:

. The.ignore directive turns off error checking for a selected portion of the makefile.
« The-i command-line option turns off error checking for the entire makefile.

« The-num prefix, which is entered as part of arule, turns off error checking for the
related command if the exit code exceeds the specified number.

« The - prefix turns off error checking for the related command regardless of the exit
code.

lif and other conditional directives

The lif directive works like C if statements. As shown here, the syntax of !if and the
other conditional directives resembles compiler conditionals:

lif condition !if condition !if condition !ifdef macro
lendif lelse Ielif condition !endif

lendif lendif
The following expressions are equivalent:

lifdef macro and !if $d(nmacro)
i fndef macro and !if !$d(nacro)

These rules apply to conditional directives:

. Oneldsedirective is alowed between lif, lifdef, or lifndef and 'endif directives.

. Multiple!elif directives are allowed between !if, lifdef, or !ifndef, !else and 'endif.
. You can't split rules across conditional directives.

« You can nest conditional directives.

. lif, lifdef, and lifndef must have matching !endif directives within the same file.

The following information can be included between !if and !endif directives:

« Macro definition
. lincludedirective
. Explicit rule

« lerror directive

« Implicit rule

. lundef directive

Condition in if statements represents a conditional expression consisting of decimal,
octal, or hexadecimal constants and the operators shown in Table 7-10.

Operator Description Operator Description
Negation 2 Conditional expression
~ Bit complement ! Logical NOT
+ Addition >> Right shift
- Subtraction << Left shift
* Multiplication & Bitwise AND
/ Division | Bitwise OR
% Remainder A Bitwise XOR
&& Logical AND >= Greater than or equal*

176 Paradigm C++ User's Guide

I Logical OR <= Lessthan or equal*
> Greater than == Equality*
< Lessthan I= Inequality*

*Operator also works with string expressions.

MAKE evaluates a conditional expression as either a 32-bit signed integer or asa
character string.

linclude

Thisdirective is like the #include preprocessor directive for the C or C++ language-it
lets you include the text of another file in the makefile:

linclude fil enanme

Y ou can enclose filename in quotation marks (“ “) or angle brackets (< >) and nest
directives to unlimited depth, but writing duplicate linclude directives in a makefile isn't
permitted-you' |l get the error message cycle in the include file.

Rules, commands, or directives must be complete within a single source file; you can't
start acommand in an linclude file, then finish it in the makefile.

MAKE searches for linclude filesin the current directory unless you’ ve specified
another directory with the -1 command-line option.

Imessage

The I'message directive lets you send messages to the screen from a makefile. Y ou can
use these messages to help debug a makefile that isn't working properly. For example, if
you' re having trouble with a macro definition, you could put this line in your makefile:

I nessage The nacro is defined here as: $(MacroNane)

When MAKE interprets thisline, it will print onscreen The macro i s defined
here as: . CPP (assuming the macro expandsto .CPP). Using a series of !message
directives, you can debug your makefiles.

.path.ext

The .path.ext directive tells MAKE where to look for files with a certain extension. The
following example tells MAKE to look for files with the .c extension in C:SOURCE or
C.CFILES and to look for files with the .obj extension in C:OBJS.

.path.c = C CSOURCE; C. CFl LES
.path.obj = C OBJS

.precious

If aMAKE build fails, MAKE deletes the target file. The .precious directive prevents
the file deletion, which you might desire for certain kinds of targets. For example, if your
build fails to add a module to alibrary, you might not want the library to be deleted.

The syntax for .preciousis
.precious: target [target ...]

Chapter 7, Using MAKE 177

.suffixes

The .suffixes directive tells MAKE the order (by file extensions) for building implicit
rules.

The syntax of .suffixesis
.suffixes: .ext [.ext ...]

where .ext represents the dependent file extensions you list in your implicit rules. For
example, you could includetheline. suf fi xes: .asm.c .cpp totel MAKE to
interpret implicit rules beginning with the ones dependent on .ASM files, then .C files,
then .CPP files, regardless of what order they appear in the makefile.

The following .suffixes example tells MAKE to look for a source file first with an .ASM
extension, next with a.C extension, and finally with a.CPP extension. If MAKE finds
MY PROG.ASM, it builds MY PROG.OBJ from the assembler file by calling PASM.
MAKE then calls PLINK; otherwise, MAKE searches for MY PROG.C to build the .OBJ
file or it searches for MY PROG.CPP.

.suffixes: .asm.c .cpp

nmypr og. exe: mnmyprog. obj
pl i nk mmyprog. obj

. Cpp. obj :

pcc -P $<
.asm obj :

pasm/nx $<
.C.obj:

pcc -P- $<

lundef

lundef (undefine) clears the given macro, causing an !ifdef MacroName test to fail.

The syntax of the lundef directiveis
lundef Macr oName

Using macros in directives

Y ou can use the $d macro with the !if conditional directive to perform some processing
if a specific macro is defined. Follow the $d with macro name enclosed in parentheses or
braces, as shown in the following example:

l'i f $d(DEBUG #1 f DEBUG i s defi ned,

pcc -v fl.cpp f2.cpp #conpile wth debug information;
lel se #ot herwi se (el se)

pcc -v- fl.cpp f2.cpp #don't include debug information.
l'endi f

Null macros

While an undefined macro causes an !ifdef MacroName test to return false, MacroName
defined as null will return true. Y ou define a null macro by following the equal signin the
meacro definition with either spaces or areturn character. For example, the following line
defines a null macro in a makefile:

NULLMACRO =

178 Paradigm C++ User's Guide

Either of the following lines can define a null macro on the MAKE command line;

NULLMACRO=""
- DNULLMACRO

Chapter 7, Using MAKE 179

180 Paradigm C++ User's Guide

Chapter
8

PLIB.EXE

PLIB.EXE isautility that manages libraries of individual .OBJ (object module) files. A
library is a convenient tool for dealing with a collection of object modules as asingle
unit.

This chapter covers the basics of using the PLIB library utility including:

. PLIB options

« Operation list

« Responsefiles
. PLIB examples

PLIB basics

[]

The libraries included with Paradigm C++ were built with the PLIB.EXE library utility.
Y ou can use PLIB to build your own libraries, or to modify the Paradigm C++ libraries,
your libraries, libraries furnished by other programmers, or commercial libraries you've
purchased.

When PLIB modifies an existing library, it aways creates a copy of the origina library
with a .BAK extension.

You can use PLIB to:

. Create anew library from a group of object modules.

« Add object modules or other librariesto an existing library.

« Remove object modules from an existing library.

. Replace object modules from an existing library.

. Extract object modules from an existing library.

. List the contents of a new or existing library.

PLIB can aso create (and include in the library file) an extended dictionary, which can be
used to speed up linking.

Although PLIB is not essential for creating executable programs with Paradigm C++, it
is auseful programming productivity tool that can be indispensable for large
development projects.

PLIB options

The PLIB command line takes the following general form, where items listed in square
brackets are optional:

plib [@espfile] [option] |ibnane [operations] [, listfile]

Table 8-1, page 8-182 lists the command-line options available in PLIB. Each is
described in detail following the table.

For an online summary of PLIB command-line options, type PLIB and press Enter.

Chapter 8, PLIB.EXE 181

Table 8-1
PLIB options

Option Description

@respfile The path and name of the response file you want to include. Y ou can specify more
than one response file.
libname The DOS path name of the library you want to create or manage. Every PLIB

command must be given a libname. Wildcards are not allowed. PLIB assumes

an extension of .LIB if noneisgiven. Use only the .LIB extension because both
PCC and the Paradigm C++ IDE require the .LIB extension in order to recognize
library files. Note: If the named library does not exist and there are add operations,
PLIB createsthelibrary.

/IC The case-sensitive flag. This option isnot normally used.

/E Creates extended dictionary

/Psize Setsthelibrary page sizeto size.

/0 Purges comment records.

operations Thelist of operations PLIB performs. Operations can appear in any order. If you
only want to examine the contents of the library, don’t give any operations.

listfile The name of thefilethat lists library contents. The listfile name (if given) must be

preceded by a comma. No listing is produced if you don’t give a file name. The
listing is an alphabetical list of each module. The entry for each module contains
an alphabetical list of each public symbol defined in that module. The default
extension for thelistfileis .LST. You can direct the listing to the screen by using
the listfile name CON, or to the printer by using the name PRN.

PLIB /C option
Using case-sensitive symbolsin alibrary

When you add a module to alibrary, PLIB maintains a dictionary of al public symbols
defined in the modules of the library. All symbols in the library must be distinct. If you
try to add a module to the library that duplicates a symbol, PLIB displays an error
message and doesn't add the module.

Normally, when PLIB checks for duplicate symbols in the library, uppercase and
lowercase |etters are not treated differently (for example, the symbols lookup and
LOOKUP are treated as duplicates). You can use the /C option to add a module to a
library that includes symbols differing only in case.

Don't use /C if you plan to use the library with other linkers or let other people use the
library.

PL1B normally rejects symbols that differ only in case because some linkers aren’t case-
sengitive. PLINK has no problem distinguishing uppercase and lowercase symbols. As
long as you use your library only with PLINK, you can use the PLIB /C option without
any problems.

PLIB /E option
Creating an extended dictionary

To increase the capacity of PLINK for large links, you can use PLIB to create an
extended dictionary and append it to the library file. This dictionary contains, in a
compact form, information that is not included in the standard library dictionary and that
lets PLINK process library files so that those modules not needed in the link are not
processed.

To create an extended dictionary for alibrary that is being modified, use the /E option
when you start PLIB to add, remove, or replace modulesin the library. To create an

182 Paradigm C++ User's Guide

extended dictionary for an existing library that you don’'t want to modify, use the /E
option. For example, if you type the following text, PLINK appends an extended
dictionary to the specific library:

plib /E nylib

If you get the message “Table limit exceeded”, use /E to seeif it helps. If you use /E to
add a library module containing a C++ class with a virtual function, you’ll get the error
message, Library contains COM DEF records—extended dictionary not created.

PLIB /P option
Setting the page sizeto create a largelibrary

Every real address mode library file contains a dictionary that appears at the end of the
.LIB file, following al of the object modules. For each module in the library, the
dictionary contains a 16-bit address of that particular module within the .LIB file; this
address is given in terms of the library page size (it defaultsto 16 bytes).

The library page size determines the maximum combined size of al object modules in the
library, which cannot exceed 65,536 pages. The default (and minimum) page size of 16
bytes allows alibrary of about 1 MB in size. To create alarger library, use the /P option
to increase the page size. The page size must be a power of 2, and it cannot be smaller
than 16 or larger than 32,768.

All modulesin the library must start on a page boundary. For example, in alibrary with a
page size of 32 (the lowest possible page size higher than the default 16), an average of
16 bytes will be lost per object module in padding. If you attempt to create alibrary that
istoo large for the given page size, PLIB will issue an error message and suggest that
you use /P with the next available higher page size.

Using PLIB response files

When you use alarge number of operations, or if you find yourself repeating certain sets
of operations over and over, you will probably want to use response files. A response file
isan ASCII text file (which can be created with the Paradigm C++ editor) that contains
all or part of aPLIB command. Using PLIB response files, you can build PLIB
commands larger than would fit on one command line. Response files can

. Contain more than one line of text; use the ampersand character (&) at the end of a
lineto indicate that another line follows.

« Include a partia list of commands. Y ou can combine options from the command line
with options in a response file.

« beused with other response filesin asingle PLIB command line.

Operation list

The operation list describes what actions you want PLIB to do and consists of a
sequence of operations given one after the other. Each operation consists of a one- or
two-character action symbol followed by afile or module name. Y ou can put whitespace
around either the action symbol or the file or module name, but not in the middle of a
two-character action or in a name.

Y ou can put as many operations as you like on the command line, up to DOS's
COMMAND.COM-imposed line-length limit of 127 characters. The order of the
operations is not important. PLIB always applies the operations in a specific order:

Chapter 8, PLIB.EXE 183

[]
[]

To create a
library, add
modules to a
library that does
not yet exist.

Table 8-2
PLIB action
symbols

Table 8-3
PLIB operations

To replace amodule, first remove it, then add the replacement module. The following
shows the order in which PLIB handles these operations:

1. All extract operations are done first.
2. All remove operations are done next.
3. All add operations are done last.
4. Wildcards are never alowed in file or module names.
See Table 8-3 for more information on Add, Remove and Extract.

PLIB finds the name of a module by stripping any drive, path, and extension information
from the given file name.

PL1B always assumes reasonable defaults. For example, to add a module that has an
.OBJ extension from the current directory, you need to supply only the module name,
not the path and .OBJ extension.

PLIB recognizes three action symbols (*, +, *), which you can use singly or combined in
pairs for atota of five distinct operations. Table 8-2 summarizes these three action
symbols. The order of the characters is not important for operations that use a pair of
characters. The action symbols and what they do are listed here:

Symbol Name Description

-* Extract & PLIB copies the named modul e to the corresponding file name and then
removesit from thelibrary.

*- Remove Removes named module from library.

-+ Replace PLIB replaces the named modul e with the corresponding file.

Option Description

Add PLIB adds the named file to thelibrary. If thefile has no extension, PLIB assumes an
extension of .OBJ. If thefileisitself alibrary (with a.LIB extension), then the operation
adds all of the modulesin the named library to the target library.

If amodule being added already exists, PLIB displays a message and does not add the new
module.

Remove PL1B removes the named module from the library. If the module does not exist in the library,
PLIB displays a message.

A remove operation needs only a module name. PLIB lets you enter afull path name with
drive and extension included, but ignores everything except the module name.

Extract PLIB creates the named file by copying the corresponding module from the library to thefile.
If the module does not exist, PLIB displays a message and does not create afile. If the named
file dready exists, it is overwritten.

You can't directly rename modulesin alibrary. To rename a module, extract and remove it,
renamethefile just created, then add it back into the library.

PLIB examples

These simple examples demonstrate some of the different things you can do with PLIB:
Example 1

To create alibrary named MY LIB.LIB with modules X.OBJ, Y.OBJ, and Z.OBJ, type:
plib nylib +x +y +z.

184 Paradigm C++ User's Guide

Example 2

To create alibrary named MY LIB.LIB and get alistingin MYLIB.LST too, type:
plib nmylib +x +y +z, nylib.I|st.

Example 3

To get alisting in CS.LST of an existing library CS.LIB, type:
plib cs, cs.Ist.

Example 4

To replace module X.OBJ with a new copy, add A.OBJ and delete Z.OBJ from
MYLIB.LIB, type:

plib nylib -+x +a -z.

Example 5

To extract module Y.OBJfrom MYLIB.LIB and get alisting in MYLIB.LST, type:
plib mylib *y, nylib.Ist.

Example 6

To create anew library named ALPHA, with modules A.OBJ, B.OBJ, ..., G.OBJusing a
response file:

1. First create atext file, ALPHA.RSP, with

+a. obj +b.obj +c.obj &
+d. obj +e.obj +f.obj &
+g. obj

2. Then use the PLIB command, which produces a listing file named ALPHA.LST:
plib al pha @l pha.rsp, alpha.l st

Chapter 8, PLIB.EXE 185

186 Paradigm C++ User's Guide

Chapter

9

Exception handling

This chapter describes the Paradigm C++ error-handling mechanisms generally referred
to as exception handling. The Paradigm C++ implementation of C++ exception
handling is consistent with the proposed ANSI specification. The exception-handling
mechanisms that are available in C programs are referred to as structured exceptions.
Paradigm C++ provides full compiling, linking, and debugging support for C programs
with structured exceptions. See the section “C-based structured exception,” page 9-194,
and " Setting exception handling options,” page 9-193 for a discussion of compiler
options for programming with exceptions.

C++ exception handling

The C++ language defines a standard for exception handling. The standard insures that
the power of object-oriented design is supported throughout your program.

In accordance with the ANSI/ISO C++ working paper specification, Paradigm C++
supports the termination exception-handling model. When an abnormal situation arises
at run-time, the program could terminate. However, throwing an exception allows you
to gather information at the throw point that could be useful in diagnosing the causes
that led to failure. Y ou can also specify in the exception handler the actions to be taken
before the program terminates. Only synchronous exceptions are handled, meaning that
the cause of failure is generated from within the program. An event such as Ctrl-C
(which is generated from outside the program) is not considered to be an exception.

C++ exceptions can be handled only in atry/catch construct.

Syntax:

try-block:
try compound-statement handler-list

handler-list:
handler handler-list opt

handler:
catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-list declarator
type-specifier-list abstract-declarator
type-specifier-list

throv.v:expr on:
throw assignment-expression opt
D The catch and throw keywords are not allowed in a C program.

Thetry-block is a statement that specifies the flow of control as the program executes.
Thetry-block is designated by the try keyword. After the keyword, braces surround a
program block that can generate exceptions. The language structure specifies that any

Chapter 9, Exception handling 187

exceptions that occur should be raised within the try-block. See "statements’ in the
online Help index for more information.

The handler is ablock of code designed to handle an exception. The C++ language
requires that at least one handler be available immediately after the try-block. There
should be a handler for each exception that the program can generate.

When the program encounters an abnormal situation for which it is not designed, you
can transfer control to some other part of the program that is designed to deal with the
problem. This is done by throwing an exception.

The exception-handling mechanism requires the use of three keywords: try, catch, and
throw. The try-block specified by try must be followed immediately by the handler
specified by catch. If an exception isthrown in the try-block, program control is
transferred to the appropriate exception handler. The program should attempt to catch
any exception that is thrown by any function. Failure to do so could result in abnormal
termination of the program.

Exception declarations

Although C++ allows an exception to be of any type, it is useful to make exception
classes. The exception object istreated exactly the way any object would be treated. An
exception carries information from the point where the exception is thrown to the point
where the exception is caught. Thisis information that the program user will want to
know when the program encounters some anomaly at run-time.

Predefined exceptions, specified by the C++ language, are documented in the online
Help Book Shelf index under "Run-time support”, "operator new" or "xalloc". To get to
the Book Shelf index, choose Help|Keyboard and click the Book Shelf menu tab.
Paradigm C++ provides additional support for exceptions. These extensions are also
documented under "classes’ in the online Help index.

Throwing an exception

A block of code in which an exception can occur must be prefixed by the keyword try.
Following the try keyword is a block of code enclosed by braces. This indicates that the
program is prepared to test for the existence of exceptions. If an exception occurs, the
program flow is interrupted. The sequence of steps taken is as follows:

1. The program searches for a matching handler

2. If ahandler isfound, the stack is unwound to that point

3. Program control is tranferred to the handler

If no handler is found, the program will call the terminate function. If no exceptions are
thrown, the program executes in the normal fashion.

A throw expression is also referred to as athrow-point. You can specify whether an
exception can be thrown by using one of the following syntax specifications:

188 Paradigm C++ User's Guide

t hrow t hr ow_expressi on ;
throw ;
void ny_funcl() throw (A B)

wh ke

{
/1 Body of function.

}
4. void ny_func2 () throw ()

{
/1 Body of this function.
}

The first case specifies that throw_expression isto be passed to a handler.

The second case specifies that the exception currently being handler isto be thrown
again. An exception must currently exist. Otherwise, terminate is called.

D The third case specifies alist of exceptions that my_funcl can throw. No other
exceptions should propagate out of my_funcl. If an exception other than A or B is
generated within my_funcl, it is considered to be an unexpected exception and program
control will be transferred to the unexpected function. By default, the unexpected
function ends with a call to abort but it can throw an exception. For more information,
see "unexpected” in the online Help Book Shelf index. The Book Shelf index is
accessed by choosing Help|Keyboard and clicking on the Book Shelf menu tab.

The final case specifies that my_func2 should throw no exceptions. If some other
function (for example, operator new) in the body of my_func2 throws an exception,
such an exception should be caught and handled within the body of my_func2.
Otherwise, such an exception is a violation of my_func2 exception specification. The
unexpected function is then called.

When an exception occurs, the throw expression initializes atemporary object of the

type T (to match the type of argument arg) used in throw(T arg). Other copies can be

generated as required by the compiler. Consequently, it can be useful to define a copy
constructor for the exception object.

Handling an exception

The exception handler isindicated by the catch keyword. The handler must be placed
immediately after the try-block. The keyword catch can also occur immediately after
another catch. Each handler will only evaluate an exception that matches, or can be
converted to, the type specified in its argument list. The possible conversions are listed
after the try-block syntaxes.

The following syntaxes, following the try-block, are valid:

Try {
/1 1nclude any code that mi ght throw an exception

}
1. catch (T X)
{

// Take sone actions

}
2. catch (...)
{

// Take sone actions

}

The first statement is specifically defined to handle an object of type T. If the argument
iIST, T&, const T, Or const T&, the handler will accept an object of type X if any of the
following are true:

Chapter 9, Exception handling 189

. Tand X areof the same type
. Tisanaccessible base class for X in the throw expression

. Tisapointer type and X is a pointer type that can be converted to T by a standard
pointer conversion at the throw point

The statement catch (...) will handle any exception, regardless of type. This statement,
if used, must be the last handler for itstry-block.

Every exception thrown by the program must be caught and processed by the exception
handler. If the program fails to provide an exception handler for athrown exception, the
program will call terminate.

Exception handlers are evaluated in the order that they are encountered. An exception is
caught when its type matches the type in the catch statement. Once a type match is
made, program control is transferred to the handler. The stack will have been unwound
upon entering the handler. The handler specifies what actions should be taken to deal
with the program anomaly.

A goto statement can be used to transfer program control out of a handler but such a
statement can never be used to enter a handler or try-block.

After the handler has executed, the program can continue at the point after the last
handler for the current try-block. No other handlers are evaluated for the current
exception.

Exception specifications

The C++ language makes it possible for you to specify any exceptions that a function
can throw. This exception specification can be used as a suffix to the function
declaration. The syntax for exception specification is as follows:

exception-specification:

throw (type-id-listopt)

type-id-list:

type-id

type-id-list, type-id
The function suffix is not considered to be part of the function's type. Consequently, a
pointer to afunction is not affected by the function's exception specification. Such a
pointer checks only the function's return and argument types. Therefore, the following is
legal:

void f2(void) throw() ; /1 Shoul d not throw exceptions

void f3(void) throw (BETA) ; // Should only throw BETA objects

void (* fptr)() ; /1 Pointer to a function returning void
fptr = f2 ;

fptr =3 ;

Extreme care should be taken when overriding virtual functions. Again, because the
exception specification is not considered part of the function type, it is possible to
violate the program design. In the following example, the derived class BETA:vfunc is
defined so that it throws an exception — a departure from the original function
declaration.

G ass ALPHA {
publi c:
virtual void vfunc(void) throw () { }; // Exception specification

i
class BETA : public ALPHA {

190 Paradigm C++ User's Guide

struct BETA ERR { };
void vfunc(void) throw(BETA ERR) { }; // Exception specification
is

/1 changed
b
The following are examples of functions with exception specifications,
void f1(); /1 The function can throw any exception
void f2(); throw (); /1 Should not throw any exceptions

void f3(); throw (A B*); // Can throw exceptions publicly derived
/1 fromA, or a pointer to publicly
derived B

The definition and all declarations of such a function must have an exception
specification containing the same set of type-id's. If a function throws an exception not
listed in its specification, the program will call unexpected. Thisisarun-time issue — it
will not be flagged at compile time. Therefore, care must be taken to handle any
exceptions that can be thrown by elements called within a function.

Example 2

/1 HOW TO MAKE EXCEPTI ON- SPECI FI CATI ONS AND HANDLE ALL EXCEPTI ONS
#i ncl ude <i ostream h>

/1 EXCEPTI ON DECLARATI ONS
class Al pha {
/1 1nclude sonething that shows why you chose to throw this
exception.
1
Al pha al pha_i nst;

class Beta {

/1 1nclude sonething that shows why you chose to throw this
exception.
1

Beta beta_ inst;

/1 THROW ONLY Al pha OR Beta TYPE OBJECTS
void f3(char c) throw (Al pha, Beta) {
cout << "f3() was called" << endl;

if (c=="'a).
throw(al pha_inst);
if (c =="b")

throwm(beta inst);
el se ; // DO NOTH NG W TH OTHER CHARACTERS

}

/1 SHOULD NOT THROW EXCEPTI ONS
void f2 (char ch) throw) {
try { /1 VWRAP ALL CODE IN A TRY-BLOCK
cout << "f2() was called" << endl;
f3(ch);

}
/1 HERE ARE HANDLERS FOR THE EXCEPTI ONS WE KNOW COULD BE THROWN
catch (Al pha& al pha_inst) { cout << "Caught Al pha exception.";}
catch (Beta& beta inst) { cout << "Caught Beta exception.";}

// 1F THE CODE | S MODI FI ED LATER SO THAT SOVE OTHER EXCEPTION | S
// THROMN, I T IS HANDLED HERE AND WE AVO D VI OLATI NG THE f2() THROW

Chapter 9, Exception handling 191

/1 SPECI FI CATI ON
catch (...) {
/1 BUT, WE POST OURSELVES A WARNI NG MESSAGE.
cout << "Warning: f2() has elenents with exceptions!" << endl;

}

int main(void) {
char trigger;

try {
cout << "Input a character:";

cin >> trigger;

f2(trigger);

cout << "\nSuccess.";

return O0; //WE GET HERE ONLY | F EVERYTH NG EXECUTES WELL.

}

catch (...) {
cout << "Need nore handlers!";
return 1;

}
}

Sample output when 'a’ is the input

Input a character: a
f2() was called

f3() was called

Caught Al pha exception
Success.

If an exception is thrown which is not listed in the exception specification, the
unexpected function will be called. The following diagrams illustrate the sequence of
events that can occur when unexpected is called. See "Run-time support” in the online
Help Book Shelf index, for a description of the "set_terminate”, "set_unexpected”, and
"unexpected” functions. The Book Shelf index is accessed by choosing Help|Keyboard
and clicking on the Book Shelf menu tab.

Program behavior when a function is registered with set_unexpected ();
unexpect ed() /1 CALLED AUTONATI CALLY

/1 DEFI NE YOUR UNEXPECTED HANDLER
unexpect ed_function ny_unexpected(void)

/1 REG STER YOUR HANDLER

|
|
|
o
| /1 DEFI NE ACTI ON TO TAKE PGCSSI BLE MAKE ADJUSTMENTS
|
|
|
| set _unexpected(ny_unexpected);

|

nmy_unexpect ed() ;

Program behavior when no function is registered with set_unexpected() but thereisa
function registered with set_terminate():

192 Paradigm C++ User's Guide

unexpect ed() /1 CALLED AUTONATI CALLY
|

term nate()

/1 DEFI NE YOUR TERM NATI ON SCHEME
term nate function ny_terninate(void)

|
|
|
| {

| /1 TAKE ACTI ONS BEFORE TERM NATI NG
| /1 SHOULD NOT THROW EXCEPTI ONS

| exit(1); // MJIST END SOMEHOW

| }

|

I

/1 REG STER YOUR TERM NATI ON FUNCTI ON
set terminate(nmy_termnate)

nmy_term nate()
/| PROGRAM ENDS.

Constructors and destructors

D When an exception is thrown, the copy constructor is called for the thrown value. The
copy constructor is used to initialize atemporary object at the throw point. Other copies
can be generated by the program. See "copy constructor” in the online Help index for
more information.

When program flow is interrupted by an exception, destructors are called for all
automatic objects that were constructed since the beginning of the try-block was
entered. If the exception was thrown during construction of some object, destructors
will be called only for those objects that were fully constructed. For example, if an array
of objects was under construction when an exception was thrown, destructors will be
called only for the array elements which were already fully constructed.

D Destructors are called by default. See “Exception handling/RTTI,” for information
about exception-handling switches.

When a C++ exception is thrown, the stack is unwound. By default, during stack
unwinding, destructors are called by automatic objects. Y ou can use the —xd compiler
option to switch the default off.

Setting exception handling options
The following command-line options can be used to set exception handling:

Setting Command-line option
Enable exception handling -X

Enable destructor cleanup -xd

Enabl e throwing exceptions from a DLL -xds

Enable exception location information -Xp

Unhandled exceptions

D If an exception is thrown and no handler is found it, the program will call the terminate
function. This following diagram illustrates the series of events that can occur when the
program encounters an exception for which no handler can be found. See "Run-time
support” in the online Help Book Shelf index for a description of the terminate function.
The Book Shelf index is accessed by choosing Help|Keyboard and clicking on the Book
Shelf menu tab.

Chapter 9, Exception handling 193

Default program behavior for unhandled exceptions:
term nate();

|
abort ();
/| PROGRAM ENDS.

C-based structured exceptions

Paradigm C++ provides support for program development that makes use of structured
exceptions. Y ou can compile and link a C source file that contains an implementation of
structured exceptions. In a C program, the ANSI-compatible keywords used to
implement structured exceptionsare __except, __finally, and _ _try. Note that the
__finally and _ _try keywords can appear only in C programs.

D For portability, you can use the try and except macros defined in excpt.h.
For try-except exception-handling implementations the syntax is as follows:

try-block:
__try compound-statement (in a C module)
try compound-statement (in a C++ module)

handler:
___except (expression) compound-statement
For try-finally termination implementations the syntax is as follows:

try-block:

__try compound-statement
termination:

__finally compound-statement

Using C-based exceptions in C++

Paradigm C++ allows substantial interaction between C and C++ error handling
mechanisms. The implementation of exception handling mechanisms lets you port code
across platforms. The following interactions are supported:

« C structured exceptions can be used in C++ programs.

+ C++ exceptions cannot be used in a C module because C++ exceptions require that
their handler be specified by the catch keyword and catch is not alowed inaC
program.

« Anexception generated by a call to the RaiseException function is handled by a
try/__except or _try/ _except block. All handlers of try/catch blocks are ignored
when RaiseException is called.

The following C exception support functions can be used in a C and C++ programs:

. GetExceptionCode

. GetExceptionlnformation

« SetUnhandledExceptionFilter
« UnhandledExceptionFilter

D Paradigm C++ does not require that the UnhandledExceptionFilter function be used
only in the except filter of _ try/ except or try/ _except blocks. However, program

194 Paradigm C++ User's Guide

behavior is undefined when this function is called outside of the _ _try/ except or
try/__except block.

Handling C-based exceptions

The full functionality of an __except block isallowed in C++. If an exception is
generated in a C module, it is possible to provide a handler-block in a separate calling
C++ module.

If a handler can be found for the generated structured exception, the following actions
can be taken:

. Execute the actions specified by the handler

. lgnorethe generated exception and resume program execution

« Continue the search for some other handler (regenerate the exception)

These actions are consistent with the design of structured exceptions. The following
example shows how to mix C and C++ exceptions. Note that the C mechanism uses the

try and _ _except keywords. The C++ mechanism uses the required try and catch
keywords.

/* In PROG C */
void func(void) {

f; generate an exception */
Rai seException(/* specify your argunents */);

}

/1 In CALLER CPP

/]l How to test for C++ or C-based exceptions.
#i ncl ude <excpt. h>

#i ncl ude <i ostream h>

int main(void) {

try
{ /1 test for C++ exceptions
try
{ /1 test for C based structured exceptions
func();
__except(/* filter-expression */)
{

cout << "A structured excepti on was generated.";

/* specify action to take for this structured exception */

return -1
}
return O;
}
catch (...)

/1 handl er for any C++ exception
cout << "A C++ exception was thrown.";
return 1;

}

Chapter 9, Exception handling 195

Structured exceptions also allow you to program atermination handler. The termination
handler can be used only in a C module and is specified by the __finally keyword. The
termination handler ensures that the code inthe __finally block is executed no matter
how the flow within the _ _try exits. The __finally keyword is not alowed in a C++
program. Consequently, the _try/ _finally block is not supported in a C++ program.

Even thoughthe _try/ finally block is not supported in a C++ program, a C-based
exception generated by the operating system or the program will still result in proper
stack unwinding of objects with destructors. Y ou can use thisto emulatea __finally
block by creating alocal object whose destructor does the necessary cleanup. Any
module compiled with the -xd compiler option (this option is on by default) will have
destructors invoked for all objects with auto storage. Stack unwinding occurs from the
point where the exception is thrown to the point where the exception is caught.

Destructors are called by default. See “Exception handling/RTTI,” page 3-51 for
information about exception-handling switches.

196 Paradigm C++ User's Guide

Chapter

10

Using inline assembly

Inline assembly is assembly-language instructions embedded within your C and C++
code. Inline assembly instructions are compiled and assembled along with your code
rather than being assembled in separate assembly modules.

This chapter describes how to use inline assembly with Paradigm C++. The following
topics are discussed:
« Inline assembly syntax and usage

. Using the asm keyword to place an assembly instruction within your C/C++
code

. Using C symbols in your asm statement to reference data and functions
. Using register variables, offsets, and size overrides

. Using C structure members

. Using jump instructions and labels

. Using the -B compiler option and #pragma inline statement to compile inline
assembly

« Using the built-in assembler (PASM)
D See Paradigm C++ equivalents of command-line options on page 3-91.

Inline assembly syntax and usage

This section describes inline assembly syntax, and how to use inline assembly
instructions with C++ structures, pointers, and identifiers.

To place an assembly instruction in your C/C++ code, use the asm keyword. The format
is

asm opcode operands ; or newine
where:

. opcode is valid 80x86 instruction.

. Operands contains the operand(s) acceptable to the opcode, and can reference C
constants, variables, and labels.

. Theend of the asm statement is signaled by either ; (semicolon) or by newiine (a
new line).

A new asm statement can be placed on the same line, following a semicolon, but no
asm statement can continue to the next line. To include multiple asm statements,
surround them with braces. The initial brace must appear on the same line asthe asm

keyword.
Three asm statements are shown here; two on one line, and one below them.

asm {
pop ax; pop ds
iret

}

Chapter 10, Using the inline assembly 197

Semicolons are not used to start comments (asthey are in PASM). When commenting
asm statements, use C-style comments, like this:

asm nov ax, ds; /* This coment is OK */
asm {pop ax; pop ds; iret;} /* This coment is also |egal */
asm push ds ; THHS COMVENT |'S | NVALI D!

The assembly-language portion of the statement is copied straight to the output,
embedded in the assembly language that Paradigm C++ is generating from your C or
C++ instructions. Any C symbols are replaced with appropriate assembly language
equivalents.

Each asm statement is considered to be a C statement. For example, the following
congtruct isavalid C if statement:

nyfunc()
(.
int i;
int Xx;
if (i >0
asm nov X, 4
el se
i = 7;
}

A semicolon isn't needed after the move x,4 instruction. asm statements are the only
statements in C that depend on the occurrence of anew line to indicate that they have
ended. Although thisisn't in keeping with the rest of the C language, it is the convention
adopted by several UNIX-based compilers.

An asm statement can be used as an executable statement inside a function, or as an
external declaration outside of a function. asm statements located inside functions are
placed in the code segment, and asm statements located outside functions are placed in
the data segment.

Inline assembly references to data and functions

Y ou can use any C symbol in your asm statements, including automatic (local)
variables, register variables, and function parameters. Paradigm C++ automatically
converts these symbols to the appropriate assembly-language operands and appends
underscores onto identifier names.

In general, you can use a C symbol in any position where an address operand would be
legal. Of course, you can use aregister variable wherever aregister would be a legal
operand.

If the assembler encounters an identifier while parsing the operands of an inline-
assembly instruction, it searches for the identifier in the C symbol table. The names of
the 80x86 registers are excluded from this search. Either uppercase or lowercase forms
of the register names can be used.

Inline assembly and register variables

Inline assembly code can freely use Sl or DI as scratch registers. If you use Sl or DI in
inline assembly code, the compiler won't use these registers for register variables.

In 16-bit code BX is available for use as a scratch register.In 32-bit code, the
corresponding EBX is not available for use as a scratch register.

198 Paradigm C++ User's Guide

When you use PCC32 or PCC32A to compile a C or C++ sourcefile, including files
with inline assembly, the compiler preservesthe EBX register. However, when you
compile an assembly .ASM source file, you are responsible for preserving the EBX
register. Thisistrue whether you compile the . ASM source file with a 32-bit compiler
or use PASM32.Inline assembly, offsets, and size overrides

When programming, you don’t need to be concerned with the exact offsets of local
variables: using the variable name will include the correct offsets.

It might be necessary, however, to include appropriate WORD PTR, BY TE PTR, or
other size overrides on assembly instruction. A DWORD PTR override is needed on
LES or indirect far call instructions.

Using C structure members

Y ou can reference structure members in an inline-assembly statement in the usual way
(that is, with variable.member). When you do this, you are working with variables, and
you can store or retrieve values in these structure members. However, you can also
directly reference the member name (without the variable name) as a form of numeric
constant. In this situation, the constant equals the offset (in bytes) from the start of the
structure containing that member. Consider the following program fragment:

struct myStruct {
int a_a;
int a_b;
int a_c;

} yA

nmyfunc ()
{

asm {nov ax, WORD PTR nyA a_b
nmov bx, WORD PTR nyA. a c
}
}

This fragment declares a structure type named myStruct with three membersa_a, a b,
and a_c. It also declares a variable myA of type myStruct. The first inline-assembly
statement moves the value contained in myA.a_b into the register AX. The second
moves the value at the address[di] + ofset(a_c) into the register BX (it takesthe
address stored in DI and adds to it the offset of a_c from the start of myStruct). In this
sequence, these assembler statements produce the following code:

nmove ax, DGROUP : nyA+2
nove bx, [di+4]

Thisway, if you load aregister (such as DI) with the address of a structure of type
myStruct, you can use the member names to directly reference the members. The
member name can be used in any position where a numeric constant is allowed in an
assembly-statement operand.

The structure member must be preceded by a dot (.) to signal that a member name,
rather than anormal C symbol, is being used. Member names are replaced in the
assembly output by the numeric offset of the structure member (the numeric offset of
a cis4), but no type information is retained. Thus members can be used as compile-
time constants in assembly statements.

There is one restriction, however: if two structures that you're using in inline assembly
have the same member name, you must distinguish between them. Insert the structure

Chapter 10, Using the inline assembly 199

Compiling

type (in parentheses) between the dot and the member name, asiif it were a cast. For
example,

asmnov bx,[di].(struct tmtm hour

Using jump instructions and labels

Y ou can use any of the conditional and unconditional jump instructions, plus the loop
instructions, in inline assembly. These instructions are valid only inside a function.
Since no labels can be defined in the asm statements, jJump instructions must use C goto
labels as the object of the jump. If the label istoo far away, the jump will not be
automatically converted to along-distance jump. For this reason, you should be careful
when inserting conditional jJumps. Y ou can use the -B switch to check your jumps.
Direct far jumps cannot be generated.

In the following code, the jJump goes to the C goto label a.

i nt x()
{

a: /* This is the goto |abel "a" */
ésﬁ1jnp a /* Coes to | abel "a" */
}

Indirect jumps are also allowed. To use an indirect jump, use aregister name as the
operand of the jump instruction.

with inline assembly

There are two way Paradigm C++ can handle inline assembly code in your C or C++
code.

. Paradigm C++ can convert your C or C++ code into assembly language, then
transfer to PASM to produce an .OBJfile. (This method is described in this section.)

. Paradigm C++ can use its built-in assembler (PASM) to insert your assembly
statements directly into the compiler's instruction stream (16-bit compiler only).
(This method is described in the following section.)

Y ou can use the -B compiler option for inline assembly in your C or C++ program. If
you can use this option, the compiler first generates an assembly file, then invokes
PASM on that file to produce the .OBJfile.

By default, -B invokes PASMor PASM32. Y ou can override it with -Exxx, where xxx is
another assembler.

Y ou can invoke PASM while omitting the -B option if you include the #pragma inline
statement in your source code. This statement enables the -B option for you when the
compiler encountersit. You will save compile time if you put #pragma inline at the top
of your source file.

The -B option and #pragma inline tell the compiler to produce an .ASM file, which
might contain your inline assembly instructions, and then transfer to PASM to assemble
the .OBJfile. The 16-bit Paradigm C++ compiler has another method, PASM, that
allows the compiler, not PASM, to assemble your inline assembly code.

200 Paradigm C++ User's Guide

Using the built-in assembler

The 16-bit compiler can assemble your inline assembly instructions using the built-in
assembler. This assembler is part of the compiler, and can do most of the things PASM
can do, with the following restrictions:

. It can't use assembler macros.

. It can't handle 80386 or 80486 instruction.

« It doesn't permit Ideal mode syntax.

. Italowsonly alimited set of assembler directives (see page 10-203)

Because the built-in assembler isn't a complete assembler, it might not accept some
assembly-language constructs. If this happens, Paradigm C++ will issue an error
message. Y ou then have two choices: you can simplify your inline assembly-language
code s0 the assembler will accept it, or you can use the -B option to invoke PASM to
catch whatever errorsthere might be. PASM might not identify the location of errors,
however, because the original C source line number is lost.

Opcodes

Y ou can include any of the 80x86 instruction opcodes as inline-assembly statements.
There are four classes of instructions allowed by the Paradigm C++ compiler:

. Normal instructions - the regular 80x86 opcode set

« String instructions - special string-handling codes

« Jump instructions - various jJump opcodes

. Assembly directives - data allocation and definition

All operands are allowed by the compiler, even if they are erroneous or disallowed by
the assembler. The exact format of the operands is not enforced by the compiler.

Table 10-1 lists al allowable PASM opcodes. For 80286 instruction, use the -2
command-line compiler option.

D If you're using inline assembly in routines that use floating-point emulation (the
command-line compiler option -f), the opcodes marked with * aren't supported.

Table 10-1 PASM opcode mnemonics

PASM opcode

mnemonics aaa fdivrp fpatan Id
aad feni fprem mov
aam ffree* fptan mul
aas fiadd frndint neg
adc ficom frstor nop
add ficomp fsave not
and fidiv fscale or
bound fidivr fsgrt out
call fild fst pop
cbw fimul fstew popa
clc fincstp* fstenv popf
cld finit fstp push
cli fist fstsw pusha
cme fistp fsub pushf

Chapter 10, Using the inline assembly 201

Table 10-2
PASM string
instructions

cmp fisub fsubp rcl

cwd fisubr fsubr rer
daa fld fsubrp ret
das fldl ftst rol
dec fldew fwait ror
div fldenv fxam sahf
enter fldi2e fxch sa
f2xml fldi2t fxtract sar
fabs fldig2 fyl2x sbb
fadd fldin2 fyl2xpl shl
faddp fldpi hit shr
fbld fldz idiv smsw
fbstp fmul imul stc
fchs fmulp in std
fclex fnclex inc i
fcom fndisi int sub
fcom fndisi int sub
fcomp fneni into test
fcompp fninit iret verr
fdecstp fnop lahf verw
fdis fnsave Ids wait
fdiv fnstcw lea xchg
fdivp fnstenv leave xlat
fdivr fnstsw les xor

* Not supported if you're using inline assembly in routines that use floating-point emulation (the command-
line compiler option -f).

When using 80186 instruction mnemonics in your inline-assembly statements, you must
include the -1 command-line option. This forces appropriate statements into the
assembly-language compiler output so that the assembler will expect the mnemonics. If
you're using an older assembler, these mnemonics might not be supported.

String instructions

In addition to the opcodes listed in Table 10-1, page 10-201, the string instructions
given in Table 10-2 can be used alone or with repeat prefixes.

PASM string instructions

cmps insw movsh outsw stos
cmpsb lods movsw scas stosb
cmpsw lodsb scash stosw

lodsw outsb scasw

insb movs

The following prefixes can be used with the string instructions:
lock rep repe repnz repz

202 Paradigm C++ User's Guide

Jump instructions
Jump instructions are treated specially. Because a label can't be included on the

instruction itself, jumps must go to C labels (see “Using jump instructions and labels,”

page 10-200). The allowed jump instructions are given in the next table.

Table 10-3 Jump instructions

Jump

instructions ja jge jnc jns loop
jae jl jne jnz loope
jb jle ing jo loopne
jbe jmp jnge jp loopnz
jc jna jnl jpe loopz
jexz jnae jnle jpo
je jnb jno is
i9 jnbe jnpjz

Assembly directives

The following assembly directives are allowed in Paradigm C++ inline-assembly

statements:
db dd

Chapter 10, Using the inline assembly

dw

extrn

203

204 Paradigm C++ User's Guide

Chapter
11

Header files summary

Header files, also called include files, provide function prototype declarations for
library functions. Datatypes and symbolic constants used with the library functions are
also defined in them, along with global variables defined by Paradigm C++ and by the
library functions. The Paradigm C++ library follows the ANSI C standard on names of
header files and their contents.

The middle column indicates C++ header files and header files defined by ANSI C.

aloc.h

assert.h ANSI C
bcd.h C++
checks.h C++
complex.h C++
conio.h

cstring.h C++
ctypeh ANSI C
date.h C++
_defsh

dir.h C++
direct.n C++
dirent.h C++
dos.h

embedded.h

errno.h ANS| C
except.h C++
excpt.h

fentl.h

fileh C++
float.h ANSI C

Declares memory-management functions (allocation, deallocation, and so
on).

Defines the assert debugging macro.

Declares the C++ class bed and the overloaded operators for bed and bed
math functions.

Contains the declarations and prototypes for the class diagnostic macros.
Declares the C++ complex math functions.

Declares various functions used in calling the operating system console |/O
routines.

Contains the declarations and prototypes for the string and exception classes,
their data members, and member functions.

Containsinformation used by the character classification and character
conversion macros (such asisalpha and toascii).

Defines the date class.

Defines the calling conventions for different application types and memory
models.

Contains gructures, macros, and functions for working with directories and
path names. (RTFiles32 only)

Defines structures, macros, and functions for dealing with directories and
path names. (RTFiles32 only)

Declares functions and structures for POSIX directory operations.
(RTFiles32 only)

Defines various constants and gives declarations needed for DOS and
8086-specific calls.

Defines various constants and gives declarations needed for embedded systems
8086-specific calls.

Defines constant mnemonics for the error codes.

Declares the exception-handling classes and functions.

Declares C structured exception support.

Defines symbolic constants used in connection with the library routine open.
Contains the declarations and prototypes for the file class,

their data members, and member functions.

Contains parameters for floating-point routines.

Chapter 11, Header files summary 205

fstream.h
generic.h
io.h
iomanip.h

iostream.h
limitsh

malloc.h
math.h
mem.h

new.h
_nfileh
_null.h
process.h
promice.h

rtk32.h
rtkernel.h
setjmp.h
shareh

signal.h
stdarg.h

stddef.h
stdio.h

stdiostr.h
stdlib.h
string.h
stratreah
sysitypes.h
thread.h

timeh

C++
C++

C++

C++

ANSI C

ANS C

C++

ANSI C

ANS C

ANS C

ANSI C
ANSI C

C++

ANSI C

ANSI C
C++

C++

ANSI C

timer.h, itimer.h

typeinfo.h

206

C++

Declares the C++ stream classes that support file input and outpui.
Contains macros for generic class declarations.

Contains gructures and declarations for low-level input/output routines.
Declares the C++ streams 1/O manipulators and contains templates for
creating parameterized manipulators.

Declares the basic C++ greams (1/O) routines.

Contains environmental parameters, information about compile-time
limitations, and ranges of integral quantities.

Declares memory-management functions and variabl es.

Declares prototypes for the math functions and math error handlers.

Declares the memory-manipulation functions. (Many of these are also
defined in string.h.)

Accessto_new_handler, and set_new_handler.

Defines the maximum number of open files.

Defines the value of NULL.

Contains gructures and declarations for terminating a program.

Contains processor definitionsfor the Grammar Engine PROMICE

ROM emulator. (Only available when ROM emulator support isinstalled)

Contains all visible declarations of the Paradigm C++ real time kerndl,
RTKernel-32, for protected mode applications.

Contains all visible declarations of the Paradigm C++ real time kerndl,
RTKernel-16, for real and extended mode applications.

Declares the functions longjmp and setjmp and defines a type jmp_buf that
these functions use.

Defines parameters used in functions that make use of file-sharing.
Defines constants and declarations for use by the signal and raise functions.
Defines macros used for reading the argument list in functions declared to
accept a variable number of arguments (such as vprintf, vscanf, and so on).
Defines several common data types and macros.

Defines types and macros needed for the standard 1/0 package defined in
Kernighan and Ritchie and extended under UNIX System V. Definesthe
standard 1/0 predefined streams stdin, stdout, stdprn, and stderr and
declares stream-level 1/0 routines.

Declares the C++ stream classes for use with stdio FILE structures.

Y ou should useiostream.h for new code.

Declares several commonly used routines such as conversion routines and
search/sort routines.

Declares several string-manipulation and memory-manipulation routines.
Declares the C++ stream classes for use with byte arrays in memory.
Declares the type time_t used with time functions.

Contains the declarations and prototypes for the thread classes,

their data members, and member functions.

Defines a structure filled in by the time-conversion routines asctime,
localtime, and gmtime, and a type used by the routines ctime, difftime,
gmtime, localtime, and stime. It also provides prototypes for these routines.
Definesahigh level protected mode floating point interface to the
Paradigm C++ RTKernd and RTKernd-32 timer devices.

Declares the run-time type information classes.

Paradigm C++ User's Guide

values.h Defines important constants, including machine dependencies; provided for
UNIX System V compatibility.

Using precompiled headers

[]

Paradigm C++ can generate (and subsequently use) precompiled headersto speed up
your project compile times.

Precompiled headers are header files that are compiled once, then used over and over
again in their compiled state.

Y ou can use a precompiled header if a compilation uses one or more of the same header
files, the same compiler options, the same macro defines, and so on, asis contained in
the precompiled header file.

To control the use of precompiled headers, do one of the following:

. Fromwithin the IDE, turn on the Precompiled Headers option in the Compiler
settings page of the Project Options dialog box. The IDE bases the name of the
precompiled header file on the project name, creating< PROJECT_NAME>.CSM.

« Fromthe command line, use the following command-line options:
-H=<filename>, -Hc, -H<filename>, and -Hu.

. Fromwithin your code, use the hdrfile and hdrstop pragmas.

Setting file names

Paradigm C++ stores all precompiled headers in one file, using the following naming
convention:

« The 16-bit command-line compiler names the precompiled header file PCDEF.CSM

« The 32-bit command-line compiler names the precompiled header file
PC32DEF.CSM

« The IDE names the precompiled header file <PROJECT_NAME>.CSM.

To explicitly set the precompiled file name from the command line, use the
-H=<filename> option or the #pr agma hdrfile directive.

Precompiled header file overview

When compiling C and C++ programs, the compiler can spend up to half itstime
parsing header files. When the compiler parses a header file, it enters declarations and
definitions into its symbol table.

Precompiled headers cut this process short by creating and storing a binary image of the
symbol table on disk. By directly loading a binary image of the symbol table, the
compiler can increase the speed of this step by over ten times. The disadvantage is that
precompiled header files can become quite large because they can contain the symbol
table images for all the #include files encountered in your sources.

If, while compiling a source file, Paradigm C++ discoversthat the first #include files
are identical to those of a previous compilation (of either the same or different source),
it loads the binary image for those #include files and parses the remaining #include
files.

Chapter 11, Header files summary 207

For agiven module, either all or none of the precompiled headers are used--if
compilation of any included header file fails, the precompiled header file isn't updated
for that module.

Precompiled header limits

When using precompiled headers, PCDEF.CSM can become very large because it
contains symbol table images for all sets of includes encountered in your sources. If you
don't have sufficient disk space, you'll get awarning saying the write failed because of
the precompiled headers. To fix this, you must provide more disk space and retry the
compile. For information on reducing the size of the PCDEF.CSM file, see “Optimizing
precompiled headers,” page 11-209.

If you're using large macros in a makefile in addition to using precompiled headers,
thereis alimit on the macro size: 4K for 16-bit applications.and 16K for 32-bit
applications.

If a header file contains any code, it can't be precompiled. For example, although C++
class definitions can appear in header files, you should ensure that only inline member
functions are defined in the header and heed warnings such as Funct i ons

contai ning reserved word are not expanded inline.

Precompiled header rules

The following rules apply when you create and use precompiled headers:

1. A header that contains code can't be precompiled. For example, although C++ class
definitions can appear in header files, make sure that only inline member functions
are defined in the header. Heed warnings such as Funct i ons cont ai ni ng
‘for' are not expanded inline.

2. In order to use a previously generated precompiled header, the source file must:
« Have the same set of include files, in the same order, as the precompiled header
« Have the same macros defined with identical values as the precompiled header
« Usethe same language (C or C++) as the precompiled header
« Useheader fileswith identical time stamps as the precompiled header
3. In addition, the following option settings must be identical to those used when you
generated the precompiled header:
« Memory model, including SS != DS (-mx)M
« Underscores on externs (-u)
« Maximum identifier length (-iL)
« Target real address mode or Windows (-W or -Wx)
. Generate word alignment (-a)
. Pascal calls (-p)
. Treat enumsas integers (-b)
« Default char isunsigned (-K)
« Virtual table control (-Vx and -V mx)
« Expand intrinsic functions inline (-Oi)
. Templates (-Jx)
. String literals in code segment (-dc, 16-bit)
« Debugging information (-v, -vi, and -R)

208 Paradigm C++ User's Guide

« Far variables (-Fx)

. Language compilance (-A)

+ C++ compile (-P)

« Real address mode overlay-compatible code (-Y)

4. If you're using large macros in addition to using precompiled headers, the compiler

limits the size of the macros as following:
. 4K macros for 16-bit applications
. 16K macros for 32-bit applications

Optimizing precompiled headers

For the most efficiently compiled precompiled headers, follow these rules:

Arrange your header files in the same sequence in all sourcefiles.
Put the largest header files first.
Prime the precompiled header file with often-used initial sequences of header files.

Use #pr agma hdrstop to terminate the list of header files at well-chosen places.
This lets you make the list of header files in different sourceslook similar to the
compiler.

For example, suppose you have the following two source files (A_SOURCE.CPP and
B_SOURCE.CPP), which both include windows.h and myhdr.h:

/* A SOURCE. CPP */

#i ncl ude <wi ndows. h>
#i ncl ude "nyhdr. h"

#i ncl ude "xxx. h"

1. ..

/* B_SOURCE. CPP */

#i ncl ude "yyy.h

#i ncl ude <string. h>
#i ncl ude "nyhdr. h"

#i ncl ude <wi ndows. h>
...

To optimize the precompiled headers for these source files, you would rearrange the
beginning of B_SOURCE.CPP as follows:

/* Revised B _SOURCE. CPP */
#i ncl ude <w ndows. h>

#i ncl ude "nyhdr. h"

#i ncl ude "yyy. h"

#i ncl ude <string. h>

...

Now, windows.h and myhdr.h are in the same order in both A_SOURCE.CPP and
B_SOURCE.CPP, and they are both located at the beginning of the #i ncl ude list.

In addition, you could also create a new source file called PREFIX.CPP which contains
only the matching header files, like this:

/* PREFI X. CPP */
#i ncl ude <w ndows. h>
#i ncl ude "nyhdr. h"

If you compile PREFIX.CPP first (or insert a#pr agma hdr st op in both
A_SOURCE.CPP and B_SOURCE.CPP), the net effect isthat after the initial
compilation of PREFIX.CPP, both A_SOURCE.CPP and B_SOURCE.CPP will be able

Chapter 11, Header files summary 209

to load the symbol table produced by PREFIX.CPP. The compiler will then need to
parse only xxx.h for A_SOURCE.CPP, and yyy.h and strings.h for B_SOURCE.CPP.

alloc.h
Declares memory-management functions (allocation, deallocation, and so on).
Functions
. caloc
. farcalloc
. farfree
. farmalloc
. farrealloc
. free
. heapcheck
« heapcheckfree
« heapchecknode
. heapfillfree
. heapwalk
. malloc
. redloc
Constants, data types and global variables
« NULL
o ptrdiff_t
. Sizet
assert.h
Defines the assert debugging macro.
Functions
o assert
bcd.h

Declares the C++ class bcd, plus the overloaded operators for class bed and for BCD
math functions.

Functions
. abs

. acos

« asin

« aan

« COS

. cosh

. eXp

. log

210 Paradigm C++ User's Guide

« logl0

. pow

. powl0

. rea

. Sin

. sinh

. ot

« tan

. tanh

Constants, data types and global variables
. BCDH

. _BcdMaxDecimals
. bcdexpo (enum)

« _ cplusplus

checks.h

The checks.h header file contains the declarations and prototypes for the class
diagnostic macros.

Includes

. CSTRING.H

. EXCEPT.H

. STRSTREA.H
« SYS\TYPESH

M acros

. CHECK

. CHECKX

. PRECONDITION

. PRECONDITIONX
. TRACE

. TRACEX

. WARN

. WARNX

complex.h

Declares the C++ complex math functions.

All function names, member names, and operators are identical with the AT& T C++
implementation, except for the addition of acos, asin, atan, 10g10, tan, and tanh.

Includes

« MATH.H
Functions

. abs

Chapter 11, Header files summary 211

e aCOS

. ag

. asin

« adan

« conj
. COS

« Ccosh
. exp

. imag
. log

« logl0
« horm
. polar
. pow
. powl0
. red

. Sin

. sinh

. ot
« tan

. tanh

Constants, data types and global variables

. _COMPLEX_H
« _ cplusplus

cstring.h

The cstring.h header file contains the declarations and prototypes for the string and
exception classes, their data members, and member functions.

If you are using cstring.h in a Windows program, you must either #define STRICT
before you include windows.h or include cstring.h before you include windows.h
(STRICT isdefined in cstring.h).

Includes

. CTYPEH

« EXCEPT.H

. REFH

. STDDEF.H

. STRING.H

. WINDOWS.H
Classes

. dtring

« TSubstring

212 Paradigm C++ User's Guide

ctype.h

Contains information used by the character classification and character conversion
macros.

Functions and macros

. isalnum

. isalpha

. isastii

. iscntrl

. iddigit

. isgraph

. islower

. isprint

. ispunct

. isspace

. isupper

. isxdigit

. toascii

. _tolower

. tolower

. _toupper

. toupper

Constants, data types and global variables

. _ISCTL

. _ISDIG

. IS HEX

. _ISLOW

. _IS PUN

. ISSP

. _ISUPP
date.h

The date.h header file contains the declarations and prototypes for the date class, their

data members, and member functions.

Includes

. _DEFSH

Classes

. TDateclass
dir.h

Contains structures, macros, and functions for working with directories and path names.
This header file isonly available via RTFiles32.

Chapter 11, Header files summary 213

direct.h

Functions

. chdir

. findfirst
. findnext
. fnmerge
. fnsplit

. getcurdir
. getcwd

. getdisk

« mkdir

« mktemp
« rmdir

« searchpath
. Setdisk

Constants, data types and global variables

. DIRECTORY
. DRIVE

. EXTENSON
. ffblk

. FLENAME
. MAXDIR

. MAXDRIVE
« MAXEXT

. MAXFILE

. MAXPATH

dirent.h

Defines structures, macros, and functions for dealing with directories and path names.
This header file isonly available via RTFiles32.

Includes
« DIRH
Functions

. _chdrive
. _Qetdcwd

Declares functions and structures for POSIX directory operations. This header file is
only available via RTFiles32.

Functions

« Closedir
. opendir

214 Paradigm C++ User's Guide

. readdir

. rewinddir
dos.h

Defines various constants and gives declarations needed for real address mode and

8086-specific calls.

Functions and macros

. _chain_intr

. disable

. _emit_

. enable

. FP_OFF

. FP_SEG

. getvect

« inport

« inportb

. int86

. iNn86x

o intr

. MK FP

. outport

. outportb

+ peek

. peekb

. poke

. pokeb

. Segread

« Setvect

Constants, data types and global variables

. €rno

. SREGS
embedded.h

Defines various constants and gives declarations needed for embedded systems 8086-

specific calls.

Functions and macros

. _addr_mode

. _chain_intr

. disable

. _emit_

. enable

. FP_OFF

Chapter 11, Header files summary 215

. FP_SEG
. _fptr_to_linear

. getvect

. inp

« inport

« inportb

. inpw

. int86

. INt86x

o intr

. _linear_to_fptr

. MK FP

. outp

. outport

. outportb

. outpw

« peek

. peekb

. poke

. pokeb

« Segread

« Setvect

Constants, data types and global variables

. SREGS
errno.h

Defines constant mnemonics for the error codes.

Constants, data types and global variables

o _doserrno

. €rno

. _Sys erlist

« _Sys ner

. error number definitions
except.h

The except.h header file contains the declarations and prototypes for exception-handling
functions and classes, their data members, and member functions.

Includes

. STDLIB.H
Classes

. xaloc class

216 Paradigm C++ User's Guide

Xmsg class

Functions

fcntl.h

set_terminate
set_unexpected
terminate
unexpected

Defines open flags for open and similar library functions.

Functions

_fmode

Constants

file.h

O_APPEND

O BINARY
O_CHANGED
O _CREAT

O DENYALL
O _DENYNONE
O_DENYREAD
O DENYWRITE
O _DEVICE

O _EXCL

O _NOINHERIT
O _RDONLY

O RDWR

O TEXT

O _TRUNC

O WRONLY

The file.h header file contains the declarations and prototypes for the file class, their
data members, and member functions.

Includes

Chapter 11, Header files summary

DATE.H
_DEFS
FCNTL.H
STDLIB.H
STDIO.H
SHARE.H
SYS\STAT.H
SYS\TYPESH

217

. THREAD.H
. TIMEH

Classes
.« TFileclass

float.h

Contains parameters for floating-point routines.
Functions

. _Clear87

. _fpreset

. _Status87

Constants, data types and global variables

. CW DEFAULT

. FPE_EXPLICITGEN
. FPE_INEXACT

. FPE_INTDIVO

. FPE_INTOVFLOW

. FPE_INVALID

. FPE_OVERFLOW

. FPE_UNDERFLOW
. FPE_ZERODIVIDE
. ILL_EXECUTION

. ILL_EXPLICITGEN
. SEGV_BOUND

. SEGV_EXPLICITGEN

fstream.h

Declares the C++ stream classes that support file input and output. Replaces the older,
now outdated stdiostr.h.

Includes
« |IOSTREAM.H
See also

. filebuf

. fstream

. fstreambase
. ifstream

. oOfstream

generic.h

Contains macros for generic class declarations.

218 Paradigm C++ User's Guide

i0.h

Contains structures and declarations for low-level input/output routines.

Functions

. setmode

Constants, data types and global variables
. HANDLE MAX

lomanip.h
Declares the C++ streams I/O manipulators and contains macros for creating
parameterized manipulators.
Includes
. lostream.h
Classes
- lepply
. imanip
. ioapp
. iomanip
. oapp
« omanip
+ S9Pp
« Smanip
Overloaded Operators
<< >>
lostream.h

Declares the basic C++ streams (1/0) routines.

Includes

. MEM.H

See also

« I0s

. iostream

« iostream withassign
« istream

+ istream withassign
. Odream

« Ogstream withassign
o Streambuf

Chapter 11, Header files summary

219

l[imits.h

Contains environmental parameters, information about compile-time limitations, and
ranges of integral quantities.

Constants, data types and global variables

. CHARBIT

. CHAR MAX

. CHAR MIN

. INT_MAX

. INT_MIN

. LONG MAX

. LONG_MIN

. SCHAR MAX
. SCHAR MIN
. SHRT_MAX

. SHRT_MIN

. UCHAR _MAX
. UINT_MAX

. ULONG_MAX
. USHRT_MAX

malloc.h

Declares memory-management functions and variables.
Includes

. ALLOCH

Functions

. _heapchk

. _heapmin

. _heapset

. Stackavail

math.h

Declares prototypes for the math functions and math error handlers.
Functions

. abs

. acos, acosl

. asin, asinl

. aan, aanl

. aan2, aan2l
. aof, atold
. cabs, cabsl

. cell, cell

220 Paradigm C++ User's Guide

cos, cosd
cosh, coshl
exp, expl
fabs, fabs
floor, floorl
fmod, fmodl
frexp, frexpl
hypot, hypotl
labs

Idexp, Idexpl
log, logl
log10, log101
_matherr,_matherrl
modf, modfl
poly, polyl
pow, powl
pow10, pow10l
sin, sinl

sinh, sinhl
sort, sartl

tan, tanl

tanh, tanhl

Constants, data types and global variables

complex (struct)
_complex| (struct)
EDOM

ERANGE
exception (struct)
_exceptionl (struct)
HUGE_VAL
M_E

M_LOG2E
M_LOGI10E
M_LN2

M_LN10

M_PI

M Pl 2

M Pl 4

M 1Pl

M 2 Pl

M_1 SQRTPI
M_2 SQRTPI
M_SQRT2

Chapter 11, Header files summary

221

. M_SQRT 2

. _mexcep
mem.h

Declares the memory-manipulation functions. (Many of these are also defined in

string.h.)

Functions

. _fmemccpy

. _fmemchr

« _fmemcmp

« _fmemcpy

« _fmemicmp

. _fmemmove

. _fmemset

« _fmovmem

. memccpy

. memchr

. Mmemcmp

. memcpy

. memicmp

. Mmemmove

« memset

. Mmovedata

. Mmovmem

« Setmem

Constants, data types and global variables

« NULL

o ptrdiff_t

. Sizet
new.h

Provides access to the the following functions:

. set_new_handler

. _new_handler (global variable)
process.h

Contains structures and declarations for terminating a program.

Functions

. abort

. _C exit

. _cexit

222 Paradigm C++ User's Guide

. exit
. _exit

promice.h

Processor definition file for the Grammar Engine PROMICE ROM emulator. Thisfile

contains definitions for PDREMOTE/ROM kernels that manipulate the memory-

mapped PROMICE ROMART. Thisfile is available only when ROM emulator support

isinstalled.
Constants, data types and global variables

. BUS SIZE
. ROMART
. ROMART_segment

rtk32.h

Contains all visible declarations of the Paradigm C++ real time kernel, RTKernel-32,
for protected mode applications. This file must be included in any file wishing to take

advantage of the services.
Functions

« RTKernellnit

« RTKCreateThread

« RTKRTLCreateThread
« RTKTerminateTask
. RTKSuspend

. RTKResume

« RTKSetPriority

. RTKProtect8087

. RTKFree8087

. RTKAllocUserData
. RTKSetUserData

. RTKGetUserData

. RTKGetLocalData
« RTKCurrentTaskHandle
. RTKGetTaskState

. RTKGetTaskPrio

. RTKGetTaskStack
« RTKGetMinStack

« RTKTaskinfo

. RTKClearStatistic

« RTKSetTime

. RTKGetTime

. RTKDelay

« RTKDelayUntil

« RTKTimeSlice

Chapter 11, Header files summary

223

rtk32.h continued

Functions

. RTKCreateSemaphore
« RTKOpenSemaphore
. RTKDeleteSemaphore
« RTKSemalnfo

« RTKSemavaue

. RTKResourceOwner

. RTKSignal

« RTKPulse

. RTKWait

. RTKWaitCond

« RTKWaitTimed

« RTKResetEvent

. RTKCreateMailbox

. RTKClearMailbox

. RTKDeleteMailbox

. RTKMessages

« RTKPuUt

« RTKPutFront

. RTKGet

« RTKPutCond

« RTKPutFrontCond

« RTKGetCond

« RTKPutTimed

« RTKPutFrontTimed

« RTKGetTimed

« RTKNextCond

« RTKSend

. RTKReceive

« RTKSendCond

. RTKReceiveCond

« RTKSendTimed

« RTKReceiveTimed

. RTKGetIRQHandler

. RTKSetlIRQHandler

. RTKSavelRQHandlerFar
. RTKRestorelRQHandlerFar
. RTKCallRQHandlerFar
. RTKSetIRQStack

. RTKIRQInfo

« RTInstallSR

224

Paradigm C++ User's Guide

rtk32.h continued

Functions

. RTKIRQTopPriority

« RTKEnablelRQ

. RTKDisablelRQ

. RTKIRQENd

. RTKDisablelnterrupts

. RTKEnablelnterrupts

. RTKAIllocMemPool

. RTKGetBuffer

. RTKFreeBuffer

. RTKSetTraceBufferSize
. RTKEnableTrace

« RTKTraceAll

. RTKDisableTrace

« RTKStopTracing

. RTKClearTraceBuffer

o RTKUserTrace

« RTKTraceHeader

« RTKDumpTrace

« RTKDebugVersion

. RTKStackCheck

. RTKCanPreempt

« RTKPreemptionsON

« RTKPreemptionsOFF

. RTKScheduler

« RTKSetMessageHandler
. RTKSetTaskSwitchHook
. RTKSetTaskStartStopHook
. RTKFatalError

. RTKAlloc

« RTKDeallocTerminatedTasks
. RTIn

. RTInW

. RTIND

« RTOut

« RTOuUtW

« RTOuUtD

Constants, data types and global variables
. Priority

. Time

. Duration

Chapter 11, Header files summary

225

rtk32.h continued

Constants, data types and global variables

. SemaphoreType
. TaskState

. RTKernellnfo

. RTKResult

. |RQHandle

. TaskHandle

« Semaphore

. Mailbox

« MemoryPool

. UserHandle

rtkernel.h

Contains all visible declarations of the Paradigm C++ real time kernel, RTKernel-16,
for real and extended mode applications. This file must be included in any file wishing
to take advantage of the services.

Functions

. RTKCreateTask

. RTKDeleteTask

. RTKSuspend

. RTKResume

« RTKSetPriority

. RTKAllocUserData

« RTKSetUserData

. RTKGetUserData

. RTKGetLocalData

. RTKProtectMathCoprocessor
« RTKCurrentTask

. RTKGetLastError

. RTKGetTaskState

. RTKGetTaskPrio

. RTKGetTaskStack

. RTKGetMinStack

« RTKSetTime

. RTKGetTime

. RTKDelay

« RTKDelayUntil

. RTKTimeSlice

. RTKCreateSemaphore
. RTKDeleteSemaphore
. RTKSemaValue

226 Paradigm C++ User's Guide

rtkernel.h continued

Functions

. RTKSignal

. RTKWait

.« RTKWaitCond

« RTKWaitTimed

« RTKResourceOwner
. RTKCreateMailbox
. RTKDeleteMailbox
. RTKClearMailbox

. RTKMessages

« RTKPuUt

« RTKPutFront

« RTKGet

« RTKPutCond

« RTKPutFrontCond

« RTKGetCond

« RTKNextCond

« RTKPutTimed

« RTKPutFrontTimed
. RTKGetTimed

. RTKSend

« RTKSendCond

« RTKSendTimed

« RTKReceive

« RTKReceiveCond

« RTKReceiveTimed

« RTKAIllocMemPool
. RTKGetBuffer

. RTKFreeBuffer

. RTKDeleteMemPool
. RTKSetIRQHandler
. RTKSetTraceBufferSize
« RTKClearTraceBuffer
« RTKTraceEnable

« RTKDeallocTerminatedTasks
« RTKScheduler

+ RTKPreemptions

. RTKClearStatistic

« RTKInfo

. Priority

« Time

Chapter 11, Header files summary 227

rtkernel.h continued

Functions

. Duration

. SemaphoreType
. TaskState

. RTKernellnfo
. RTKResult

. |RQHandle

. TaskHandle

« Semaphore

. Mailbox

« MemoryPool

. UserHandle

setimp.h

Declares the functions longjmp and setjmp and defines atype jmp_bufj that these
functions use.

Functions

. longjmp

. Setjmp

Constants, data types and global variables
« jmp_buf

share.h

Defines parameters used in functions that make use of file-sharing.
Constants, data types and global variables

. SH_COMPAT
. SH_DENYNO
. SH_DENYNONE
. SH_DENYRD
. SH_DENYRW
. SH_DENYWR

signal.h

Defines constants and declarations for use by the signal and raise functions.
Functions

. raise

. signd

Constants, data types and global variables

« predefined signal handlers

228 Paradigm C++ User's Guide

stdarg.h

. Sig_atomic_t type
. SIG DFL

. SIG_ERR

. SIG_IGN

. SIGABRT

. SIGFPE

. SIGILL

. SIGINT

. SIGSEGV

. SIGTERM

stddef.h

Defines macros used for reading the argument list in functions declared to accept a
variable number of arguments (such as vprintf, vscanf, and so on).

M acros

. Vvaag
. vaend
. Va start

Constants, data types and global variables
. valist

stdio.h

Defines several common data types and macros.
Functions

. Offsetof

Constants, data types and global variables

. NULL
o ptrdiff_t
. Sizet
« wchar_t

Defines types and macros needed for the standard I/O package defined in Kernighan

and Ritchie and extended under UNIX System V. It defines the standard 1/O predefined

streams stdin, stdout, stdprn, and stderr, and declares stream-level 1/0 routines.

Functions

_fstrncpy setbuf
getc setvbuf
getchar sprintf
gets sscanf
getw _strerror

Chapter 11, Header files summary

229

perror strerror
printf strncpy
putc ungetc
putchar vprintf
puts vscanf
putw vsprintf
scanf vsscanf

Constants, data types and global variables

_F BIN FILE size t

_F BUF FOPEN_MAX stdaux

_F EOF fpos t stderr

_F ERR _|OFBF stdin

_F IN _|OLBF stdout

_F LBUF _|IONBF stdprn

_F OuUT L_ctermid SYS OPEN

_F RDWR NULL TMP_MAX
stdiostr.h

Declares the C++ stream classes for use with stdio FILE structures. You should use

iostream.h for new code.

Includes

.« |OSTREAM.H

. STDIOH
stdlib.h

Declares several commonly used routines such as conversion routines and search/sort

routines.

Functions

abort labs realloc

abs Idiv _rotl

atexit Ifind _rotr

atof _lrotl srand

atoi _lrotr strtod

atol Isearch strtol

bsearch Itoa _strtold

calloc malloc strtoul

_crotr max swab

div mblen ultoa

ecvt mbstowcs wcstombs

exit mbtowc wctomb

230 Paradigm C++ User's Guide

_exit min

fevt gsort

free rand

gevt random
itoa randomize

Constants, data types and global variables

. div t
. _doserrno
. €rno

. EXIT_FAILURE
. EXIT_SUCCESS

Declares several string-manipulation and memory-manipulation routines,

. _fmode
« ldiv_t
« NULL
. RAND_MAX
. Sizet
« 9ys erlist
. Sys nerr
« wchar_t

string.h
Functions
_fmemccpy _fstrset
_fmemchr _fstrspn
_fmemcmp _fstrstr
_fmemcpy _fstrtok
_fmemicmp _fstrupr
_fmemset memccpy
_fstr* memchr
_fstreat memcmp
_fstrchr memcpy
_fstremp memicmp
_fstrepy memmove
_fstrcspn memset
_fstrdup movedata
_fstricmp movmem
_fstrlen setmem
_fstriwr stpcpy
_fstrncat strcat
_fstrncmp strchr

Chapter 11, Header files summary

strdup
strdup
strerror
_Strerror
stricmp
strlen
striwr
strncat
strncmp
strncmpi
strncpy
strnicmp
strnset
strpbrk
strrchr
strrev
Strset
strspn

231

strstrea.h

_fstrncpy strcmp stratr

_fstrnicmp strcmp strtok
_fstrnset strcmpi strupr
_fstrpbrk streoll strxfrm
_fstrrchr strepy

_fstrrev strespn

Constants, data types and global variables
. Sizet

Declares the C++ stream classes for use with byte arrays in memory.

Includes

« |OSTREAM.H
See also

o istrstream

. ogrdream

. drdream

« Strsreambase
« Strsreambuf

sys\types.h

Constants, data types and global variables

. time t
thread.h
The thread.h header file contains the declarations and prototypes for the thread classes,
their data members, and member functions.
Includes
« CSTRING.H
« CHECKS.H
. _DEFSH
Classes
« TCriticalSection class
« TSyncclass
« TThread class
time.h

Defines a structure filled in by time-conversion routines asctime, localtime, and
gmtime, and a type used by the routines ctime, difftime, gmtime, localtime and stime. It
also provides prototypes for these routines.

232 Paradigm C++ User's Guide

Functions

« asctime

« Cctime

. difftime

« gmtime

« localtime
« mktime

. randomize
. dime

. _drdae
. srftime

« _strtime
. time

Constants, data types and global variables

. Sizet
. time t
« tm

timer.h, itimer.h

Thisfileisahigh level protected mode floating point interface to the Paradigm C++
RTKernel and RTKernel-32 timer devices. itimer.h returns integer values. See existing
timer example files for more details on how timers are implemented.

Includes

. FINETIME.H

. CLOCK.H
Functions

« ElapsedAndMark
+ ElapsedTime

« MarkTime

« SetTimerinterval

. Synchronize

. Ticks

« TIElapsedAndMark

« TIElapsedTime

. TIFineTimeToSeconds
« Timerlnit

« TimeSinceTimelnt

« TISecondsToTicks

« TISetTimerinterval
« TITicksToSeconds

Chapter 11, Header files summary 233

typeinfo.h

The typeinfo.h header file contains the declarations and prototypes for the run-time type
information classes, their data members, and member functions.

Classes
. Bad cast class
. odrstream

. Bad typeid class
. typeinfo class

values.h

Defines UNIX compatible constants for limits to float and double values.

Functions

. BITSPERBYTE

. DMAXEXP

« DMAXPOWTWO

« DMINEXP

. DSIGNIF

« FMAXEXP

« FMAXPOWTWO

« FMINEXP

« FSIGNIF

. _FEXPLEN

« HIBITI

« HIBITL

« HIBITS

. _LENBASE

. MAXDOUBLE

« MAXFLOAT

« MAXINT

« MAXLONG

« MAXSHORT

. MINDOUBLE

« MINFLOAT
_defs.h

The _defs.h header file contains common definitions for pointer size and calling
conventions.

Calling Conventions

_RTLENTRY Specifies the calling convention used by the Standard Run-time Library.
_USERENTRY Specifies the calling convention the Standard Run-time Library expects user-
compiled functionsto use for callbacks.

234 Paradigm C++ User's Guide

Export (and size for real address mode) information

_EXPCLASS Exports the classif you are building aDLL version of alibrary.
_EXPDATA Exports the data if you are building aDLL version of alibrary.
_EXPFUNC Exports the function if you are building a DLL version of alibrary.

D These export macros are provided as examples only and should not be used to create
user-defined functions.

excpt.h
The excpt.h header file contains the declarations and prototypes for structured
exception-handling values, types, and routines.
_nfile.h
The _nfile.h header file defines_NFILE_, which specifies the maximum number of
open files you can have.
NFILE isdefined as 50 for all applications.
_null.h
The _null.h defines the value of NULL for different memory models and applications
types:
Model Value
Flat ((void *)0) if not C++ or Windows application
Flat 0
Small 0
Medium O
Large OL

Chapter 11, Header files summary 235

236 Paradigm C++ User's Guide

Chapter

12
Math

This chapter describes the floating-point options and explains how to use complex and
bcd numerical types.

Floating-point I/O

Floating-point output requires linking of conversion routines used by printf, scanf, and
any variants of these functions. To reduce executable size, the floating-point formats are
not automatically linked. However, this linkage is done automatically whenever your
program uses a mathematical routine or the address is taken of some floating-point
number. If neither of these actions occur, the missing floating-point formats can result
in arun-time error.

The following program illustrates how to set up your program to properly execute.

/* PREPARE TO OUTPUT FLQOATI NG- PO NT NUMBERS. */
#l ncl ude <stdi o. h>

#pragma extref _fl oatconvert
void main() {

printf("d = %\n", 1.3);
}

Floating-point options

There are two types of numbers you work with in C: integer (int, short, long, and so
on) and floating point (float, double, and long double). Y our computer’s processor can
easily handle integer values, but more time and effort are required to handle floating-
point values.

However, the iIAPx86 family of processors has a corresponding family of math
coprocessors, the 8087, the 80287, and the 80387. We refer to this entire family of math
coprocessors as the 80x87, or “the coprocessor."

The 80x87 is a special hardware numeric processor that can be installed in your PC. It
executes floating-point instructions very quickly. If you use floating point alot, you'll
probably want a coprocessor. The CPU in your computer interfaces to the 80x87 via
special hardware lines,

D If you have an 80486 or Pentium processor, the numeric coprocessor is probably
already built in.

Emulating the 80x87 chip

The default Paradigm C++ code-generation option is emulation (the —f command-line
compiler option). This option is for programs that might or might not have floating
point, and for machines that might or might not have an 80x87 math coprocessor.

Chapter 12, Math 237

With the emulation option, the compiler will generate code as if the 80x87 were present,
but will also link in the emulation library (EMU.LIB). When the program runs, it uses
the 80x87 if it is present; if no coprocessor is present at run-time, it uses special
software that emulates the 80x87. This software uses 512 bytes of your stack, so make
allowance for it when using the emulation option and set your stack size accordingly.

Using the 80x87 code

If your program is going to run only on machines that have an 80x87 math coprocessor,
you can save a small amount in your .EXE file size by omitting the 80x87 autodetection
and emulation logic. Choose the 80x87 floating-point code-generation option (the 87
command-line compiler option). Paradigm C++ will then link your programs with
FP87.LIB instead of with EMU.LIB.

No floating-point code

If there is no floating-point code in your program, you can save a small amount of link
time by choosing None for the floating-point code-generation option (the —f— command-
line compiler option). Then Paradigm C++ will not link with EMU.LIB, FP87.LIB, or
MATHX.LIB.

Fast floating-point option

Paradigm C++ has a fast floating-point option (the —ff command-line compiler option).
It can be turned off with —ff— on the command line. Its purpose isto allow certain
optimizations that are technically contrary to correct C semantics. For example,

doubl e x;
x = (float)(3.5*x);

To execute this correctly, x is multiplied by 3.5 to give adouble that is truncated to
float precision, then stored as adouble in x. Under the fast floating-point option, the
long double product is converted directly to adouble. Since very few programs depend
on the loss of precision in passing to a narrower floating-point type, fast floating point is
the default.

The 87 environment variable

If you build your program with 80x87 emulation, which is the default, your program
will automatically check to see if an 80x87 isavailable, and will useit if it is.

There are some situations in which you might want to override this default
autodetection behavior. For example, your own run-time system might have an 80x87,
but you might need to verify that your program will work as intended on systems
without a coprocessor. Or your program might need to run on a PC-compatible system,
but that particular system returns incorrect information to the autodetection logic
(saying that a nonexistent 80x87 is available, or vice versa).

Paradigm C++ provides an option for overriding the start-up code’ s default
autodetection logic; this option is the 87 environment variable.

Y ou set the 87 environment variable at the DOS prompt with the SET command, like
this:

C> SET 87=N
or likethis;

238 Paradigm C++ User's Guide

G SET 87=Y

Don't include spaces on either side of the =. Setting the 87 environment variable to N
(for No) tells the start-up code that you do not want to use the 80x87, even though it
might be present in the system.

D Setting the 87 environment variableto Y (for Y es) means that the coprocessor is there,
and you want the program to use it. Let the programmer beware: If you set 87 =Y
when, in fact, there is no 80x87 available on that system, your system will hang.

If the 87 environment variable has been defined (to any value) but you want to undefine
it, enter the following at the DOS prompt:

C> SET 87=
Press Enter immediately after typing the equal sign.

Registers and the 80x87

When you use floating point, make note of these points about registers:

. In80x87 emulation mode, register wrap-around and certain other 80x87
peculiarities are not supported.

« If you are mixing floating point with inline assembly, you might need to take special
care when using 80x87 registers. Unless you are sure that enough free registers

exist, you might need to save and pop the 80x87 registers before calling functions
that use the coprocessor.

Disabling floating-point exceptions

By default, Paradigm C++ programs abort if a floating-point overflow or divide-by-zero
error occurs. You can mask these floating-point exceptions by acall to _control87 in
main, before any floating-point operations are performed. For example,

#i ncl ude <fl oat. h>
mai n() {
_control 87(MCW EM MCW EM) ;

}

D Y ou can determine whether a floating-point exception occurred after the fact by calling
_status87 or _clear87. See "Run-time library functions" in the online Help index for
details about these functions.

Certain math errors can also occur in library functions; for instance, if you try to take
the sguare root of a negative number. The default behavior is to print an error message
to the screen, and to return a NAN (an |EEE not-a-number). Use of the NAN is likely to
cause a floating-point exception later, which will abort the program if unmasked. If you
don’t want the message to be printed, insert the following version of _matherr into your
program:

#i ncl ude <math. h>

int _matherr(struct _exception *e)

{

return 1; /* error has been handl ed */

}

Any other use of _matherr to intercept math errorsis not encouraged; it is considered
obsolete and might not be supported in future versions of Paradigm C++.

Chapter 12, Math 239

Using complex types

Complex numbers are numbers of the form x + yi, where x and y are real numbers, and i
is the square root of -1. Paradigm C++ as always had a type:

struct conpl ex

double X, v;
i
defined in math.h. Thistype is convenient for holding complex numbers, because they
can be considered a pair of real numbers. However, the limitations of C make arithmetic
with complex numbers rather cumbersome. With the addition of C++, complex math is
much simpler.

A significant advantage to using the Paradigm C++ complex numerical type isthat al of
the ANSI C Standard mathematical routines are defined to operate with it. These
mathematical routines are not defined for use with the C struct complex.

D See "complex class' in the online Help Book Shelf index for more information. The
Book Shelf index can be accessed by choosing Help|Keyboard and clicking on the Book
Shelf menu tab.

To use complex numbers in C++, all you have to do isto include complex.h. In
complex.h, all the following have been overloaded to handle complex numbers:

« All of the binary arithmetic operators.
. theinput and output operators, >> and <<.
« the ANSI C math functions.

The complex library isinvoked only if the argument is of type complex. Thus, to get the
complex square root of -1, use

sqgrt(compl ex(-1))

and not
sqrt(-1)

The following functions are defined by class complex:
doubl e arg(conpl ex&); /1 angle in the plane
conpl ex conj (conpl ex&) ; /1 conpl ex conjugate
doubl e i nmag(conpl ex&); /1 imaginary part
doubl e norm(conpl ex&) ; /1 square of the magnitude
doubl e real (conpl ex&); /1 real part

/1 Use polar coordinates to create a conpl ex.
conpl ex pol ar (doubl e mag, double angle = 0);

Using bcd types

Paradigm C++, along with almost every other computer and compiler, does arithmetic
on binary numbers (that is, base 2). This can sometimes be confusing to people who are
used to decimal (base 10) representations. Many numbersthat are exactly representable
in base 10, such as 0.01, can only be approximated in base 2.

D See "bed class' in the online Help Book Shelf index for more information. The Book
Shelf index can be accessed by choosing Help|Keyboard and clicking on the Book Shelf
menu tab.

Binary numbers are preferable for most applications, but in some situations the round-
off error involved in converting between base 2 and 10 is undesirable. The most

240 Paradigm C++ User's Guide

common example of thisis afinancial or accounting application, where the pennies are
supposed to add up. Consider the following program to add up 100 pennies and subtract
adollar:

#i ncl ude <stdi o. h>
int i;
float x = 0.0;
for (i =0; i < 100; ++i)
x += 0.01;
x -=1.0;
printf("100*.01 - 1 = %\n", x);

The correct answer is 0.0, but the computed answer is a small number closeto 0.0. The
computation magnifies the tiny round-off error that occurs when converting 0.01 to base
2. Changing the type of x to double or long double reduces the error, but does not
eliminate it.

To solve this problem, Paradigm C++ offers the C++ type bed, which is declared in
bed.h. With bed, the number 0.01 is represented exactly, and the bed variable x provides
an exact penny count.

#i ncl ude <bcd. h>
int i;
bcd x = 0.0;
for (i = 0; i < 100; ++i)
x += 0.01;
x -=1.0;
cout << "100*.01 - 1 =" << x << "\n";

Here are some facts to keep in mind about bcd:

« bcd does not eliminate all round-off error: A computation like 1.0/3.0 will still have
round-off error.
. bcd types can be used with ANSI C math functions.

. bcd numbers have about 17 decimal digits precision, and a range of about 1 x 1
to 1 x 10'%,

-125
0

Converting bcd numbers

bcd is a defined type distinct from float, double, or long double; decimal arithmetic is
performed only when at least one operand is of the type bcd.

The bcd member function real is available for converting a bcd number back to one of
the usual formats (float, double, or long double), though the conversion is not done
automatically. real does the necessary conversion to long double, which can then be
converted to other types using the usual C conversions. For example, a bcd can be
printed using any of the following four output statements with cout and printf.

Chapter 12, Math 241

/* PRI NTI NG bcd NUMBERS */

/* This nust be conpiled as a C++ program */
#1 ncl ude <bcd. h>

#i ncl ude <i ostream h>

#i ncl ude <stdio. h>

void mai n(void) {
bcd a = 12.1;
double x = real(a); // This conversion required for printf().

printf("\na = %", X);

printf("\na = %.9", real (a));

printf("\na = %", (double)real(a));

cout << "\na =" << a; // the preferred nethod.
}

Since printf doesn’'t do argument checking, the format specifier must have the L if the
long double value real (a) is passed.

Number of decimal digits

Y ou can specify how many decimal digits after the decimal point areto be carried in a
conversion from a binary type to a bcd. The number of places is an optional second
argument to the constructor bed. For example, to convert $1000.00/7 to a bed variable
rounded to the nearest penny, use

bcd a = bcd(1000.00/7, 2)

where 2 indicates two digits following the decimal point. Thus,

1000. 00/ 7 = 142.85714. .
142. 860

bcd(1000. 00/ 7, 2 =
bcd(1000. 00/ 7, 1) = 142. 900
bcd(1000. 00/ 7, 0) = 143. 000
bcd(1000. 00/ 7, -1) = 140. 000
bcd(1000. 00/ 7, -2) = 100. 000

The number is rounded using banker’ s rounding (as specified by |EEE), which rounds
to the nearest whole number, with ties being rounded to an even digit. For example,

bcd(12. 335, 2) = 12. 34
bcd(12. 345, 2) = 12. 34
bcd(12. 355, 2) = 12. 36

242 Paradigm C++ User's Guide

Chapter
13

16-bit memory management

This chapter discusses

. What to do when you receive "Out of memory" errors.

. What memory models are: how to choose one, and why you would (or wouldn't)
want to use a particular memory model.

Running out of memory

Paradigm C++ does not generate any intermediate data structuresto disk whenit is
compiling (Paradigm C++ writes only .OBJ files to disk); instead it uses RAM for
intermediate data structures between passes. Because of this, you might encounter the
message “ Out of memory” if there isn't enough memory available for the compiler.

The solution to this problem isto make your functions smaller, or to split up the file that
has large functions.

Memory models

Paradigm C++ gives you five memory models, each suited for different program and
code sizes. Each memory model uses memory differently. What do you need to know to
use memory models? To answer that question, you need to take alook at the computer
system you're working on. Its central processing unit (CPU) is a microprocessor
belonging to the Intel iIAPx86 family; an 80286, 80386, 80486, or Pentium. For now,
we'll just refer to it as an 8086.

D See page 13-249 for a summary of each memory model.

The 8086 registers

The following figure shows some of the registers found in the 8086 processor. There are
other registers—because they can’t be accessed directly, they aren’t shown here.

Chapter 13, 16-bit memory management 243

Figure 13-1
8086 registers

General-purpose reqgisters

AX accumulator (rl'nath operations)
AH AL

BX - hase (indexing) oL

X I:H-:-:-un'c (ndexing’ oL

DX Elllillata (h-:-l-:iing -:Iata‘]DL

Segmenmt address registers

Cs code segment pointer
DS data segment pointer
55 stack segment pointer
ES extra segment pointer

Special-purpose registers

spP stack pointer
EBP base pointer
sl source index
)] destination index

General-purpose registers

The general-purpose registers are the registers used most often to hold and manipulate
data. Each has some special functions that only it can do. For example,

« Some math operations can only be done using AX.
« BX can beused as an index register.

« CXisused by LOOP and some string instructions.
. DX isimplicitly used for some math operations.

But there are many operations that all these registers can do; in many cases, you can
freely exchange one for another.

244 Paradigm C++ User's Guide

Segment registers

The segment registers hold the starting address of each of the four segments. As
described in the next section, the 16-bit value in a segment register is shifted left 4 bits
(multiplied by 16) to get the true 20-bit address of that segment.

Special-purpose registers
The 8086 also has some special-purpose registers:

. The Sl and DI registers can do many of the things the general-purpose registers can,
plusthey are used as index registers. They're also used by Paradigm C++ for
register variables.

« The SPregister pointsto the current top-of-stack and is an offset into the stack
segment.

. TheBPregister isasecondary stack pointer, usually used to index into the stack in
order to retrieve arguments or automatic variables.

Paradigm C++ functions use the base pointer (BP) register as a base address for
arguments and automatic variables. Parameters have positive offsets from BP, which
vary depending on the memory model. BP pointsto the saved previous BP value if there
isastack frame. Functions that have no arguments will not use or save BP if the
Standard Stack Frame option is Off.

Automatic variables are given negative offsets from BP. The offsets depend on how
much space has already been assigned to local variables.

The flags register

The 16-bit flags register contains all pertinent information about the state of the 8086
and the results of recent instructions.

Chapter 13, 16-bit memory management 245

Figure 13-2 Flagsregister of 80x86 processors

Yidual S086 Mode

Resume
Mested Task
W2 Protection Level
Crerflomwy
Direction
Interrupt Enable
Trap
=ign
Zero
Avpxiliary Carry
Parity
Zarr
Ky 23 15 ¥ 1]
V| R H|IOP ([O|D|I1|T|S5|Z A P C
0356
< anly > {_ggggg_} S WA >

For example, if you wanted to know whether a subtraction produced a zero result, you
would check the zero flag (the Z hit in the flags register) immediately after the
instruction; if it were set, you would know the result was zero. Other flags, such asthe
carry and overflow flags, similarly report the results of arithmetic and logical
operations.

Other flags control the 8086 operation modes. The direction flag controls the direction
in which the string instructions move, and the interrupt flag controls whether external
hardware, such as a keyboard or modem, is allowed to halt the current code temporarily
so that urgent needs can be serviced. Thetrap flag is used only by software that debugs
other software.

The flags register isn't usually modified or read directly. Instead, the flags register is
generally controlled through special assembler instructions (such as CLD, ST1, and
CMC) and through arithmetic and logical instructions that modify certain flags.
Likewise, the contents of certain bits of the flags register affect the operation of
instructions such as JZ, RCR, and MOV SB. The flags register is not really used asa
storage location, but rather holds the status and control data for the 8086.

Memory segmentation

The Intel 8086 microprocessor has a segmented memory architecture. It has atotal
address space of 1 MB, but is designed to directly address only 64K of memory at a
time. A 64K chunk of memory is known as a segment; hence the phrase “segmented
memory architecture.”

246 Paradigm C++ User's Guide

« The 8086 keeps track of four different segments: code, data, stack, and extra. The
code segment is where the machine instructions are; the data segment is where
information is; the stack is, of course, the stack; and the extra segment is also used
for extra data

. The 8086 has four 16-bit segment registers (one for each segment) named CS, DS,
SS, and ES; these point to the code, data, stack, and extra segments, respectively.

« A segment can be located anywhere in memory. In real-mode it can be located
almost anywhere. For reasons that will become clear as you read on, a segment must
start on an address that is evenly divisible by 16 (in decimal).

Address calculation

For real-mode applications, a complete address on the 8086 is composed of two 16-bit
values: the segment address and the offset. Suppose the data segment address—the
value in the DS register—is 2F84 (base 16), and you want to calculate the actual
address of some datathat has an offset of 0532 (base 16) from the start of the data
segment: how is that done?

Address calculation is done as follows:. Shift the value of the segment register 4 bits to
the left (equivalent to one hex digit), then add in the offset.

The resulting 20-bit value is the actual address of the data, asillustrated here:

DS register (shifted): 0010 1111 1000 0100 0000 = 2F840
O fset: 0000 0101 0011 0010 = 00532
addr ess: 0010 1111 1101 0111 0010 = 2FD72

D A chunk of 16 bytes is known as a paragraph, so you could say that a segment always
starts on a paragraph boundary.

The starting address of a segment is always a 20-bit number, but a segment register only
holds 16 bits—so the bottom 4 bits are always assumed to be all zeros. This means
segments can only start every 16 bytes through memory, at an address where the last 4
bits (or last hex digit) are zero. So, if the DS register is holding a value of 2F84, then the
data segment actually starts a address 2F840.

The standard notation for an address takes the form segment: offset; for example, the
previous address would be written as 2F84:0532. Note that since offsets can overlap, a
given segment:offset pair is not unique; the following addresses all refer to the same
memory location:

0000: 0123
0002: 0103
0008: 00A3
0010: 0023
0012: 0003

Segments can overlap (but don’'t have to). For example, all four segments could start at
the same address, which means that your entire program would take up no more than
64K—but that’s all the space you’ d have for your code, your data, and your stack.

Pointers

Although you can declare a pointer or function to be a specific type regardless of the
model used, by default the type of memory model you choose determines the default
type of pointers used for code and data. There are four types of pointers: near (16 bits),
far (32 bits), huge (also 32 bits), and segment (16 bits).

Chapter 13, 16-bit memory management 247

Near pointers

A near pointer (16-bits) relies on one of the segment registersto finish calculating its
address; for example, a pointer to afunction would add its 16-bit value to the left-
shifted contents of the code segment (CS) register. In asimilar fashion, anear data
pointer contains an offset to the data segment (DS) register. Near pointers are easy to
manipulate, since any arithmetic (such as addition) can be done without worrying about
the segment.

Far pointers

A far pointer (32-bits) contains not only the offset within the segment, but also the
segment address (as another 16-bit value), which is then left-shifted and added to the
offset. By using far pointers, you can have multiple code segments; this, in turn, allows
you to have programs larger than 64K. Y ou can also address more than 64K of data.

When you use far pointers for data, you need to be aware of some potential problemsin
pointer manipulation. As explained in the section on address calculation, you can have
many different segment:offset pairs refer to the same address. For example, the far
pointers 0000:0120, 0010:0020, and 0012:0000 all resolve to the same 20-bit address.
However, if you had three different far pointer variables—a, b, and c—containing those
three values respectively, then all the following expressions would be false:

if (a=="b) -

if (b==c) -

if (a ==1c¢) -

A related problem occurs when you want to compare far pointers using the >, >=, <,
and <= operators. In those cases, only the offset (as an unsigned) is used for
comparison purposes; given that a, b, and c still have the values previously listed, the
following expressions would all be true:

if (a>b) -

if (b>c) -

if (a>c) -

The equals (= =) and not-equal (=) operators use the 32-bit value as an unsigned long
(not asthe full memory address). The comparison operators (<=, >=, <, and >) use just
the offset.

The == and != operators need al 32 bits, so the computer can compare to the NULL
pointer (0000:0000). If you used only the offset value for equality checking, any pointer
with 0000 offset would be equal to the NULL pointer, which is not what you want.

If you add values to afar pointer, only the offset is changed. If you add enough to cause
the offset to exceed FFFF (its maximum possible value), the pointer just wraps around
back to the beginning of the segment. For example, if you add 1 to 5031:FFFF, the
result would be 5031:0000 (not 6031:0000). Likewise, if you subtract 1 from
5031:0000, you would get 5031:FFFF (not 5030:000F).

If you want to do pointer comparisons, it’s safest to use either near pointers—which all
use the same segment address—or huge pointers, described next.

Huge pointers

Huge pointers are also 32 bits long. Like far pointers, they contain both a segment
address and an offset. Unlike far pointers, they are normalized to avoid the problems
associated with far pointers.

248 Paradigm C++ User's Guide

A normalized pointer is a 32-bit pointer that has as much of its value in the segment
address as possible. Since a segment can start every 16 bytes (10 in base 16), this means
that the offset will only have a value from 0 to 15 (0 to F in base 16).

To normalize a pointer, convert it to its 20-bit address, then use the right 4 bits for your
offset and the left 16 bits for your segment address. For example, given the pointer
2F84:0532, you would convert that to the absolute address 2FD72, which you would
then normalize to 2FD7:0002. Here are a few more pointers with their normalized
equivalents:

0000: 0123 0012: 0003
0040: 0056 0045: 0006
500D: 9407 594D: 0007
7418: DO3F 811B: 000F

There are three reasons why it is important to aways keep huge pointers normalized:

1. For any given memory address there is only one possible huge address
(segment:offset) pair. That means that the = = and ! = operators return correct
answers for any huge pointers.

2. in addition, the >, >=, <, and <= operators are all used on the full 32-bit value for
huge pointers. Normalization guarantees that the results of these comparisons will
also be correct.

3. Finally, because of normalization, the offset in a huge pointer automatically wraps
around every 16 values, but—unlike far pointers—the segment is adjusted as well.
For example, if you were to increment 811B:000F, the result would be 811C:0000;
likewise, if you decrement 811C:0000, you get 811B:000F. It is this aspect of huge
pointersthat allows you to manipulate data structures greater than 64K in size. This
ensures that, for example, if you have a huge array of structsthat is larger than
64K, indexing into the array and selecting a struct field will always work with
structs of any size.

There isaprice for using huge pointers: additional overhead. Huge pointer arithmetic is
done with calls to special subroutines. Because of this, huge pointer arithmetic is
significantly slower than that of far or near pointers.

The five memory models

Paradigm C++ gives you five memory models for 16-bit real address mode programs:
small, medium, compact, large, and huge. Y our program requirements determine which
one you pick. Here's a brief summary of each:

« Small. The code and data segments are different and don’t overlap, so you have
64K of code and 64K of data and stack. Near pointers are aways used. Thisisa
good size for average applications.

« Medium. Far pointers are used for code, but not for data. As aresult, data plus stack
are limited to 64K, but code can occupy up to 1 MB. This model is best for large
programs without much data in memory.

. Compact. Theinverse of medium: Far pointers are used for data, but not for code.
Code isthen limited to 64K, while datahasa 1 MB range. This model is best if code
issmall but needs to address a lot of data.

. Large. Far pointers are used for both code and data, giving both a1 MB range.
Large and huge are needed only for very large applications.

Chapter 13, 16-bit memory management 249

Figure 13-3
Small model
memory
segmentation

. Huge. Far pointers are used for both code and data. Paradigm C++ normally limits
the size of all static datato 64K; the huge memory model sets aside that limit,
allowing datato occupy more than 64K.

The following figures show how memory in the 8086 is apportioned for the Paradigm
C++ memory models. To select these memory models, you can either use menu
selections from the IDE or you can type options invoking the Paradigm C++ command-

line compiler.

Segment registers:

Low address

[

W

_TEXT zlas=s 'CODE
code

INITDATR
C/CH initializers

EZITDATA
C/C+H terminators

FoaR_COMST
initialized far constant data

ROMOATA,
read-only copy of class DATA,

ROMFAR_DATA
read-only copy of FAR_DATA

D5, 55

L' 3

_DATA class "DATA
initialized data

DiEROLP

_B55 class "'BES
uninitialized data

_HWWRAM class "HWYRAM'
nonwolatile data

S (TS| m—eeeeen iy

HEAP

FREE SFALCE

STACK

Starting SP -

FAR DATA
initialized far data

FaR BSS
uninitialized far data

FAR HEAP

FREE SFACE

250

High addre=s=

Segmem size:

g to B4k

p to G4k

g to rest of memary

Paradigm C++ User's Guide

Figure 13-4
Medium model
memory
segmentation

05—

huttiple =files:
=file A
=file B .
g CS poirts to
: only one =file
sfile Z at & time.

Segment registers:

Low address

TE:{T class 'CODE
code

INITOATA
C/CH initializers

EZITOATA
CiCHterminators

FoR_COMST
initialized far constant data

ROMDOATE,
read-anly copy of class DATH

ROMFAR_DATAR
read-only copy of FAR_DATA,

DS, 55 >
_DATA class "0ATA
initialized data
_BS5 clas= 'BES
uninitialized data
_HNvRAM class "MWYRAM'
DGROLE nonwolatile data
HE~P
FREE SFACE
SPTOZ) %
STACK
Starting =P -
FAR DATA

initialized far data

FAR BSS
uninitialized Far data

FAR HEAP

FREE SFACE

High address

Chapter 13, 16-bit memory management

Segment size:

Each =file up to 64K

g to B4k

Up to rest of memory

251

Figure 13-5
Compact model
memory
segmentation

Segmemt registers:

Low adldress

[

W

_TEXT class 'CODE
code

INITDATA
CIC+Hinitializers

EZITOATA
CIC+ terminators

FoR_COMST
initialized far constart data

ROMDATA
read-only copy of class DATA

ROMFAR_DATA
read-only copy of FAR_DATA,

[

DGROUP

=5

W

_DATAclass "0DATA
initialized data

_ B55 clas="'BES
uninitialized data

_MYRAM class "HWRAM'
nonwol ztile data

HEAP

SP(TOS) ———

L

L™
-

FREE SFACE

STACE

=tarting =P

-

FAR DATA
initialized far data

FAR BSS
uninitialized far data

FAR HEAP

FREE SFPACE

High addre==

Segmemnt size:

Upto 64K

Upto 64K

Upto B4K

g to rest of memary

Paradigm C++ User's Guide

Figure 13-6

Large model huttiple =files:
memory sfile &
segmentation
=file |)
g CS points to
: only one =file
C5——>| sfile z at a time.

Segment registers:

Low address

INITOMTA,
CYCH initializers

EZITODATA
CiCHterminators

FAR_COMST
initialized far constant data

ROMOATA,
read-only copy of class DATA

ROMFAR_DATA
read-only copy of FAR_DATA

0= :‘.‘-
_DATA class "0OATA
initialized data
DGROUP
_BS5 class 'RSS
uninitialized data
_HNvRAM clazs "NYROM'
nonyvolatile data
= }
FREE SFACE
=P (TOE) %
STACK
Starting SP -
FAR DATA

initialized far data

FAR BSS
uninitialized far data

HEAP

FREE SFACE

Chapter 13, 16-bit memory management

High address

Segment size:

Upto B4k

Upto 64k

Upto 64k

Uptorest of memaory

253

Figure 13-7
Huge model
memory
segmentation

Table 13-1
Comparison of
models

Multiple =files:
sfile A
=file B

CS pointz to

: anly one =file
C5——>| sfie z at & time.

Segment registers: /\ Low address Segment size:

QHB TEXT 'CODOE
g:;: Each =file up to 64K

INITOXTA,
CICH initializers

EZITOLTA,
CfCHterminators

FaR_COMST
initialized far constant dzta

Muttiple
=file=: ROMFAR_DATA
sfile A read-only copy of FAR_DATA,

D% ety [=il P
- E‘“DﬂTﬁclass'FﬂR_DﬂTﬁi

Each =file up to 64K

file 7 initialized data
=5 —
FREE SFACE
S (TS ey
STACK Up to G4k
Starting =P -
HEAR Up to rest of memory
FREE SFACE

High address

The following table summarizes the different models and how they compare to one
another. The models are often grouped according to whether their code or data models
are small (64K) or large (16 MB); these groups correspond to the rows and columns in
thetable.

Datasize Code size = 64K Codesize=16MB
64K Small (no overlap; total size=128K) Medium (small data, large code)
16 MB Compact (large data, small code) Large (large data, code)

Huge (same as large but static data > 64K)

The small and compact models are small code models because, by default, code
pointers are near; likewise, compact, large, and huge are large data models because, by
default, data pointers are far.

When you compile a module (a given source file with some number of routinesin it),
the resulting code for that module cannot be greater than 64K, since it must all fit inside

254 Paradigm C++ User's Guide

of one code segment. Thisistrue even if you're using one of the larger code models
(medium, large, or huge). If your module is too big to fit into one (64K) code segment,
you must break it up into different source code files, compile each file separately, then
link them together. Similarly, even though the huge model permits static data to total
more than 64K, it sill must be less than 64K in each module.

Mixed-model programming: Addressing modifiers

Table 13-2
Defaults for
functions and
pointers

Paradigm C++ introduces eight new keywords not found in standard ANSI C. These
keywordsare _near, far, _huge, __cs,_ _ds,_ _es,_ _ss,and__seg. These
keywords can be used as modifiers to pointers (and in some cases, to functions), with
certain limitations and warnings.

In Paradigm C++, you can modify the declarations of pointers, objects, and functions
with the keywords __near, __far,or __huge The __near, _ far,and __huge data
pointers are described in “Pointers,” page 13-247. You can declare far objects using the
__far keyword. __near functions are invoked with near calls and exit with near
returns. Similarly, __far functionsare called __far and return far values. _ _huge
functions are like _ _far functions, except that _ _huge functions set DS to a new value,
and __far functions do not.

There are also four special _ _near datapointers. _ _cs, _ds, __es,and __ss. These
are 16-hit pointers that are specifically associated with the corresponding segment
register. For example, if you were to declare a pointer to be

char _ss *p;
Then p would contain a 16-bit offset into the stack segment.

Functions and pointers within a given program default to near or far, depending on the
memory model you select. If the function or pointer is near, it is automatically
associated with either the CS or DS register.

The following table shows how this works. Note that the size of the pointer corresponds
to whether it isworking within a 64K memory limit (near, within a segment) or inside
the general 1 MB memory space (far, has its own segment address).

Memory model Function pointers Data pointers

Small near, cs near, ds
Medium far near, ds
Compact near, cs far
Large far far
Huge far far

Segment pointers

Use _seg in segment pointer type declarators. The resulting pointers are 16-bit
segment pointers. The syntax for __segiis:

datatype _seg *identifier;
For example,
int _seg *nane;

Any indirection through identifier has an assumed offset of 0. In arithmetic involving
segment pointers the following rules hold true:

Chapter 13, 16-bit memory management 255

1. You can't usethe ++, - -, +=, or -= operators with segment pointers.
2. You cannot subtract one segment pointer from another.

3. When adding a near pointer to a segment pointer, the result is a far pointer that is
formed by using the segment from the segment pointer and the offset from the near
pointer. Therefore, the two pointers must either point to the same type, or one must
be a pointer to void. There is no multiplication of the offset regardless of the type
pointed to.

4. When a segment pointer is used in an indirection expression, it is also implicitly
converted to afar pointer.

5. When adding or subtracting an integer operand to or from a segment pointer, the
result isafar pointer, with the segment taken from the segment pointer and the
offset found by multiplying the size of the object pointed to by the integer operand.
The arithmetic is performed as if the integer were added to or subtracted from the
far pointer.

6. Segment pointers can be assigned, initialized, passed into and out of functions,
compared and so forth. (Segment pointers are compared as if their values were
unsigned integers). In other words, other than the above restrictions, they are
treated exactly like any other pointer.

Declaring far objects

Y ou can declare far objects in Paradigm C++. For example,

int far x = 5;

int far z;

extern int far y = 4;
static long j;

The command-line compiler options —zE, —zF, and —zH (which can also be set using
#pragma option) affect the far ssgment name, class, and group, respectively. When
you use #pragma option, you can make them apply to any ensuing far object
declarations. Thus you could use the following sequence to create afar object ina
specific segment:

#pragma option -zEnysegnent -zHnygroup -zFnycl ass

int far x;

#pragma option -zE* -zH' -zF*

Thiswill put x in segment MY SEGMENT ‘MY CLASS' in the group ‘MY GROUP’,
then reset all of the far object items to the default values. Note that by using these
options, several far objects can be forced into a single segment:

#pragnma option -zEconbi ned -zFnycl ass

int far x;

doubl e far vy;
#pragnma option -zE* -zF*

Both x and y will appear in the ssgment COMBINED ‘MY CLASS' with no group.

Declaring functions to be near or far

On occasion, you' || want (or need) to override the default function type of your memory
model.

For example, suppose you' re using the large memory model, but you have a recursive
(self-calling) function in your program, like this:

256 Paradigm C++ User's Guide

doubl e power (doubl e x,int exp) {
if (exp <= 0)
return(l);
el se
return(x * power(x, exp-1));
}

Every time power calls itself, it hasto do afar call, which uses more stack space and
clock cycles. By declaring power as___near, you eliminate some of the overhead by
forcing al calls to that function to be near:

doubl e _ _near power(double x,int exp)

This guarantees that power is callable only within the code segment in which it was
compiled, and that all callsto it are near calls.

This meansthat if you're using a large code model (medium, large, or huge), you can
only call power from within the module where it is defined. Other modules have their
own code segment and thus cannot call _ _near functionsin different modules.
Furthermore, a near function must be either defined or declared before the first time it is
used, or the compiler won't know it needsto generate a near call.

Conversely, declaring a function to be far meansthat afar return is generated. Inthe
small code models, the far function must be declared or defined before its first use to
ensure it is invoked with afar call.

Look back at the power example at the beginning of this section. It iswiseto also
declare power as static, since it should be called only from within the current module.
That way, being a static, its name will not be available to any functions outside the
module.

Declaring pointers to be near, far, or huge

Y ou’ ve seen why you might want to declare functions to be of a different model than
the rest of the program. For the same reasons given in the preceding section, you might
want to modify pointer declarations: either to avoid unnecessary overhead (declaring
__near when the default would be __far) or to reference something outside of the
default segment (declaring __far or _ _huge when the default would be _ _near).

There are, of course, potential pitfalls in declaring functions and pointersto be of non-
default types. For example, say you have the following small model program:
voi d nyputs(s) {
char *s;
int i;
for (i =0; s[i] '=0; i++) putc(s[i]);
}

mai n() {
char near *nystr;

nmystr = "Hello, world\n"
nmyput s(nystr);
}

This program works fine. In fact, the _ _near declaration on mystr is redundant, since
all pointers, both code and data, will be near.

But what if you recompile this program using the compact (or large or huge) memory
model? The pointer mystr in main is still near (it’s still a 16-bit pointer). However, the
pointer sin myputs is now far, because that’s the default. This means that myputs will

Chapter 13, 16-bit memory management 257

pull two words out of the stack in an effort to create afar pointer, and the address it
ends up with will certainly not be that of mystr.

How do you avoid this problem? I f you’re going to explicitly declare pointersto be of
type __far or __near, be sure to use function prototypes for any functions that might
use them. The solution isto define myputs in ANSI C style, like this:
voi d nyputs(char *s) {
/* body of nyputs */
}

Now when Paradigm C++ compiles your program, it knows that myputs expects a
pointer to char; and since you are compiling under the large model, it knows that the
pointer must be __far. Because of that, Paradigm C++ will push the data segment (DS)
register onto the stack along with the 16-bit value of mystr, forming a far pointer.

How about the reverse case: arguments to myputs declared as __far and compiled with
asmall data model? Again, without the function prototype, you will have problems,
because main will push both the offset and the segment address onto the stack, but
myputs will expect only the offset. With the prototype-style function definitions,
though, main will only push the offset onto the stack.

Pointing to a given segment:offset address

Y ou can make a far pointer point to agiven memory location (a specific segment:offset
address). Y ou can do this with the macro MK_FP, which takes a segment and an offset
and returns afar pointer. For example,

MK _FP(segrent val ue, offset val ue)

Givena___far pointer, fp, you can get the segment component with FP_SEG(fp) and
the offset component with FP_OFF(fp).

Using library files

Paradigm C++ offers a version of the standard library routines for each of the five
memory models. Paradigm C++ is smart enough to link in the appropriate librariesin
the proper order, depending on which model you’ ve selected. However, if you're using
the Paradigm C++ linker, PLINK, directly (as a stand-alone linker), you need to specify
which librariesto use. See "Using PLINK" in the online Help index for instructions on
how to do this.

Linking mixed modules

Suppose you compiled one module using the small memory model and another module
using the large model, then wanted to link them together. This would present some
problems, but they can be solved.

The fileswould link together fine, but the problems you would encounter would be
similar to those described in the section, “Declaring functions to be near or far,” page
13-256. If afunction in the small module called a function in the large module, it would
do so with anear call, which would probably be disastrous. Furthermore, you could face
the same problems with pointers as described in “Declaring pointers to be near, far, or
huge,” page 13-257, since a function in the small module would expect to pass and
receive __near pointers, and a function in the large module would expect __far
pointers.

The solution, again, is to use function prototypes. Suppose that you put myputs into its
own module and compile it with the large memory model. Then create a header file

258 Paradigm C++ User's Guide

called myputs.h (or some other name with a .h extension), which would have the
following function prototype in it:

void far myputs(char far *s);

Now, put main into its own module (called MY MAIN.C), and set things up like this:

#i ncl ude <stdio. h>
#i ncl ude "nyputs. h"

mai n() {
char near *nystr;

nmystr = "Hello, world\n";
nmyputs(mystr);
}

When you compile this program, Paradigm C++ reads in the function prototype from
myputs.h and seesthat it isa___far function that expectsa___far pointer. Therefore, it
generates the proper calling code, even if it’s compiled using the small memory model.

What if, on top of all this, you need to link in library routines? Y our best bet isto use
one of the large model libraries and declare everything to be __far. To do this, make a
copy of each header file you would normally include (such as stdio.h), and rename the
copy to something appropriate (such as fstdio.h).

Then edit each function prototype in the copy so that it isexplicitly __far, like this:
int far cdecl printf(char far * format, ...);

That way, not only will __far calls be made to the routines, but the pointers passed will
also be __far pointers. Modify your program so that it includes the new header file:

#i ncl ude <fstdio. h>

void main() {
char near *nystr;
nmystr = "Hello, world\n";
printf(nystr);

}

Compile your program with the command-line compiler PCC then link it with PLINK,
specifying a large model library, such as CL.LIB. Mixing models istricky, but it can be
done; just be prepared for some difficult bugs if you do things wrong.

Chapter 13, 16-bit memory management 259

260 Paradigm C++ User's Guide

Chapter

14

Using iostreams classes

Paradigm provides a full implementation of the C++ input and output classes,
commonly known as iostreams. With the arrival of C++ and object-oriented design,
input and output operations became encapsulated in a series of classes. Each iostreams
class encapsulates some form of input, output, or input and output from low-level
character transfer to higher-level, file-oriented input/output operations.

Stream input/output in C++ (commonly referred to asiostreams, or just streams)
provides all the functionality of the stdio library in ANSI C and much more. lostreams
are used to convert typed objects into readable text, and vice versa. Streams can also
read and write binary data. The C++ language lets you define or overload 1/0 functions
and operatorsthat are then called automatically for corresponding user-defined types.

What is a stream?

A stream is an abstraction referring to any flow of data from a source (or producer) to a
sink (or consumer). We also use the synonyms extracting, getting, and fetching when
speaking of inputting characters from a source; and inserting, putting, or storing when
speaking of outputting charactersto a sink. Classes are provided that support console
output (constrea.h), memory buffers (iostream.h), files (fstream.h), and strings
(stretrea.h) as sources or sinks (or both).

The iostream library

Figure 14-1
Class streambuf
and its dervied
classes

Theiostream library has two parallel families of classes: those derived from streambuf,
and those derived fromios. Both are low-level classes, each doing a different set of
jobs. All stream classes have at least one of these two classes as a base class. Access
from ios-based classes to streambuf-based classes is through a pointer.

The streambuf class

The streambuf class provides an interface to memory and physical devices. streambuf
provides underlying methods for buffering and handling streams when little or no
formatting is required. The member functions of the streambuf family of classes are
used by the ios-based classes. Y ou can also derive classes from streambuf for your own
functions and libraries. The buffering classes conbuf, filebuf, and strstreambuf are
derived from streambuf.

rﬁlehuf

streambuf L strstreamhbuf

conbuf

Chapter 14, Using iostreams classes 261

The ios class

The classios (and hence any of its derived classes) contains a pointer to a streambuf. It
performs formatted I/O with error-checking using a streambuf.

An inheritance diagram for all the ios family of classes is found in Figure 14-2, page
14-263. For example, the ifstream class is derived from the istream and fstreambase
classes, and istrstream is derived fromistream and strstreambase. This diagramis not a
simple hierarchy because of the generous use of multiple inheritance. With multiple
inheritance, a single class can inherit from more than one base class. (The C++ language
provides for virtual inheritance to avoid multiple declarations.) This means, for
example, that all the members (data and functions) of iostream, istream, ostream,
fstreambase, and ios are part of objects of the fstream class. All classes in the ios-based
tree use a streambuf (or afilebuf or strstreambuf, which are special cases of a
streambuf) as its source and/or sink.

C++ programs start with four predefined open streams, declared as objects of
withassign classes as follows:

extern istreamw thassign cin; // Corresponds to stdin;
file descriptor O.
extern ostreamw t hassign cout; // Corresponds to stdout;
file descriptor 1.
extern ostreamw thassign cerr; // Corresponds to stderr;
file descriptor 2.
extern ostreamw thassign clog; // A buffered cerr;
file descriptor 2.

262 Paradigm C++ User's Guide

Figure 14-2 Classios and its derived classes

— istream

ins

L strstreambase istrstream

iostream

ifstream

istrstream

fstream

istream_withassign

- iostream strstream

T 1

ofstream

|| ostream iostream_withassign

ostrstream

ostream_withassign

constream

1 fstream

— fstreamhbase lifstream

ofstream

strstream

ostrstream

By accepted practice, the arrows point from the derived class to the base class.

Stream output

Stream output is accomplished with the insertion (or put to) operator, <<. The standard
left shift operator, <<, is overloaded for output operations. Its left operand is an object
of type ostream. Itsright operand is any type for which stream output has been defined
(that is, fundamental types or any types you have overloaded it for). For example,

cout << "Hello!\n";

writes the string "Hello!" to cout (the standard output stream, normally your screen)
followed by a new line.

The << operator associates from left to right and returns a reference to the ostream
object it isinvoked for. This allows several insertions to be cascaded as follows:
int i =8;
double d = 2. 34;
cout << "i =" <«<ij <«<", d="<<d << "\n";
Thiswill write the following to standard outpui:
i =8, d=234

Chapter 14, Using iostreams classes 263

Fundamental types

The fundamental datatypes directly supported are char, short, int, long, char* (treated
asasdtring), float, double, long double, and void*. Integral types are formatted
according to the default rules for printf (unless you've changed these rules by setting
various ios flags). For example, the following two output satements give the same
result:

int i;

long I;
cout << j << " " << |;
printf("%l %d", i, |);

The pointer (void *) inserter is used to display pointer addresses:
int i;
cout << & ; /1 display pointer address in hex

For more information, read the description of "ostream” in the online Help Book Shelf
index. The Book Shelf index can be accessed by choosing Help|Keyboard and clicking
the Book Shelf menu tab.

I/O formatting

Formatting for both input and output is determined by various format state flags
contained in the classios. The flags are read and set with the flags, setf, and unsetf
member functions.

Output formatting can also be affected by the use of the fill, width, and precision
member functions of classios.

The format flags are detailed in the description of "ios class’ in the online Help Book
Shelf index. The Book Shelf index can be accessed by choosing Help|Keyboard and
clicking the Book Shelf menu tab.

Manipulators

A simple way to change some of the format variables isto use a special function-like
operator called a manipulator. Manipulators take a stream reference as an argument and
return a reference to the same stream. Y ou can embed manipulators in a chain of
insertions (or extractions) to alter stream states as a side effect without actually
performing any insertions (or extractions). Parameterized manipulators must be called
for each stream operation. For example,

#i ncl ude <i ostream h>
#i nclude <iomanip.h> // Required for paraneterized nani pul ators.

int main(void) {
int i = 6789, j = 1234, k = 10;
cout << setw(6) << i << j << i << k << j;
cout << "\n";
cout << setw(6) << i << setw6) << | << setw6) << k;
return(0);

}

produces this outpui:

678912346789101234
6789 1234 10

264 Paradigm C++ User's Guide

Table 14-1
Stream
manipulators

setw is a parameterized manipulator declared in iomanip.h. Other parameterized
manipulators, setbase, setfill, setprecision, setiosflags and resetiosflags, work in the
same way. To make use of these, your program must include iomanip.h. Y ou can write
your own manipulators without parameters:

#i ncl ude <i ostream h>
/1 Tab and prefix the output with a dollar sign.

ost ream& noney(ostream& output) {
return output << "\t$";

}

int main(void) {

float owed = 1. 35,

earned = 23.1;

cout << noney << owed << npney << earned;

return(0);

}

produces the following output:

$1.35

$23.1

The non-parameterized manipulators dec, hex, and oct (declared in iostream.h) take no
arguments and simply change the conversion base (and leave it changed):

int i = 36;
cout << dec << i << " " << hex << i << " " << oct << i << endl;
cout << dec; [// Must reset to use deci mal base.

/1 displays 36 24 44

Manipulator Action

dec Set decimal conversion base format flag.

hex Set hexadecimal conversion base format flag.

oct Set octal conversion base format flag.

S Extract whitespace characters.

endl Insert newline and flush stream.

ends Insert terminal null in gring.

flush Flush an ostream.

setbase(int n) Set conversion base format to base n (0, 8, 10, or 16). 0 meansthe defaullt:

resetiosflags(long f)

decimal on output, ANSI Crulesfor literal integers on input.
Clear the format bits specified by f.

setiosflags(long f) Set the format bits specified by f.
setfill(int c) Set thefill character to c.
setprecision(int n) Set the floating-point precision to n.
setw(int n) Set field width to n.

The manipulator endl inserts a newline character and flushes the stream. Y ou can also
flush an ostream at any time with

ostream << fl ush;

Filling and padding

The fill character and the direction of the padding depend on the setting of the fill
character and the left, right, and internal flags.

The default fill character is a space. Y ou can vary this by using the function fill:

Chapter 14, Using iostreams classes 265

int i = 123;

cout.fill("*");

cout.w dth(6);

cout << i; /1 display ***123

The default direction of padding gives right-alignment (pad on the left). Y ou can vary
these defaults (and other format flags) with the functions setf and unsetf:

int i = 56;

cout.w dth(6);
cout.fill ("#);
cout.setf(ios::left,ios::adjustfield);
cout << i; /1 display S56####

D The second argument, ios:: adjustfield, tells setf which bits to set. The first argument,
ios::left, tells setf what to set those bits to. Alternatively, you can use the manipulators
setfill, setiosfags, and resetiosflags to modify the fill character and padding mode. See
"ios:adjustfield" in the online Help Book Shelf index, for alist of masks used by setf.
The Book Shelf index can be accessed by choosing Help|Keyboard and clicking the
Book Shelf menu tab.

Stream input

Stream input is similar to output but usesthe overloaded right shift operator, >>, known
as the extraction (get from) operator or extractor. The left operand of >> is an object of
type class istream. Aswith output, the right operand can be of any type for which
stream input has been defined.

By default, >> skips whitespace (as defined by the isspace function in ctype.h), then
reads in characters appropriate to the type of the input object. Whitespace skipping is
controlled by theios::skipws flag in the format state's enumeration. The skipws flag is
normally set to give whitespace skipping. Clearing this flag (with setf, for example)
turns off whitespace skipping. There is also a special "sink" manipulator, ws, that lets
you discard whitespace.

Consider the following example:
int i;
doubl e d;
cin > i > d;

When the last line is executed, the program skips any leading whitespace. The integer
value (i) isthen read. Any whitespace following the integer isignored. Finally, the
floating-point value (d) isread.

D For type char (signed or unsigned), the effect of the >> operator is to skip whitespace
and store the next (non-whitespace) character. If you need to read the next character,
whether it is whitespace or not, you can use on of the get member functions. See the
discussion of "istream™ in online Help Book Shelf index. The Book Shelf index can be
accessed by choosing Help|Keyboard and clicking the Book Shelf menu tab.

For type char* (treated as a string), the effect of the >> operator is to skip whitespace
and store the next (non-whitespace) characters until another whitespace character is
found. A final null character isthen appended. Care is needed to avoid "overflowing" a
string. Y ou can alter the default width of zero (meaning no limit) using width as
follows:

266 Paradigm C++ User's Guide

char array[Sl ZE];
cin.wi dt h(sizeof (array));
cin >> array; /1 Avoi ds overfl ow.

For all input of fundamental types, if only whitespace is encountered, nothing is stored
inthe target, and the istream state is set to fail. The target will retain its previous value;
if it was uninitialized, it remains uninitialized.

I/O of user-defined types

To input or output your own defined types, you must overload the extraction and
insertion operators. Here is an example:

#i ncl ude <i ostream h>

struct info {
char *nane;
doubl e val ;
char *units;
}
/1 You can overload << for output as follows:
ostream% operator << (ostream& s, info& m {
s << mnane << " " << mval <<" " << munits;
return s;
i
/1 You can overload >> for input as follows:
i stream& operator >> (istrean& s, info& n {
s >> mnane >> mval >> munits;
return s;

b
int main(void) {
info x;
X. name = new char[15];
X.units = new char[10];

cout << "\nlnput nane, value and units:";
cin > x;

cout << "\nMy input:" << Xx;

return(0);

Simple file I/0

The class ofstream inherits the insertion operations from ostream, while ifstream
inherits the extraction operations fromistream. The file-stream classes also provide
constructors and member functions for creating files and handling file 1/0. Y ou must
include fstream.h in all programs using these classes.

Consider the following example that copies the file FILE.IN to the file FILE.OUT:
#i ncl ude <fstream h>
int main(void) {
char ch;

ifstreamf1("FILE IN');
of stream f 2("FI LE. QUT");

Chapter 14, Using iostreams classes 267

if (!1f1) cerr << "Cannot open FILE. IN for input";
if (1f2) cerr << "Cannot open FILE OUT for output”;
while (f2 & f1.get(ch))

f2. put(ch);
return(0);

}

Note that if the ifstream or ofstream constructors are unable to open the specified files,
the appropriate stream error sate is set.

The constructors let you declare a file stream without specifying a named file. Later,
you can associate the file stream with a particular file:

of stream ofil e; /1 creates output file stream

ofile.open("payroll"); [/ ofile connects to file "payroll"
/1 do sone payrolling..

ofile.close(); /1 close the ofile stream
ofile.open("enpl oyee"); // ofile can be reused..

D By default, files are opened in text mode. This meansthat on input, carriage-

return/linefeed sequences are converted to the \n' character. On output, the \n' character
is converted to a carriage-return/linefeed sequence. These translations are not done in
binary mode. The file-opening mode is set with an optional second parameter to the
open function or in some file-stream constructors. The file opening-mode constrants can
be used alone or they can logically ORed together. See the description of "ios class’ in
the online Help Book Shelf index. The Book Shelf index can be accessed by choosing
Help|Keyboard and clicking the Book Shelf menu tab.

String stream processing

The functions defined in strstrea.h support in-memory formatting, similar to sscanf and
sprintf, but much more flexible. All of the istream member functions are available for
classistrstream (input string stream). This is the same for output: ostrstream inherits
from ostream.

Given atext file with the following format:

101 191 Cedar Chest
102 1999. 99 Li vi ngroom Set

Each line can be parsed into three components: an integer 1D, afloating-point price, and
adescription. The output produced is

1. 101 191.00 Cedar Chest
2: 102 1999.99 Livingroom Set

Here is the program:

#i ncl ude <fstream h>
#i ncl ude <strstrea. h>
#i ncl ude <i onani p. h>
#i ncl ude <string. h>

268 Paradigm C++ User's Guide

int main(int argc, char **argv) {
int id;
fl oat anount;
char description[41];

if (argc == 1) {
cout << "\nlnput file name required.";
return (-1);

ifstreaminf(argv[1]);

if (inf) {
char inbuf[81];
int lineno = 0;

/1 Want floats to print as fixed point
cout.setf(ios::fixed, ios::floatfield);

/1 Want floats to always have deci mal point
cout . setf (i os::showpoint);

while (inf.getline(inbuf,81)) {
/1 'ins' is the string stream
i strstreamins(inbuf,strlen(inbuf));
ins >> id >> amount >> ws;
ins.getline(description,41); // Linefeed not copied.
cout << ++lineno << ": "
<< jid << "\ t'
<< setprecision(2) << ampunt << '\t
<< description << "\n";

}

return(0);

}

Note the use of format flags and manipulatorsin this example. The callsto setf coupled
with setprecision allow floating-point numbers to be printed in a money format. The
manipulator ws skips whitespace before the description string is read.

Chapter 14, Using iostreams classes 269

270 Paradigm C++ User's Guide

Appendix

A

Errors and messages

This appendix describes the error messages that can be generated by Paradigm C++. It
begins by describing the four types of messages you can receive: fatal errors, errors,
warnings, and informational messages.

Next, it covers the different components that can generate messages. the compiler, the
MAKE utility, the linker (PLINK), the librarian (PLIB), the integrated debugger, and the
Windows Help compiler. This appendix also lists the errors that you can receive when
you run your program (run-time errors).

The remainder of the appendix lists messages in ASCI| alphabetic order and provides a
description of each message that includes where the message was generated.

Message categories

Table A-1
Message
categories

Messages are displayed with the message class first, followed by the source file name and
line number where the error was detected, and finally with the text of the message itself.

The following categories of messages can occur:

Category Indicates

Fatal A problem of critical nature that prevents execution from continuing.

Error A problem that should be fixed such as a missing declaration or a type mismatch.
Warning A problem that can be overlooked.

Informational Progress such as build status.

Many of the messages appear in the Message view. For those messages, context-
sengitive help is available. Point to the message and press F1 to display the message
description.

If you are working from the command line or want to look up information on an error
message, refer to the alphabetical list of error and warning messages in "Alphabetical list
of messages’ later on in this chapter. A listing is aso available in the online Help Book
Shelf under "Paradigm C++ error and warnings'. The Book Shelf can be accessed by
choosing Help|Keyboard and clicking the Book Shelf menu tab.

Fatal errors

Fatal errors can be generated by the compiler, the linker, and the MAKE utility. Fatal
errors cause the compilation to stop immediately; you must take appropriate action to fix
the error before you resume compiling.

If the compiler or MAKE utility issues afatal error, no .AXE filesis created. If the linker
issues afatal error, any .AXE file that might have been created by the linker is deleted
before the linker returns.

Appendix A, Errors and messages 271

Errors

Errors can be generated by the compiler, the linker, and the MAKE utility, and the
librarian. In addition, errors can be generated by your program at run-time.

Errors generated by the compiler indicate program syntax errors, command-line errors,
and disk or memory access errors. Compiler errors don't cause the compilation to stop -
the compiler completes the current phase of the compilation and then stops and reports
the errors encountered. The compiler attempts to find as many real errorsin the source
program as possible during each phase (preprocessing, parsing, optimizing, and code-
generating).

Errors generated by the linker don't cause the linker to delete the .AXE or .MAP files.

However, you shouldn't execute any .AXE file that was linked with errors. Linker errors
aretreated like fatal errorsif you are compiling from the Paradigm C++ IDE.

The MAKE utility generates errors when there is a Syntax or semantic error in the source
makefile. Y ou must edit the makefile to fix these types of errors.

Run-time errors are usually caused by logic errorsin your program code. If you receive a
run-time error, you must fix the error in your source code and recompile the program for
the fix to take effect.

Warnings

Warnings can be issued by the compiler , the linker, and the librarian. Warnings do not
prevent the compilation from finishing. However, they do indicate conditions that are
suspicious, even if the condition that caused the warnings is legitimate within the
language. The compiler also produces warnings if you use machine-dependent constructs
in your source files.

Informational messages

Informational messages inform you about the progress of tasks such as the status of a
build.

Message generators

The messages in this appendix include messages that can be generated by the compiler,
the MAKE utility, the linker (PLINK), the librarian, (PL1B), the Paradigm C++ IDE, and
the Windows Help compiler. Run-time errors (errors you can receive when you run your
program) are also included.

Compiler errors and warnings

Compile-time error messages indicate errors in program syntax, command-line errors, or
errorsin accessing a disk or memory. When most compile-time errors occur, the
compiler completes the current phase (preprocessing, parsing, optimizing, and code-
generating) of the compilation and stops. But when fatal compile-time errors happen,
compilation stops completely. If afatal error occurs, fix the error and recompile.

D Be aware that the compiler generates messages as they are detected. Because C and C++
don't force any restrictions on placing statements on a line of text, the true cause of the
error might occur one or more lines before or after the line number specified in the error

message.

272 Paradigm C++ User's Guide

Table A-2
Warning
descriptions

Warnings indicate that conditions that are suspicious but legitimate exist, or that
machine-dependent constructs exist in your source files. Warnings do not stop
compilation.

Warnings are issued as aresult of a variety of conditions, such as:

War ning Description

ANSI vidlations Warn you of code that is acceptable to Paradigm C++ (because of C++ code
or Paradigm C++ extensions), but is not in the ANSI definition of C.

Frequent warnings Alert you to common programming mistakes. These warning messages point

out conditions that are not in violation of the Paradigm C++ language but can
yield the wrong result.

Lessfrequent warnings Alert you to less common programming mistakes. These warning messages
point out conditionsthat are not in violation of the Paradigm C++ language
but can yield the wrong result.

Portability warnings Alert you to possible problems with porting your code to other compilers.
These usually apply to Paradigm C++ extensions.
C++ warnings Warn you of errors you've made in your C++ code. They might be due to

obsolete items or incorrect syntax.

Run-time errors and warnings

Run-time errors occur after the program has successfully compiled and is running. Run-
time errors are usualy caused by logic errorsin your program code. If you receive arun-
time error, you must fix the error in your source code and recompile the program for the
fix to take effect.

Linker errors and warnings

Asarule, linker errors do not stop the linker or cause .AXE or .MAP files to be deleted.
When such errors happens, don' try to execute the .AXE file. Fix the error and relink.

A fatal link error, however, stops the linker immediately. In such a case, the .AXE fileis
deleted. All Linker errors are treated as fatal errors if you are compiling from the
Paradigm C++ IDE.

Linker warnings point out conditions that you should fix. When warnings occur, .AXE
and .MAP files are still created.

Librarian errors and warnings

Librarian errors and warnings occur when there is a problem with files or extended
dictionaries, when memory runs low, or when there are problems as libraries are
accessed.

Paradigm C++ debugger messages

Paradigm C++debugger messages are generated by the integrated debugger and appear
under the Run-time tab of the Message window. Many of these messages relate to
options not set properly in the Paradigm C++ IDE screens.

Appendix A, Errors and messages 273

ObjectScripting error messages

ObjectScripting error messages are messages that result from running scriptsin the
Paradigm C++ IDE. They appear under the Script tab in the Message window.

Message formats

Messages are displayed with the message class first, followed by the source file name and
line number where the error was detected, and finally with the text of the message itself.

Many of the messages appear in the Message view. For those messages, context-
sengitive help is available. Point to the message and press F1 to display the message
description.

D If you're working from the command line or want to look up information on an error
message, refer to the alphabetical list of error and warning messages in "Alphabetical list
of messages’ later in this chapter. A listing is also available in the online Help Book Shelf
under "Paradigm C++ error and warnings'. The Book Shelf can be accessed by choosing
Help|Keyboard and clicking on the Book Shelf menu tab.

Symbols in messages

Some messages include a symbol (such as a variable, file name, or module) that is taken
from your program. In the following example, ‘filename’ will be replaced by the file
causing the problem:

Error opening 'filenane'

for out put

The following table describes the meaning of symbols in error and warning messages.

Table A-3 'Symbol Meaning
Symbols in error

messages address A hexadecimal number indicating the address where the error occurred
argument An argument
base The name of a base e ement such as a base class
class A class name
constructor The name of a constructor such as a class constructor
filename A file name (with or without extension)
function A function name
group A group name
identifier An identifier (variable name or other)
language The name of a programming language
len An actual number
macroname The name of a macro
member The name of a data member or member function
message A message string
module A module name
name Any type of name
num An actual number
operator The symboal for an operator such as ++
option An option
parameter A parameter name
path A path name
274 Paradigm C++ User's Guide

reason Reason given in message

segment A segment name
size An actual number
specifier A type specifier
symbol A symbol name
type A type name
variable A program variable

Some messages begin with a symbol name such as the following:
"filenane' not found

These messages are listed alphabetically using the name of the symbol. The above
message would be filed under f.

Alphabetical list of Paradigm C++ debugger messages

To find this error
message, look
under the
alphabetized
listing of
"function."

Messages are listed in ASCI| aphabetic order. Messages beginning with symbols come
first, then messages beginning with numbers, and then messages beginning with letters of
the alphabet. Messages that begin with symbols are alphabetized by the type of the
symbols. For example, you might receive the following error message if you incorrectly
declared your function my_func:

ny_func nust be declared with no paraneters

Bad line number 'linenumber’

You tried to add a source breakpoint at a specific line number but you typed an invalid
line number. Use the Paradigm C++ IDE and correct the line number in the Add
Breakpoint dialog box. Breakpoints must be set on executable lines of code.

Can't convert 'string’ [which evaluates to 'result’] to an address

The debugger dialog was expecting a memory address as input and it couldn't interpret
the user input as a valid address.

Can't debug during asynchronous compile

While compiling code with the Environment|Process Control|Asynchronous option set,
you tried to issue a debugger command. Because the compiler is not re-entrant and the
debugger and browser use the compiler code, you cannot debug or browse while an
asynchronous (background) compile is taking place.

Can't evaluate 'expression:' 'reason’

The expression you tried to evaluate did not return a valid value. This error will be given
any time invalid input is entered in a debugger dialog and there is no more information
about the error. Every debugger dialog uses the debugger's evaluator to validate and
interpret user input.

Can't inspect 'itemname’

Y ou specified an invalid item for inspection.

Can't navigate to address 0

Y ou are trying to bring up a source view on an address that evaluates to 0.

Appendix A, Errors and messages 275

Can't run to 'filename’, line 'linenumber’
Y ou tried to run the specified line of the specified file. Either the file does not exist or
there is no executable code associated with the line.'

Disable Group checked but no value entered
Y ou checked the Disable Group check box, but forgot to specify a group name.

Enable Group checked but no value entered
Y ou checked the Enable Group check box, but forgot to specify a group name.

Ensuring executable is up to date
Paradigm C++ is checking to be sure that the executable file is up to date, recompiling, if
necessary.

Error: File not specified
Y ou forgot to specify afilename in the Run To dialog.

Error: Line not specified
Y ou forgot to specify aline number in the Run To dialog.

Error trying to change value
You tried to change a value of an object being inspected, but the debugger was unable to
change the value.

Eval Expr checked but no value entered
Y ou checked the Eval Expr check box, but forgot to specify an expression.

Expr True check but no value entered
Y ou checked the Expr True check box, but forgot to provide an expression.

File 'filename’ does not exist
You tried to bring up a source view on an address, and the associated file does not exist.
This problem can usually be fixed by setting the appropriate source path on the debugger

option page.

File 'filename' does not exist (trying to load it anyway...)
The debugger tried to load an executable that does not exist. Check to make sure that
the executable exists and that the path to the executable was correctly specified.

File name not specified
You tried to add a source breakpoint using the Paradigm C++ IDE, but you omitted a
file name. Enter the name of the file into which you want to insert the breakpoint in the
Add Breakpoint dialog box.

Function call terminated by unhandled exception 'value' at address 'addr’
This message is emitted when an expression you are evaluating while debugging includes
afunction call that terminates with an unhandled exception. For example, if in the
debugger's evaluate dialog, you request an evaluation of the expressionf oo() +1 and
the execution of the functionf oo() causes a GP fault, this evaluation produces the
above error message.

276 Paradigm C++ User's Guide

Y ou may also see this message in the Watches window because it also displays the
results of evaluating an expression.

Group name not specified
You tried to set breakpoint options in the Breakpoint Condition/Action Options dialog
box but forgot to specify a group name.

Invalid Pass Count value entered
The Pass Count value you gave was invalid. Valid values for Pass Count are from O to
4294967295.

Invalid pathname for executable
The debugger was unable to find the executable you tried to load.

Invalid process id
Y ou specified a process ID that does not match the ID of any active process.

Loading: 'programname’
The debugger is loading the specified program.

Log Expr checked but no value entered
Y ou checked the Log Expr check box, but forgot to specify an expression.

Log Msg checked but no value entered
Y ou checked the Log Msg check box, but forgot to specify a message.

Make failed
The make spawned by the debugger to try to bring the current target up to date failed.
Check the Build Time tab in the Message view to see the reason for the failure.

Make the modified code?
Y ou had a process loaded in integrated debugger and then you modified the source code
for the process. Y ou should probably build the new code instead of continuing to debug
the old executable.

No expression specified
Y ou forgot to specify an expression in the Add Watch dialog

No file corresponds to this item
You tried to bring up a source view on an address, and there is no source file for the
address.

No file line specified
You tried to add a Source breakpoint using the Paradigm C++ IDE, but did not include
the line number. Specify the line in the file where you want the breakpoint to occur in the
Add Breakpoint dialog box.

No line corresponds to this item
You tried to bring up a source view on an address, and there is no line number for the
address.

Appendix A, Errors and messages 277

No module name specified
You tried to add a module breakpoint using the Paradigm C++ IDE, but you omitted the
module name. Specify the module name where you want to insert the breakpoint in the
Add Breakpoint dialog box.

No module specified
You tried to add an Address breakpoint using the Paradigm C++ IDE, but you omitted
the module. Specify the module where you want to insert the breakpoint in the Add
Breakpoint dialog box.

No object specified
You tried to add an Address breakpoint using the Paradigm C++ IDE, but you omitted
the object. Specify the name of the object into which you want to insert the breakpoint in
the Add Breakpoint dialog box.

No offset specified
You tried to add an Address breakpoint using the Paradigm C++ IDE, but you omitted
the offset that indicates where you want to insert the breakpoint. Specify the offset in the
Add Breakpoint dialog box.

No process selected
Y ou pressed the Attach button on the debugger's Attach dialog when there was no
process selected in the process list.

No process to load
Y ou left the Program Name field blank on the Load Program dialog.

No process to reset
You tried to reset a process but there was no process running.

No process to stop
You tried to pause a process but there was no process running.

No process to terminate
You tried to terminate processes but there was no process running at the time.

No type specified
You tried to add a C++ exception breakpoint using the Paradigm C++ IDE. Y ou must
specify atype in the Add Breakpoint dialog box to set this type of breakpoint.

No watch address specified
Y ou specified a data watch breakpoint using the Paradigm C++ IDE, but you omitted
the watch address. Y ou need to specify both a memory address and the number of bytes
to watch.

No watch length specified
Y ou specified a data watch breakpoint using the Paradigm C++ IDE, but you omitted
the watch length. Y ou need to specify both a memory address and the number of bytesto
watch.

278 Paradigm C++ User's Guide

Not all breakpoints were valid
Y ou set breakpoints in your program but they were not all valid. Check the breakpoint
view to see which breakpoints were invalid.

OS exception number not specified
You tried to add an OS exception breakpoint using the Paradigm C++ IDE. Y ou must
include an OS exception number if you want to add a breakpoint when a particular OS
exception occurs. Select one of the exceptionsin the list box next to the Exception #
field or enter a user-defined exception number.

Pass Count checked but no value entered
Y ou checked the Pass Count check box, but forgot to provide a pass count. Y ou need to
specify avalid pass count.

Process created: 'processname’
The process specified in the message has been created.

Process 'processname’ (0x%X) is already being debugged
You tried to attach to a process that is aready being debugged.

Process 'processname’ (0x%X) is Paradigm C++
You tried to attach to the Paradigm C++ IDE. Thisis not allowed. Specify another
process.

Process Stopped: 'processname’
The process specified in the message was stopped.

Process terminated: ‘programname’
The specified process has been terminated.

Resetting
The processis being reset to itsinitial condition.

Running
The process is running.

Stopping
The process is stopping.

Terminating
The process is terminating.

The expression cannot be modified
Thisisan integrated debugger error. You entered an expression in the Evaluator dialog
box and clicked on Modify but the expression cannot be modified.

The expression you entered could not be evaluated
Thisis an integrated debugger error. The integrated debugger could not interpret the
expression you entered in the Evaluator dialog box.

Appendix A, Errors and messages 279

There is no code for 'file’, line 'linenumber’
You tried to view the disassembly for the given line of source code. The specified line of
the file has no code associated with it.

There is no expression to evaluate
Thisisan integrated debugger error. You forgot to enter an expression in the Evaluator
dialog box.

There is no expression to evaluate, and no process is loaded
Thisis an integrated debugger error. Y ou forgot to enter an expression in the Evaluator
dialog box and no program is loaded.

This operation not supported for 16 bit executables
Y ou tried to use acommand (such as Reset or Pause) in the integrated debugger while
the project was set to produce a 16-bit executable. The integrated debugger does not
support 16-bit executables except to run or terminate them.

Alphabetical list of Compiler messages

To find this error Messages are listed in ASCI| aphabetic order. Messages beginning with symbols come
message, look first, then messages beginning with numbers, and then messages beginning with letters of
N ggg:{iztgg the alphabet. Messages that begin with symbols are alphabetized by the type of the
P listing of symbols. For example, you might receive the following error message if you incorrectly
“function.” declared your function my_func:

ny_func nust be declared with no paraneters

Cannot access an inactive scope
Y ou have tried to evaluate or inspect a variable local to afunction that is currently not
active. (Thisis an integrated debugger expression evaluation message.)

Cannot evaluate function call
The error message isissued if someone triesto explicitly construct an object or call a
virtual function.

In integrated debugger expression evaluation, calls to certain functions (including
implicit conversion functions, constructors, destructors, overloaded operators, and inline
functions) are not supported.

Cannot take address of member function ‘function’
An expression takes the address of a class member function, but this member function
was not found in the program being debugged. The evaluator issues this message.

Compiler unable to allocate huge segments
The compiler is unable to allocate contiguous segments to create a huge array. If you
receive this error, please contact Paradigm for technical support.

Huge arrays of near structure/classes are not allowed
Huge arrays of near structure/classes are not allowed since they may be addressable,
declare these structures/classesas __ far.

280 Paradigm C++ User's Guide

Invalid 'expression’ in scope override
The evaluator issues this message when there is an error in a scope override in an
expression you are watching or inspecting. Y ou can specify a symbol table, a compilation
unit, a source file name, etc. as the scope of the expression, and the message will appear
whenever the compiler cannot access the symbol table, compilation unit, or whatever.

Invalid function call
A requested function call failed because the function is not available in the program, a
parameter cannot be evaluated, and so on. The evaluator issues this message.

Missing 'identifier' in scope override
The syntax of a scope override is somehow incomplete. The evaluator issues this
message.

'new' and 'delete' not supported
The integrated debugger does not support the evaluation of the new and delete
operators.

No type information
The integrated debugger has no type information for this variable. Ensure that you've
compiled the module with debug information. If it has, the module may have been
compiled by another compiler or assembler.

Not a valid expression format type
Invalid format specifier following expression in the debug evaluate or watch window. A
valid format specifier is an optional repeat value followed by aformat character (c, d,
f[n], h, x, m, p, r, or s).

Overloaded function resolution not supported
In integrated debugger expression evaluation, resolution of overloaded functions or
operators is not supported, not even to take an address.

Redefinition of 'symbol' using different storage class
The symbol was defined or prototyped with one storage class and was later redefined
with a different storage class.

Repeat count needs an lvalue
The expression before the comma (,) in the Watch or Evaluate window must be an
accessible region of storage. For example, expressions like this one are not valid:

i ++, 10d
X =y, 10m

String literal not allowed in this context
This error message is issued by the evaluator when a string literal appears in a context
other than a function call.

The function 'function’ is not available
You tried to call afunction that is known to the evaluator, but which was not present in
the program being debugged for example, an inline function.

Appendix A, Errors and messages 281

282 Paradigm C++ User's Guide

#

lelif 176

lelse 176

lendif 176

lerror 175

lif 176

lifdef 176

lifndef 176

linclude 177

Imessage 177

lundef 178

#if 120

#ifdef 120

$ENV() 68

$INHERIT 68

.autodepend 175

.EMU commands 143

path.ext 177

.precious 177

suffixes 178

/ (dash)
16-bit linker options 70
32-bit linker options 70
command-line options 88, 103
Directory options 66
Librarian options 68
Map options 74
Source Directories options 65
Warnings options 76

; (semi-colon) 198

_ (underscores) 47, 60
__cdecl 37,47
_ _far 45,46
_ _fastcall 37,47
__fastthis 57
__huge 51
__pasca 37, 47
_ _stdcall 47
_BSS 44

-1 compiler option 41, 202

16- and 32-bit command-line options 88

16- and 32-bit compiler options 88

16-bit command-line options 90

16-bit compiler options 36, 90
calling conventions 37
Entry/Exit code 46
memory model 37

Index

Index

processor 41
segment names code 43
segment names data 43
segment names far data 45
16-bit linker options 70
enabling 32-bit processing 70
initializing segments 70
16-bit memory management 243
16-bit optimization 83
-2 compiler option 41
-3 compiler option 41, 48
32-bit command-line options 88, 91
32-bit compiler options 46, 88
calling convention 47
processor 48
32-bit instruction set 48
32-bit linker options 70
committed heap size 71
committed stack size 71
filealignment 71
image base address 71
image is based 72
importing by ordinal 70
linker errors 72
object alignment 72
reserved heap size 72
reserved stack size 73
verbose 73
32-bit optimization options 86
32-bit, enabling 70
32RTM.EXE 161
-4 compiler option 41, 48
-5 compiler option 41, 48
8086
processors 41
registers 243
80x86 processors 41, 48
instruction opcodes 201
registers 198
80x87 coprocessors 237
emulating 237
registers 239
87 environment variable 238
-B compiler option 201
1486 instructions 41, 48

A
.autodepend 175

283

-A compile options 61
-acompiler options 42
Add Node command 20
Add Target dialog box 22
addresses 40, 42, 71, 72
map files 74
Advanced Options dialog box 19
-AK compiler option 61
algorithms 66
aliases 84
alignment 42
byte 42
doubleword 43
file 71
object 72
gquad word 43
word 42
aloc.h 210
Allocate Enums As Ints option 57
alocation 56, 85
alphabetical listings
error messages and warnings 275, 280
ancestors 106
ANSI 61, 78
arguments 229
passing 37, 47, 50
arithmetic 240
arrays
project options 40, 82
asm keyword 197
nesting 198
assembler 201
assembly language 197
calling conventions 198
comments 198
directives 203
floating-point emulation 201
instructions 197
jump instructions 200, 203
new lines 197
opcodes 201
operands 197
references 198
registers 198
repeat prefixes 202
sizeinstruction 199
statements 197
C symbols 197
string instructions 202
structures 199
syntax 197
variable offsets 199
assert 210

284

assert.h 210

assignment 81

-AT compiler option 61

-AU compiler option 61
autodependencies 60, 76
Automatic Far Data option 38

B

_BSS 44

-b compiler option 56

background compile 275

base addresses 71, 72

bcd, binary-coded decimals 240
converting 242

bcd.h 210

binary-coded decimals 240

Break make on option 77

Breakpoint Condition/Action options dialog box

124
breakpoints 116
adding 116, 123
conditional 117
customizing 122, 124
color 122
disabling/enabling 120, 124
groups 121
editing 127
inspecting 120
option sets 121
removing 119
resetting invalid 120
setting 115, 116, 117
conditional 116
unconditional 116
type 123
viewing 120
Breakpoints window 116, 117, 120, 122
browser 105
customizing 108
starting 105
using menu commands 105
views 105
Browser options 62

Browser Reference Information in OBJs option 62

browsing
classinspection 107
filtersand letter symbols 107
global symbols 106
objects 106
references 107
symbol declaration 107
symbols 106

Paradigm C++ User's Guide

Build All command 34
Build attributes option 48
Build Node command 35
building

applications 76

libraries 181
builds 35, 48, 67, 163
BUILTINSMAK 163, 164
byte alignment 42

C

__cdecl 37,47
C caling conventions 37, 47
-C compile option 62
C++ coding, inefficent 79
C++ options 49
compatibility 49
exception handling 51
general 53
member pointers 53
templates 54
virtual tables 55
calculations 59, 85
cal stack 63
Call Stack window 142
calling conventions 49, 234
__fastthis 57
compiling options 37, 47, 57
optimizing 83
Pascal 37, 47, 50
case sensitivity 68
link 73
catch 189
C-based structured exceptions 194
character conversion macros 213
character types 49, 58
checks.h 211
child nodes 16
Class Inspection window 107
class member functions 115
classes 261
compiling options 49, 51
declarations 218
empty base classes 53
Classes command 106
code
classes 43
elimination 84
external 115
groups 43
inefficient coding 79
motion, optimizing 85

Index

searching 105
segments 23, 37, 39, 41, 43, 46
unreachable 80
code generation 62, 74
compiler 41, 56, 60, 61
optimization 83, 84, 85
code pages 71
CODE statement 153
color customization
syntax highlighting 122
COMDEFs 38, 60
command-line compilers 149
command-line options 88, 103, 148
16- and 32-bit 88
16-bit 90
32-bit 91
by function 96
compiler 91
exception handling 193
MAKE 165
object search paths 88
PCW 103
PLIB 181
PLINK and PLINK32 149
command-line tools
running 161
comment records, purging/debugging 69
comments, nested 62
communal variables 38, 60
compact memory models 38, 40, 41
compatibility 49
Compile command 34, 35
compiler errors and warnings 272
declarations 281
evaluating expressions 280, 281
function calls 276, 280, 281
huge arrays 280
huge segments 280
Ivalue 281
modules 278
symbol defines 281
watch address 278
compiler options 56
assembly 200
code generation 56
compiler output 59
debugging 62
defines 56
precompiled headers 64
source 61
compiler output options 59
autodependencies 60
generating code 60

285

generating underscores 60
compilers 56, 149
32-bit command-line options 90, 91
command-line options 91
message options 77
project options 36, 46, 49, 56, 81
stopping 81
compile-time errors
fixing 35, 109
compiling 34, 40, 163, 220
optimizing 151
with symbol tables 110
complex numbers 240
complex.h 211
conditional breakpoints 117
configuration files 148
constant far data
compiling options 39
constants 84
constructors 49, 193
context-sensitive help 12
conversions 230, 232
converting old projects 23
copy propagation 84
coverage records 62
CPU instruction sets 41, 48
CPU window 135
Disassembly pane 136
Flags pane 141
Memory Dump pane 138
Registers pane 140
Stack pane 139
cstring.h 212
ctypeh 213
customizing the browser 108

D

_defs.h 234

-D compile option 56

-d compiler option 57

data
alignment 42
constant far 39
inspecting range 132
members 51
objects 38
segments 23, 37, 38, 39, 41, 43, 45
structures 127
value 128

DATA statement 154

dateh 213

-dc compiler option 41

286

debug options
environment 122
syntax highlighting 122
debugger 109
adding breakpoints 116
compile-time errors 35
conditional breakpoints 117
customizing 111
debug information 62, 74, 110
debugger options 111
evaluating expressions 133
external code 115
fixing errors 36, 127
logic 109
run-time 109
inspecting code 120, 132
messages and warnings 271, 273
modifying variables 134
optimizing 85, 87
options
pausing aprogram 115
program arguments 111
restarting aprogram 115
terminating a program 115
program execution 111
running programs 112
setting watches 128
starting asession 110
stepping 113, 142
viewing errors 36
debugging macro, assert 210
debugging options 62
browser 62
coverage records 62
line numbers 62
out-of-line inline functions 63
stack frame 63
test stack overflow 63
declarations
classes 218
errors 281
default libraries, linker options 73
defining
macros 56, 172
variables 60
dependencies 60
checking 76
derived classes 49
descendants 106
DESCRIPTION statement 154
destructors 52, 193
detailed segment maps 74
DGROUP 44

Paradigm C++ User's Guide

dictionaries 69
extended 182, 183
dir.h 213
direct.n 214
directives
assembly 203
MAKE 174, 176, 178
directories 65, 88, 149
options 65
entering directory names 67
file search algorithms 66
output 67
source 65
directory names, entering 67
dirent.h 214
disable al, optimization option 87
disabling messages and warnings 78
Disassembly pane 136
SpeedMenu 137
display warnings 78, 81
DLLs 70
dos.h 215
double 234
double word aignment 43
Dump pane 138, 139
SpeedMenu 138
duplicate strings 57
duplicate symbols, linker warning 76
-dx compile option 39
dynamic mode 132
dynamic-link libraries 70

E

lelif 176
lelse 176
lendif 176
lerror 175
$ENV() 68
Edit window 36, 116, 117
editing code 120
EDPMI.SWP 161
embedded.h 215
EMU file commands 143
Entry/Exit code 46
enumeration types 57
Environment options
browser 108
debugger 111
project views 23
environmental parameters 220
errno.h 216
error codes 216

Index

error messages 273
alphabetical listings 275, 280
categories 271
compiler 272
fatal errors 271
informational 272
librarian 273
linker 273
ObjectScripting 274
run-time 273
warnings 272

error-handling mechanism 187

errors 271
32-bit linker 72
C++ 80
compile-time 35
declaration syntax 62
fixing 36, 109
header file 216
linker 76
linker errors 72
logic 109
messages options 77
potenial errors 81
run-time 109
stop after... 81
viewing 36

Eva Expr 276

evaluating expressions 133

except.h 216

exception handling 222, 235
options 51
routines 52

exceptions 187
catch keyword 189
C-based structured 194
command-line options 193
compiling options 51
constructors and destructors 193
enabling 52
exception declarations 188
floating-point 239
handling 52
throwing exceptions 188
unhandled exceptions 193

excpt.h 235

execution point 112, 127

EXETY PE statement 154

expanding inline functions 52, 55, 63

explicit
casts 53
libraries 66

EXPORTS statement 155

287

Expr True 276
expressions
duplicate 82
evaluating 133
format specifiers 133
optimizing 82, 84, 85
extended dictionaries 69, 182, 183
external code 115
externa option 55
external references 55
external symbols 73

F

_ _far 45,46
_fastcall 37,47
__fastthis 57
-f compiler option 58
-Facompile option 38
far
classes 45, 51
constant data 39
data compatibility 39
data segments 38, 39, 45
declaring functions 256
declaring objects 256
declaring pointers 257
Far data threshold 38, 39
initialized data groups 45
objects 45
packing segments 39
pointers 248
uninitialized data groups 45
virtual tables 39, 46
far data 38
FAR BSS 45
FAR_BSSclass 39
FAR_DATA 45
FAR_DATA class 39
fastcall parameter-passing 37, 47
fastthis calling convention 57
fatal errors 77, 271, 273
-Fb compile option 39
-Fc compiler option 60
fentl.h 217
-Ff compile option 38, 39
-ff compiler option 58
filealignment 71
file extensions
DLL 67,70
.EMU commands 143
LIB 65, 66, 68, 70, 76
LST 69

288

MAP 67
.OBJ 67, 68, 70, 74, 88, 110
.PDL 31
.ROM 110
file names 64
file search algorithms 66
fileh 217
files 148
32RTM.EXE 161
BUILTINSMAK 164, 166
include 65
MAKE.EXE 163, 166
MAKESWAP.EXE 162
PLIB.EXE 181
PLINK.CFG 150
PLINK32.CFG 150
TOUCH.EXE 164
file-sharing 228
filling and padding 265
filters and letter symbols 107
Filters matrix 107
fixing errors 36, 109
Flags pane 141
SpeedMenu 142
flags registers 245
float 234
float.h 218
floating point
calculations 59
emulation (inline assembler) 201
/10 237
code 238
exceptions 239
fast option 238
options 58
routines 218
-Fm compiler option 38
for statements 50
format specifiers
expressions 133
-Fp compile option 39
-fp compiler option 58
-Fs compiler option 38
fstream.h 218
function calls 83, 142, 276, 281
compiler error 280
compiling options 37, 47
errors 281
functions
class member 115
inline 52, 55, 63, 83

Paradigm C++ User's Guide

G

-G compile option 87
-g compiler option 81
General linker options 73
case-sensitivelink 73
debug information 74
default libraries 73
subsystem version 74
general warnings 78
Generate COMDEFs option 60
Generate coverage information in OBJs option 62
generating code 62, 74
compiler options 41, 56, 60, 61
optimization 84, 85
generating underscores
compiler options 60
generic.h 218
global
definitions 54, 55
registers 84
symbols 106
variables
project options 38, 42, 60
globals command 106
glyphs
Project Manager 16
groups 277
breakpoint 121

H

__huge 51
-H compile option 64
-h compiler option 40
-H"xxx" compiler option 65
-H=filename compiler option 64
-Hc compiler option 64
header files 66, 205

_defs.h 234

_nfileh 235

_null.h 235

aloc.h 210

assert.h 210

bcd.h 210

checks.h 211

complex.h 211

cstring.h 212

ctypeh 213

date.h 213

dir.h 213

direct.h 214

dirent.h 214

dosh 215

Index

embedded.h 215
errno.h 216
except.n 216
excpt.h 235
fentl.h 217
fileh 217
float.h 218
fstream.h 218
generic.h 218
io.h 219
iomanip.h 219
iostream.h 219
itimer.h 233
limits.h 220
malloc.h 220
math.h 220
mem.h 222
new.h 222
precompiled 64
process.h 222
promice.h 223
rtk32.h 223
rtkernel.h 226
setjmp.h 228
share.h 228
signal.h 228
stdarg.h 229
stddef.h 229
stdio.h 229
stdiostr.h 230
stdlib.h 230
string.h 231
strstreah 232
sysitype.h 232
thread.h 232
time.h 232
timer.h 233
typeinfo.h 234
valuesh 234
heap 71, 72
heap size 71, 72
committed 71
reserved 72
HEAPSIZE statement 155
Help
contacting Paradigm 14
context-sensitive help 12
Helpfiles 11
index 13
keyword searches 13
online manuals 12
SpeedMenus 13
hidden

289

members 49
pointers 49, 51
-Hu compiler option 64
huge
arrays 40
declaring pointers 257
memory models 38, 40
pointers 248
huge arrays
compiler error 280
huge segments
compiler error 280

lif 176
lifdef 176
lifndef 176
linclude 177
#if 120
#Hifdef 120
$INHERIT 68
1486 instructions 48
-I compile option 65, 66
-i compiler option 61
/O 237

exceptions 239

functions 52, 55, 63, 83
statements 200
input 219, 261, 266
inspecting 107
breakpoints 120
code 132
datarange 132
error 275
expressions 132
local variables 132
Inspector window 132
changing values 132
installation 11
instructions
Pentium 41, 48
project options 41, 48
string move 85

integral quantities ranges 220

integrated debugger 109
adding breakpoints 116

conditional breakpoints 117

customizing 111
error messages 273
errors 35, 36, 109

evaluating expressions 133

inspecting code 120, 132

formatting 264 messages and yvarnings 271
manipullatgors 219 modifying variables 134

of user defined types 267
routines 219, 229
simplefile 267
1486 instructions 41
1586 instructions 41
Identifier length option 61
identifiers 61
Pascal 60
image base addresses 71, 72
implicit libraries 66

importing by ordinal, linker option 70

IMPORTS statement 156
include files 66, 205
induction variables 82
informational messages 271, 272
inheritance 51, 54
INI files 103
initialization 44, 80
segments 70
initialization file (PCW5.INI) 103
initialized data 44
inline
#pragmadirective 200
assembly 197

290

optimizing 85, 87
program execution 111
running programs 112
setting watches 128, 129
starting 111
stepping 113, 142
intrinsic functions 83
invalid breakpoints 120
invariant code 85
io.h 219
iomanip.h 219
ios class 262
iostream classes 261
ios 262
streambuf 261
iostream library 261
iostream.h 219
itimer.h 233

J

-j compiler option 81
-Jg compiler option 54
-Jgd compiler option 54
-Jgx compiler option 54

Paradigm C++ User's Guide

jump optimization 85

K

-K compile option 58

-k compiler option 63

-K2 compiler option 49
Kernighan and Ritchie 61, 229

L

-L compile option 65
Language compliance option 61
large memory models 38, 40, 41
Librarian messages 273
Librarian options 68
case-sensitive library 68
comment records 69
dictionaries 69
list files 69
page size 69
libraries 66
case-sensitive 68
creating 181
default libraries 73
dynamic-link 70
managing 181
project options 65, 70, 76
library files 65, 66, 76, 258
library functions 217
LIBRARY statement 157
licensing 11
limitsh 220
line numbers 62
including 74
linker errors 72
Linker messages 273
Linker options 70
16-bit programs 70
32-bit programs 70
general 73
map files 74
warnings 76
linkers 70
16-bit command-line options 90
command-line options 96
project options 70, 73, 74, 76
linking 70
command-line syntax 149
large applications 182
mixed modules 258
optimizing 69, 150
Lint options 69
list files 69

Index

literal strings 41, 57
local virtual tables 55
Log Expr 277
Log Msg 277
logic errors

fixing 109
longimp 228
loops 50, 82, 85
low-level I/O routines 219
Ivalue

errors 281

M

Imessage 177
Machine Stack pane 139
SpeedMenu 140
macros 173, 229
$INHERIT and $ENV() 67, 68
defining 56
MAKE 172, 173,174, 178
MAKE 76, 163
command operators 171
command prefixes 170
command syntax 170
command-line options 165, 166
defaults 163, 164, 166, 173
directives 174, 176, 178
macros 172
defaults 173
defining 172
indirectives 178
modifying default 174
null 178
string substitutions 173
NMAKE compatibility 166
project options 76
rules 168, 169
TOUCH 164
Make All command 34
Make Node command 35
Make options 76
autodependencies 76
Break make on 77
new node path 77
makefiles 167
response files 171
MAKESWAP 162
malloc.h 220
mangled names 39, 76
manifest constants 56
manipulators 219, 264
manuals 12

201

map files 67, 74
linker options 74, 76
math
complex classes 240
error handlers 220
floating point 237
math.h 220
-mc compiler option 40
medium memory models 38, 40
mem.h 222
member functions 115
member pointers 53
honor precision 53
options 53
representation 53
memory 210, 222
running out of 243
Memory Dump pane 138
SpeedMenu 138
memory functions 83
memory management
16-bit 243
functions 210, 220

memory manipulation functions 222, 231

memory model 150
Memory Model options 37
compiling segments 37

constant far data 39

far data 38

far data compatibility 39

far data threshold 39

huge pointers 40

models 40

pack far segments 39

page alignment 38

stack and data segments 38

strings 41

virtual tables 39
memory models 243, 249

mixed-model programming 255

memory segmentation 246
Message window 35, 79
messages 77
disabling 78
displaying 77, 271
project options 77
Messages options 77
ANSI violations 78
display warnings 78
general 78
inefficient C++ coding 79
inefficient coding 79
obsolete C++ 80

292

portability 80

potential C++ errors 80

potential errors 81

stop after... errors 81

stop after... warnings 81

user-defined warnings 79
-mh compiler option 40
mixed-model programming 258
-ml compiler option 40
-mm compiler option 40
-mm! compiler option 40
model 15
module definition files 153, 160
modules 36, 46, 278

purging comment records 69
-ms compiler option 40
-ms! compiler option 40
-mt compiler option 40
multiple directories 67
multi-target projects 21

N

_nfileh 235
_null.h 235
-N compile option 63
-n compiler option 67
name mangling 39, 49, 76
NAME statement 157
near
declaring functions 256
declaring pointers 257
pointers 248
nested comments 62
nested templates 80
New Target command 22
new.h 222
NMAKE 166
Node attributes dialog box 21
node path, Make option 77
nodes 24, 48
adding 17, 20
building 35
changing attributes 22
copying 22
default 19
deleting 20
Make Node command 35
options 21, 23, 32, 33
nonstatic data members 51
normalizing huge pointers 40
null 178
numerical types 240

Paradigm C++ User's Guide

O

-OS compile option 86

-O compile option 85

-O1 compiler option 87
-O2 compiler option 87
-Oa compiler option 84
-Ob compiler option 84
object alignment options 72
object files 88, 110

project options 59, 62, 65, 67, 74, 76

searching 88
object hierarchies 106
object search paths 88
objects 38, 45
sharing 39
ObjectScripting messages 274
obsolete C++ 80
-Oc compiler option 82
-Od compiler option 87
-Oe compiler option 84
offsets 40
-Og compiler option 82
-Oi compiler option 83
-Ol compiler option 85
-Om compiler option 85
-Op compiler option 84
opcodes 201
opening projects 20
operators 81
Optimization options 81, 84
16- and 32-bit 82, 84
16-bit 83
32-bit 86
common subexpression 82
copy propagation 84
dead code elimination 84
disableall 87
general settings 87
induction variables 82
inline intrinsic functions 83
invariant code motion 85
jump optimization 85
loop optimization 85
pointer aliasing 84
project options 81
Size 84
suppress loads 86
optimizing 81
debugger 85, 87
expressions 82, 84, 85
jumps 85
Size 83

Index

statements 81, 85
ordina numbers 70, 73
-Os compiler option 87
-Ot compiler option 87
out-of-line inline functions 55, 63
output 219, 237, 261, 263

directories 67

files 67
-Ov compiler option 82
overrides 49
-Ox compiler option 87

P

#pragmadirectives 200
path.ext 177
.precious 177
__pasca 37, 47
-p compiler option 37
-p compiler options 47
page alignment 38, 71
page size 69
Paradigm C++ IDE messages 273
Paradigm C++ Lint utility 69
Paradigm C++ messages 271
Paradigm C++ tools overview 161
Paradigm extensions 61
Paradigm optimizing compiler 46
Paradigm Systems, contacting 14
parameterized manipulators 219
parameters 37, 229
passing 47, 50
parent nodes 16
Pascal 47
calling conventions 50
identifiers 60
PASM 201
pass count 125
error 277
PCC.EXE 88
PCC32.EXE 88
PCW
command-line options 103
PCWS5.INI 103
PDL files 31
Pentium instruction scheduling 86
Pentium instructions 41, 48
Pentium option 48
platform 15, 18, 52, 150, 194
PLIB 181
/C option 182
/E option 182
/P option 183

293

command-line options 181
error messages 271
examples 184
operation list 183
project options 68
response files 183
PLIB.EXE 68
PLINK 151
command-line options 90
error messages 271
optimizing 182
PLINK and PLINK32 70
16-hit options 70
32-bit options 70
command-line options 91, 96
command-line syntax 149
general options 73
map files 74
warnings 76
PLINK.CFG 150
PLINK32.CFG 150
-po compiler option 57
pointer aliasing, optimization 84
pointers 247
compiling options 39, 40, 49, 51, 53, 84
declaring 257
far 248
huge 248
near 248
segment 255
portability 80
precision 80
precompiled headers 64, 207
cache 64
files 64
header name 64
terminating 65
preprocessing 56
Print mangled names 76
process.h 222
Processor options 41, 48
16-bit compiler 41
32-bit compiler 48
32-bit instruction set 48
aignment 42
instructions 41
project management 15
Project Manager 16
nodes 17
Project options 36
16-bit compiler 36, 37, 43, 45, 46
32-bit compiler 46, 48
build attributes 48

294

C++ 49
compatibility 49
exception handling 51
general options 53
member pointers 53
options 49
templates 54
virtual tables 55
command-line options 88, 103
16- and 32-bit 88
16-bit 90
32-bit 91
by function 96
compiler 91
object search paths 88
compiler 56
code generation 56
compiler output 59
debugging 62
defines 56
floating point 58
precompiled headers 64
source 61
directories 65
file search algorithms 66
names 67
output 67
source 65
librarian
case-sensitive library 68
comment records 69
dictionaries 69
list files 69
page size 69
linker 70
16-bit programs 70
32-bit programs 70
general 73
map files 74
warnings 76
Make 76
autodependencies 76
Break makeon 77
new node path 77
messages 7/
ANSI violation 78
display warnings 78
general warnings 78
ineffecient C++ coding 79
inefficient coding 79
obsolete C++ 80
portability 80
potential C++ errors 80, 81

Paradigm C++ User's Guide

stop after... errors 81
stop after... warnings 81
user-defined warnings 79
optimization 81
16- and 32-hit 82, 84
16-bit 83
32-bhit 86
common subexpression 82
copy propagation 84
dead code elimination 84
general settings 87
induction variables 82
inline intrinsic functions 83
invariant code motion 85
jump optimization 85
loop optimization 85
pointer aliasing 84
suppress loads 86

project platform 15, 18, 52, 150, 194

project tree 16
default nodes 19
navigating 17
Project View options 23
projects 15, 24, 29, 32, 163, 164
building files 34, 35, 163
compiling 35
converting 23
Make Node command 35
multi-target 21
sharing tools 31
starting with 103
viewing options 33
promice.h 223
public definitions 54, 56
public symbols 73
map files 75

Q
quad word alignment 43

R

-R compile option 62
-r compiler option 58
raise 228
-rd compiler option 58
Real address mode applications
compiling options 38, 40
records, coverage 62
redundant loads, suppressing 86
reference nodes 22
references 107
compiling options 50, 54, 55

Index

register keyword 58
register variables 58
registers 84, 86
8086 243
flags 245
general-purpose 244
reloading 86
segment 245
special-purpose 245
Registers pane 140
SpeedMenu 140
reloading registers 86
relocatable |load modules 67, 70, 149
repeat prefixes 202
reserved words 61
response files 148, 151, 183
routines
exception handling 52
-RT compiler option 52
rtk32.h 223
RTKernel
header file 233
rtkernel.h 226
RTM.EXE 162
RTTI 52
run-time errors 273
fixing 109
run-time support 222
run-time type information 52

S
.suffixes 178

___stdcall 47

scratch registers 199
search 230
code 105
paths 66, 88, 149
Search menu
classes 106
globals 106
SECTIONS statement 157
segment 23
compiling options 37, 38, 39, 41, 43, 45
initializing 70
map files 74
names 43, 45
code options 43
far initialized data 45
far uninitialized data 45
far virtual tables 46
initialized data 44
uninitialized data 44

295

pointers 255
registers 245
segments and offsets 258
SEGMENTS statement 158
setjmp 228
setjmp.h 228
settings
optimization 87
share.h 228
sharing objects 39
signal 228
signal.h 228
signed character types 49
single stepping 113
Size, optimizing 83, 84, 85, 86
small memory models 38, 40
sorting 230
source code 74, 105
source directories 65
source files 65, 69
Source options 61
identifier length 61
language compliance 61
nested comments 62
source pools 24
creating 24
Speed
optimizing 86
Speed, optimizing 82, 83, 84, 85
stack 63, 71, 73, 142
warning 76
Stack pane 139
SpeedMenu 140
stack segments 38
stack size 71, 73
committed 71
reserved 73
STACKSIZE statement 158
startup options
PCWS5 103
statements
optimizing 81, 85
potential C++ errrors 80
stdarg.h 229
stddef.h 229
stdio FILE structures 230
stdio.h 229
stdiostr.h 230
stdlib.h 230
stepping 113, 142
stepinto 113
step over 114
stop after ... warnings 81

296

stop after... errors 81
stream classes 219, 230, 261
stream input 266
simplefile 267
user-defined types 267
stream output 263
filling and padding 265
fundamental types 264
|/O formatting 264
manipulators 264
simplefile 267
user-defined types 267
streambuf class 261
streams 229

string manipulation functions 231

string move instructions 85
string stream processing 268
string.h 231
strings 41, 57
strstrea.h 232
structured exceptions 194
STUB statement 159
Style Sheets 23, 29
attaching 31
dialog box 30
inheriting 31
overriding options 32
setting options 29
sharing 31
between projects 32
subexpressions 82, 84, 85
SUBSY STEM statement 159
subsystem version 74
switch statements 85
symbol defines
compiler error 281
symbols
case-sengitivein library 182
duplication warning 76
inlibrary 69
map files 75
public 73
stack warning 76

symbol declaration window 107

symbol tables 110
symbolic addresses 74
symbolic constants 56
viewing 106, 107
visible 108

syntax

MAKE 163, 168, 169, 170, 171, 172

syntax errors 35, 109
syntax highlighting 122

Paradigm C++ User's Guide

sysitypes.h 232

T

target model 15, 19
TargetExpert 15, 18, 36
options 19, 22
targets 19
adding 22
deleting 22
Make Node command 35
multiple 167
multi-target projects 21
templates
instance generation 54
options 54
Test stack overflow option 63
third-party libraries 79
this pointer 57
thread.h 232
threshold 38, 39
throwing exceptions 188
time.h 232
timer.h 233
tiny memory models 38, 40
Tool Options dialog box 26
tools 25, 163
adding 26
customizing 26
sharing between projects 31
TOUCH 164
TOUCH 165
command-line options 165
trailing segments 70
trandators 25
adding 26
-tWM compiler option 103
type information
errors 281
typecasting
explicit casts 53
typeinfo.h 234

U

lundef 178

-u compiler option 60
underscores () 60
uninitialized data 44
uninitialized trailing segments 70
UNIX compatible constants 234
UNIX SystemV 61, 229
unreachable code 80

unsigned character types 49, 58

Index

user-defined warnings 79
Using PLIB response files 183
Using PLINK

with PCC.EXE 152
Using PLINK and PLINK32 149
utilities 163

TOUCH 164

Vv

-V compile option 55
-VO compiler option 55
-V 1 compiler option 55
-Vacompiler option 50
values.h 234
variable live range analysis 85
variables 135

compiling options 38, 42, 58, 60

examining 105, 134

optimizing 82, 84

scope 50
-Vb compiler option 51
-vc compile option 62
-V C compile option 49
-V ¢ compiler option 49
-Vd compiler option 50
-Ve compiler option 53
verbose, linker option 73
-Vf compiler option 39
-Vh compiler option 51
-vi compiler option 63
viewers, adding 26
viewing

breakpoints 120

errors 36

project options 33
virtual base pointers 49, 51
virtual tables 39

far 39, 46

linkage 55

options 55

pointers 39, 51

segments 46
visible symbols 108
-Vmd compiler option 53
-V mm compiler option 53
-Vmp compiler option 53
-Vms compiler option 53
-Vmv compiler option 53
-Vp compiler option 50
-V's compiler option 55
-Vt compiler option 51
-Vv compiler option 49

297

w

-w compiler option 78
warnings 271
alphabetical listings 275, 280
checking source files 69
compiler 77
disabling 78
displaying 78
general 78
inefficient C++ coding 79
inefficient coding 79
linker 76
obsolete C++ 80
portability 80
potential 81
potential C++ 80
project options 78
stop after... 81
user-defined 79
Warnings linker options 76
duplicate symbol 76
no stack 76
watch 128, 129
address error 278
changing properties 130
deleting 131
disabling and enabling 131
length error 278
Watches window 128
Windows platforms 46
Windows version 74
-wmsg compiler option 79

298

word alignment 42

X

-X compile option 60
-x compiler option 52
-xc compiler option 52
-xd compiler option 52
-xf compiler option 52
-Xp compiler option 52

Y
-y compiler option 62

Z

-Z compiler option 86

-zA compiler option 43
-zB compiler option 44
-zC compiler option 43
-zD compiler option 44
-zE compiler option 45
-zF compiler option 45
-zG compiler option 44
-zH compiler option 45
-zP compiler option 43
-zR compiler option 44
-zS compiler option 44
-ZT compiler option 44
-z compiler option 46

-ZW compiler option 46

-zX compiler option 45
-zY compiler option 45
-zZ compiler option 45

Paradigm C++ User's Guide

	Table of Contents
	Chapter 1, Getting started
	Starting Paradigm C++
	Licensing and Registration
	Quick Start Guide

	Using Help in Paradigm C++
	Online help organization
	Online manuals organization
	Help on Paradigm C++

	Chapter 2, Managing projects
	What is project management?
	Project management tools

	Using the Project Manager
	Project Manager reference
	Creating a project
	Adding nodes
	Adding files without relative path information
	Editing source node attributes
	Adding target nodes to your project
	Editing target attributes using TargetExpert
	Moving nodes within a project
	Copying nodes in a project
	Converting project files into makefiles
	Customizing the Project window

	Grouping sets of files with Source Pools
	Creating a Source Pool

	Translators, viewers, and tools
	Adding translators and viewers

	Chapter 3, Project options
	Setting project options
	Using Style Sheets
	View project options

	Compiling projects
	Fixing compile-time errors
	Viewing errors
	Fixing errors

	Project options reference
	16-bit compiler options
	Calling conventions
	Memory model
	Processor
	Segment names code
	Segment names data
	Segment names far data
	Entry/Exit code

	32-bit compiler options
	Paradigm optimizing compiler
	32-bit compiler options

	Build attributes
	Always build
	Build when out of date
	Never build
	Can't build
	Exclude from parent

	C++ options
	C++ compatibility
	Exception handling/RTTI
	General
	Member pointer
	Templates
	Virtual tables

	Compiler options
	Defines
	Code generation
	Floating point
	Compiler output
	Source
	Debugging
	Precompiled headers

	Directories options
	Source directories
	File search algorithms
	Output directories
	$INHERIT and $ENV(€)

	Librarian options
	Case-sensitive library
	Create extended dictionary
	Generate list file
	Library page size
	Purge/debug comment records

	Lint options
	All diagnostics
	Warnings and error diagnostics
	Error diagnostics
	Lint Options File

	Linker options
	16-bit linker
	32-bit linker
	General
	Map file
	Warnings

	Make options
	Autodependencies
	Break make on
	New node path

	Messages options
	ANSI violations
	Display warnings
	General
	Inefficient C++ coding
	Inefficient coding
	Obsolete C++
	Portability
	Potential C++ errors
	Potential errors
	Stop after ... errors
	Stop after ... warnings

	Optimization options
	General settings
	16- and 32-bit
	16-bit
	32-bit
	General optimization settings

	Command-line only options
	Object search paths
	16- and 32-bit command-line options
	Linker supported command-line options
	32-bit command-line options

	Compiler command-line options
	Command-line options by function
	Command-line options

	Chapter 4, Browsing through your code
	Using the browser
	Starting the browser

	Browsing objects (class overview)
	Browsing global symbols
	Browsing symbols in your code

	Browser filters and letter symbols
	To view all instances of a particular type of symbol
	To hide all instances of a particular type of symbol
	To change several filter settings at once

	Customizing the browser

	Chapter 5, Using the integrated debugger
	Types of bugs
	Run-time errors
	Logic errors

	Planning a debugging strategy
	Starting a debugging session
	Compiling with debug information
	Running your program in the Paradigm C++ IDE

	Controlling program execution
	Running to the cursor location
	The execution point
	Stepping through code
	Running to a breakpoint
	Pausing a program
	Terminating the program

	Using breakpoints
	Debugging with breakpoints
	Setting breakpoints
	Creating conditional breakpoints
	Removing breakpoints
	Disabling and enabling breakpoints
	Viewing and editing code at a breakpoint
	Resetting invalid breakpoints
	Using breakpoint groups
	Using breakpoint option sets
	Changing breakpoint options
	Changing the color of breakpoint lines
	Using the Breakpoints window
	Integrated debugger features

	Examining program data values
	Modifying program data values
	Understanding watch expressions
	Adding a watch
	Changing watch properties
	Disabling and enabling watches
	Deleting a watch
	Dynamic updates
	Inspecting data elements
	Evaluating and modifying expressions

	CPU window
	Resizing the CPU window panes
	The Disassembly pane
	Memory Dump pane
	Machine Stack pane
	Registers pane
	Flags pane

	Viewing function calls
	Navigating to function calls

	Summary of Emulator .EMU file commands
	Standard EMU file commands
	Custom [USER] EMU commands

	Chapter 6, Paradigm C++ compiler
	Using the command-line compiler
	Command-line compiler syntax
	Compiler configuration files
	Compiler response files
	Entering directories for command-line options

	Using PLINK and PLINK32
	PLINK and PLINK32 command-line syntax
	PLINK.CFG file
	Linker response files
	Using PLINK with PCC.EXE
	Linking libraries

	Module definition file reference
	Module definition file defaults
	CODE statement
	DATA statement
	DESCRIPTION statement
	EXETYPE statement
	EXPORTS statement
	HEAPSIZE statement
	IMPORTS statement
	LIBRARY statement
	NAME statement
	SECTIONS statement
	SEGMENTS statement
	STACKSIZE statement
	STUB statement
	SUBSYSTEM statement
	Example module definition file

	Paradigm C++ tools overview
	Running the command-line tools
	Memory and MAKESWAP.EXE
	The run-time manager and tools

	Chapter 7, Using MAKE
	MAKE basics
	BUILTINS.MAK
	Using TOUCH
	MAKE options

	Using makefiles
	Symbolic targets

	Explicit and implicit rules
	Explicit rule syntax
	Implicit rule syntax
	Command syntax

	Using MAKE macros
	Defining MAKE macros
	String substitutions in MAKE macros
	Default MAKE macros
	Modifying default MAKE macros

	Using MAKE directives
	.autodepend
	!error
	Error-checking controls
	!if and other conditional directives
	!include
	!message
	.path.ext
	.precious
	.suffixes
	!undef
	Using macros in directives
	Null macros

	Chapter 8, PLIB.EXE
	PLIB basics
	PLIB options
	Using PLIB response files
	Operation list
	PLIB examples

	Chapter 9, Exception handling
	C++ exception handling
	Exception declarations
	Throwing an exception
	Handling an exception

	C-based structured exceptions
	Using C-based exceptions in C++
	Handling C-based exceptions

	Chapter 10, Using inline assembly
	Inline assembly syntax and usage
	Inline assembly references to data and functions
	Using C structure members
	Using jump instructions and labels

	Compiling with inline assembly
	Using the built-in assembler
	Opcodes

	Chapter 11, Header files summary
	Using precompiled headers
	Setting file names

	Precompiled header file overview
	Precompiled header limits
	Precompiled header rules
	Optimizing precompiled headers
	alloc.h
	assert.h
	bcd.h
	checks.h
	complex.h
	cstring.h
	ctype.h
	date.h
	dir.h
	direct.h
	dirent.h
	dos.h
	embedded.h
	errno.h
	except.h
	fcntl.h
	file.h
	float.h
	fstream.h
	generic.h
	io.h
	iomanip.h
	iostream.h
	limits.h
	malloc.h
	math.h
	mem.h
	new.h
	process.h
	promice.h
	rtk32.h
	rtkernel.h
	setjmp.h
	share.h
	signal.h
	stdarg.h
	stddef.h
	stdio.h
	stdiostr.h
	stdlib.h
	string.h
	strstrea.h
	sys\types.h
	thread.h
	time.h
	timer.h, itimer.h
	typeinfo.h
	values.h
	_defs.h
	excpt.h
	_nfile.h
	_null.h

	Chapter 12, Math
	Floating-point I/O
	Floating-point options
	Emulating the 80x87 chip
	Using the 80x87 code
	No floating-point code
	Fast floating-point option
	The 87 environment variable
	Registers and the 80x87
	Disabling floating-point exceptions

	Using complex types
	Using bcd types
	Converting bcd numbers
	Number of decimal digits

	Chapter 13, 16-bit memory management
	Running out of memory
	Memory models
	The 8086 registers
	Memory segmentation
	Pointers
	The five memory models

	Mixed-model programming: Addressing modifiers
	Segment pointers
	Declaring far objects
	Declaring functions to be near or far
	Declaring pointers to be near, far, or huge
	Using library files
	Linking mixed modules

	Chapter 14, Using iostreams classes
	What is a stream?
	The iostream library
	The streambuf class
	The ios class

	Stream output
	Fundamental types
	I/O formatting
	Manipulators
	Filling and padding

	Stream input
	I/O of user-defined types
	Simple file I/O
	String stream processing

	Appendix A, Errors and messages
	Message categories
	Fatal errors
	Errors
	Warnings
	Informational messages

	Message generators
	Compiler errors and warnings
	Run-time errors and warnings
	Linker errors and warnings
	Librarian errors and warnings
	Paradigm C++ debugger messages
	ObjectScripting error messages

	Message formats
	Symbols in messages

	Alphabetical list of Paradigm C++ debugger messages
	Alphabetical list of Compiler messages

	Index

