Programmer’s Guide

CoBox

Version 611010
01-25-2018

LANTRONIX

Contents

Before starting... 9
HArdWare FEQUITEMENTSvii ettt sttt st sttt sae et b et b ebe e 9
SOFtWArE FEQUITEIMENTSoviitiieiictiiee ettt ettt e s 9

General 10
(@8 S 111 70T [1Tod 1 o SRR 10
COBOX FAMIIYcviiiiiieiicct bbbt 10
(070 21 I 111 oo [1 o o] o ISP 10
(O00] 210 IS T I] OSSP 10
CoBOS Serial Channel Control...........cooiiiiiiie e 11
Steps to writing and checking COBOX Programs..........ccccevieeiieeieereenieeieseesie e see e 11

Hardware Overview 12
HAPAWATE ...ttt e et e et e e be st e e s te e sbe e sbeeebeenbeenreeaee e 12

CIPSELS .ttt bbbt 12
CPU REQISIEr USAJEviveviiiriiirieieiiste sttt 13
MEMOIY IMIAPS. ...ttt r e re e e e 14
DSTNi BaSed ProdUCTS........cceiiiiiieierie e 14
YA 1Y SRS 18
RAIMZ ...ttt bttt n b 18
RAML (B4 KBYIES)viviieiietiiieietisee ettt 18
RAMO (IoWer 64 KDYLES)vveivieciieie ittt sve e 18
XPort, xPico & Micro-125 Serial Flash Page Mapcccooovveriininnicienece, 19
TETP FIrMWAIE GrBa.......eieeeeeieeeeiereesieseestesseeseeseeseeseesaessessesseeseeeeseessessessessessenns 19

Programming Environment 20
(O] o T=T = V[0 IS YA (-] PSPPSRSO 20
DIFECLONY SEIUCLUIEevieeieete ettt te st e st e s reenbeenaeeneeeneensee e 20
ENVIronment Variables ..o 20
(@70 1410 |1 PSSP SPSSRN 21

COMPIIEE .ttt bt 21
LIDFAIIES oottt et sre s 21
MAKETIIE ...ttt et st be e sre s 21
Version File (VERSION)c.oiiiiiiiiiiie et 22
LiNKer File (LK) .ot 22
BatCh FIleS (BAT) .ottt 22
MaKe COMMEANGS.......ccviiuieirieieeie ettt e st e st e te e e e sbeeeesreesreesaeenas 22
Firmware Support of various Products and Passwordccccceeereneniencnnenn. 24
L) 4 [1o SRS 24
PrOGIAMIMIING ..ceiiiieiee ettt bbbt e b ek et bt et e ebe e e et e nbesbesbesne e 25
MUBEIEASKING ..+t bbb bt 25
WALCNAOG. ...ttt ettt et 25
HOW t0 SENA 8 PING ..ottt 26
TCP CONNECLIONS.......cviitiiieetreieeeeee st e e e ste e e e see e saestesneeneeseeseeseeseesresneesenneens 27
How to open, close and re-0pen SOCKELS........cucviveierereriesee e 27
UDP Data TranSTErcoveiiirieiiiieee s 28
QUEUES / FIFOS.. ..ottt sttt et b ettt sbe e ebeebeenbeeaee e 29

2 o Before starting...

Programmer's Guide CoBox

LED CONEIOL ...ttt 30
TASKS . vttt 30
SHIBAIMS ...ttt ettt ettt b e bt e bt et et e bt e sbe e sbe e bt e beenbenae e 31
HTTP Server CONIOlcooi ittt e 31
Hardware DEteCHION..........oci ittt 31
DEBUGGING .ttt 32
LS U o] o SO 32
SYSIOQ -ttt a s 33
UDP ...ttt 33
PrOMON ... 34
TRINEL. .. 34
How to upgrade a project from 4.3 10 4.5.....cvciiiiiiie e 34
Changes in the programming enVIrONMENt.........ccccevvererieresinsieeresese e se e, 34
How to upgrade a project from 4.5 t0 5.0cccveiiiiiiiceeee e 35
Changes in the programming enViroNmMENt............ccecrereinenensieneneesesee e, 35
How to upgrade a project from 5.0 10 5.2coiiiiiiiiiiecsee e 36
Changes in the programming envViroNmMENt............cceovereinenensieneneese e, 36
How to upgrade a project from 5.2 10 5.5 ..o 37
Changes in the programming enViroNmMENt...........ccceevererinenensieneseeseee e, 37
How to upgrade a project from 5.5 10 5.51ccciiiiiiiiiiiiieeee e 37
Changes in the programming enVirONMENt............ccceerveieeiesieesiee e 37
How to upgrade a project from 5.51 10 5.8 ...c.ccoviiiiiiiieceeeee e 38
Changes in the programming enVirONMENt............ccceevvereeiesieesiee e 38
How to upgrade a project from 5.8 t0 6.1......cccccveiiiiiiiiccieceece e 38
Changes in the programming enVirONMENt............cccevveieeiesiee e 38
How to upgrade a project from 6.1 10 6.5cooeiiiriiiiene e 39
Changes in the programming envViroNmMENt............cccecvereinenensieseneese e, 39
How to upgrade a project from 6.5 10 6.7ccoeiiereiienee e 40
Changes in the programming enVviroNmMENt...........ccoceevereirenensieneneese e, 40
How to upgrade a project from 6.7 10 6.8c.ccouieriiiiiriiie e 40
Changes in the programming envViroNmMENt...........cccecrereirenensienenee e, 40
How to upgrade a project from 6.8.0.0 10 6.8.0.2........cccevieiieiiiiece e 40
Changes in the programming enVirONMENt............ccevvereeiesiiesiee e 40
How to upgrade a project from 6.8.0.2 10 6.9.0.3cccvevieviieiii i 41
Changes in the programming enViroNMENt............cccevvereeiesiee e 41
How to upgrade a project from 6.9.0.3 10 6.10.0.0cccevieviieiiiiece e 41
Changes in the programming enViroNMENt............cccevvereeiesiee e 41
How to upgrade a project from 6.10.0.0 t0 6.11.0.0ccevveiiineiiiincereee e 41
Changes in the programming enViroNmMENt...........ccceeiereirenensienenee e, 41
How to upgrade a project from 6.11.0.0 t0 6.11.0.10cceoviireiieneiieecee e 41
Changes in the programming enviroNmMENt...........ccoceerereinenensieneneese e, 41
Ao [0 1T g U AN] =TS 41
LIDrary FUNCLIONSc.ooiiiiiiiiiieee ettt 41
TO0IS bbbt be et 42
INpUt aNd OULPUL FUNCHIONSovviieitiiectceieeee sttt 43
FIUSNIN e bbb 43
TN e 43
0] (o IO USSP RSP 43
BB TNttt 43
BB IS 1ttt b ettt ne s 43
GETNEX 1ttt bbbt 44
GEENEXB ..ot e s 44
(01 | OO 44
GELINES ...ttt 44
(0121 o SO URSPUURRPPOO 45
(0[]] | TP T OO P PR TP 45
(0 1=11Y, T PO U PP TP 45
(0111 L T P TS U P UR TP 45
KDRIE . bbb 46

Programmer's Guide CoBox Before starting... o 3

0 S 46
0101 o PR 47
PULCSTE ..o e 47
PULCSTN L. e 48
PULYI o e e 48
SENADIK ...t 48
SPFINMEE bbb 49
FOrMAt CONVEISIONSoviitiiieeiieiiesie sttt e b e be st st e s beene e e e e e sbeseeseeene e 50
B2T0N et 50
VA (0 OSSOSO 50
2 (0] OSSOSO 50
AECOUBBASEBAoveieieiie bbbt 50
BNCOUBBASEBA ..ottt 51
THME FUNCHIONS ...ttt bbbt bbbttt et e bt bbb eneas 52
GEL LTANG ...t 52
SABTAY ...ttt 52
IVISGIBL ...ttt et b ettt b e bbb a e b e nre e 52
MAEN FUNCHIONS ... ettt st r et e e sbesbeaneeneenes 53
1T o USSP 53
IMULL ettt ne et nre st neenes 53
[T a0 T Y ST 53
SENG FUNCLIONSiiiiiic ettt ste et e e e eneesaeesteestaenreesreereeas 54
] 01 1 USRS 54
ST et bbbt 54
K (o3)Y PP PR OPRPR 54
SETCIMP o 54
SENCMP 1 55
1 [T o OSSP 55
MEMOTY FUNCHIONSeiiiitiiiitirt ettt 56
MBUFINTE() +veveeeteet bbb 56
IMBUTFGEL() ..ttt bbb bbbt 56
MBUTFTEE() ...ve ettt ettt ettt et sraesaeeeas 56
IMIEIMISEE ettt ettt bbbt ettt b bbb e nr e e n e nnr e 56
L§0T=T 0 0o o) PP OPPTRO 57
00T=T 000301 PP OPPTRO 57
MOVEAALA ...ttt bbbt bt sn e bbb enes 57
UDP FUNCEIONS. ...ttt bbb bbbt e bbbt ne e 58
UAP_TEOISTET .ttt bbbttt 58
UAP_TEIBGISTET ...ttt ettt 58
UAP_SEING....etiieie ettt 58
UAP_SERW ...ttt 59
QIO VT o OSSR 60
TCPAIIOC ...t bbbt e bbb 60
TCOPOPEN ...t bbbt bbb nre e 60
TCPWIEENB ... bbbt 60
B oo ISR UOSOSSN 60
B I ST SUOSOSSRN 61
CRANRECV ... e bbbttt bt 61
ChanS2, ChanS2NOTEL.......cuiieii et 62
Configurable Pin FUNCHIONSccoiiiiiiiiicree e 63
AETAUICP _SEIINGS ... vttt 63
SAVECPSEIIINGS ..ottt 63
IO _VBIL INIE oo 63
IO _VDIL IN .ttt 63
(o 1oAY, o1 A o 1V | RSSO 64
(o T Y, o1 Al =T Lo OSSP 64
(o 1oAY, o1 Al =L=] A RSP 64
(o T Y, o1 AT SRS 64
(o 1O Y o1 A=) =TT RSB 65

4 e Before starting...

Programmer's Guide CoBox

WVED FUNCHIONS ...ttt ettt et b e e sb s s b e e e b e e s sbe e e be s e sba e s sbbeesbeeesaeeea 66

SEESEIVICEPOIc.vivictiieetc bbbttt 66
WEDMEThREGISIENvevieieiecie sttt re e enes 66

DINS FUNCLIONS. ...ttt sttt ettt ne e e b e sbesaesbesne e 67
ANS_TESOIVE ...ttt see e 67
MUIEIEASKING FUNCLIONS ...ttt 68
KL .ottt 68

T SRR 68

(=11 T TR O PR UPPTOTRP 68

0L LY D PP TP PP PP 68

FIFO CONLIOL ...ttt sttt et et 69
FITOINIE .. 69

TOCAIL.....ei e et e 69

LED CONEIOL ..ttt bbbttt 70
BIINKRESEL ...t bbb et 70

LT (o] ST PP P PP P P PPPPTOTRP 70

Serial POrt CONLIOLocuioieiee ettt 71
INIELOCAICNAN ...ttt 71
INIELOCAITO ...ttt eeene e 71

J10 GBS ettt bbb 71

THO_CH bbb 71

o ST 72

Lo 1 T TSSO P PR PO SOUPTPRPTURPRURON 72

JHO_COK .. bbb 72

T Y- VS 72
LIOODBUT ...ttt sttt sttt nnas 73

[T = PSPPSRI 73
EEPROM FUNCHIONS ...ttt sttt sttt ene e nn et seeseenne e 74
EE_REAGcui ittt 74
EE_WVEITE ...ttt 74
STOFECIMOS ...t ettt sttt ettt sre e ste et e enee e 74

[o 0T o S 75
COPYEEPR.....o bbbt 75

L1 51 T o LSS UOSOSRN 75

L1 57 T 0o 2SSOSR 76

L 51 110 TS UOSOSR 76

Flash File SYStem FUNCLIONSeciviiieiie ettt ene e 77
(o T= O 11 T=T U g o LRSS 77
GEL_TIIE 1N ..o 77
QEL_TIlE_SEAMt POS ...t 77

P ClOSE ettt 77

0] 1] 1T U PP UR TP 78

L (Lo IO OO 78

SEL FIIE_CUIT_POS .. et 78
RaNdom Generator FUNCHIONSooiiiiiiiiieieie ettt 79
21010 P USRS URURPRO 79

SPAND .ttt bbb h R Rt b e Rt et et b be b ebeene e 79
ENCryption FUNCHIONSoitiiiiii ettt bbb bbb 80
T DYEE SEFRAM ... 80
tF_DIOCK _dECIYPL ..o 80
tF_DIOCK _BNCIYPL ..o 80

Y PO e 81

DEDUG FUNCHIONS ...t ettt et ebe s 82
1 (o] PSSP 82

SYSI0Q . ettt bbbttt 82
SNMP 84
INEFOTUCTION ...ttt et e 84
COBOX SNIMP SEFUCLUIEc.iviiiiieiieiee et 84

Programmer's Guide CoBox Before starting... ¢ 5

S N LAY e AVZT (o] T4 1T 0 86

g C=T o 4 T PR 86

SNIMP OBJECE ... e 86

TrapS Variablescociiiiiiie e 86
Checking 8CCESS FIGNLSc.civiieiiieiieiri e 88

PRIVALE IMIB ...ttt ettt see st b e b e ne e 89
MIB tree definitionoooiiiiiiee e 89
Read-only Variables ... 90
Variable type deSCriPOrScociiieiiiriei et 91
Read/Write Variables ... 92

TADIES . 93

Utility Programs 95
(61014 || RSSO 95
Program DeSCIIPLION.........cviiiiiiiirieetite e 95
COMMANT SYNTAX ...ttt bbb ne e 95

21 USSP 95
Program DeSCHPLION.......cccuiiie ettt 95
COMMANA SYNTAX ...evievieiieie et reesreesteeaeeneeenee e 95

B2 1ttt E R R R R R R R R Rt R bR bt r bt rer e 95
Program DeSCHPLION.......cccuiiieieece et e 95
COMMANA SYNTAX ..vevievieieeie ettt re e sreesreebeeneennee e 95

RVAT =] 2 @0 = PSP 96
Program DeSCrIPLION.........cviiriiiiirieetirte st 96
COMMANT SYNEAX ...ttt bbbt bbb 96
Structure 0f .COB File.......cuiiiiiieceee e 97

(000 0 24T T OSSP 98
Program DeSCIIPLION.........eviiriiiiireeicte et 98
COMMANGA SYNTAX ..veviivieie et be et esre e steebeenbeenee e 98

Demo Sample Programs 99
oo [0 Tod £ T o OSSPSR 99
DEMO L.t sr e 99

3T 1 0T 1TSS 99

3T 1 0T TSP 99

DEMO 4 ...t r e 99

DEMO 5 .o 99

DEMO B ..o 99

DEMO 7 oo 100

DEMO 8 ... 100

DEMO 9 .o 100

DEIMO 10 ...ttt bbbt ne e 100

DEMO L1 ... e 100

9T 1 1o S 100
9T 1 T R ST 100

DEMOLA ... e 100

DEMOLS ... 100

DEIMOLG ...ttt bbbt b e 100
Ethernet Frame Handling 101
INDOUND Frame PrOCESSING.......ccuirieiiiierieieite ettt sttt sttt sttt nnes 101
Nl T 1T | 1] 101

L o T | =T R 101

Packet HandIEr SYNTAX ..o 102
OUutboUNd Frame PrOCESSINGc.civeieiiierieirie et sttt sttt sttt ne e 103
OVEIVIBW ...ttt b bttt bbbt bt bt b e se et e e e besbesbesaeaneas 103
GELPOIDYIYPE ...ttt bbb e 103
GEESENABUT ...t bbb 103

6 e Before starting...

Programmer's Guide CoBox

Fre@SeNABUT.......cceee it s 103

L 1 T o] o ot PSP 103

DSTni Chipset Loading 105
gL (0 [UTox £ o] o RS TTRR 105

(000 210 1T 0T Lo L T TSRS 105
CoBOS Standard UDP Handlers 107

Programmer's Guide CoBox Before starting... o 7

Before starting...

Before starting, it is recommended to read the User’s Manual of the particular hardware platform
you will use in development. Once you thoroughly understand how to use, configure, and load
firmware onto the device, you can begin software development. The programmer should also
become very familiar with the standard functionality of the device.

Hardware requirements

You need a PC with two serial ports and a connection to a local area network (LAN). In some
cases, a single serial port will suffice. The best setup is to have a second PC for a separate
connection to the second serial port of the device, as well as for independently capturing network
packets. You will also need the correct RS-232 serial cables with the corresponding connectors
DB-9 or DB-25 and network RJ-45 cable. The appropriate power supply will also be required. It is
also highly recommended to utilize a network hub (not a switch) for network tracing. (If it auto-
senses the network speed, it’s a switch.)

Software requirements

On your PC, you must have MS-DOS or MS-Windows (NT, 2000, XP, Win 7, Win7 Virtual PC
Virtual XP Mode, etc) with access to the Command Prompt or DOS prompt (command.com, or
cmd.exe). Your computer must also have a LAN connection with TCP/IP protocol. The best
approach is to have static IP addresses on both your PC and your device server — ask your LAN
administrator for details. All necessary software for developing a custom program for the CoBox is
available with the CPK (CoBox Programming Kit), except the necessary compiler.

You may also need some additional software programs. To analyze a serial port’s data flow, you
will need to use a terminal program. If you do not have another preference, you can use the
standard Windows Hyperterminal. Configure the terminal program the same as your Cobox’s
serial port’s default — 9600 Baud, 8 data bits, no parity bit, and 1 stop bit.

You must also have a network terminal program. For TCP connection, you can use the standard
Windows Telnet. For UDP connection, Windows has no terminal client. Lantronix has provided an
additional utility UDPCBXTest.exe as part of the CPK.

Next, to download your program into your CoBox, you will need any TFTP client. Use the tftp.exe
of standard Windows NT or another client that you are comfortable using. For monitoring
network activity, you may want some sort of network “sniffer”. However this particular utility is
not included in the CPK, you would have to provide one of your own means. (Various network
analyzers can easily be found on the internet, | recommend Wireshark.)

For compiler tool information, see the Programming Environment section.

Programmer's Guide CoBox Before starting... ¢ 9

General

CPK Introduction

The CoBox Programmers Kit is a specific set of libraries and utilities produced by developers at Lantronix.
The main purpose of the CPK is for the development of Lantronix Device Servers. The underlying
operating system of the CPK is CoBOS, or CoBox Operating System.

The CPK is an internal tool of Lantronix, and is NOT readily available. Your protection of this software is
required.

Occasionally customer requirements drive the need for custom applications. For those specific cases,
Lantronix has allowed customers to write their own application upon the Lantronix CoBox hardware
family. You must remember that your future programs can only use available C-functions in the CPK. This
set of functions is constantly changing and improving by the developers of Lantronix. You should
understand the sample DEMO-programs are written for training and teaching purposes and are only a basis
for your future programs.

CoBox Family

The CoBox family of products is microprocessor-based platforms, designed to exchange data between a
serial device and the network. However, this is only the tip of the iceberg. In reality, on the CoBox base,
you can do almost anything you want, because it is based on a general-purpose microprocessor. You can
write programs that transform CoBox into a mini WEB-server, or an intelligent controller of different
digital devices, or a modem bridge/router for connecting remote networks, etc. Of course, applications need
to consider the available hardware support of the chosen delivery platform.

CoBOS Introduction

CoBOS is the name given to this Lantronix proprietary operating system. CoBOS is a cooperative multi-
tasking operating system. CoBox is designed with small memory footprint requirements in mind. Custom
programs are linked together with CoBOS and supporting libraries to create one single program (OS
included). The resultant image is loaded into flash memory.

Upon boot, the low-level boot loader is executed. The loader inspects the hardware, finds a loadable image,
loads the image, and begins execution of the image. On some hardware, the image is executed from flash,
while on platforms containing the Lantronix DSTni-LX or EX processor; the image is loaded into RAM and
then executed.

Once the firmware starts executing, timers are initialized, Setup records 0 & 1 are read and cached, and then
Versionlnit() (located in main.c) is called. Upon return, the “setup serial port scan” is performed, and
finally the IP stack is initialized, and other low level tasks are started. Lastly, the function newmain()
(located in main.c) is called. This is the start of all custom applications. The HTTP server and remote
configuration tasks are typically started in newmain(). Also, the serial ports are normally initialized here as
well.

It is highly recommended that your custom program work begins in demo() (in demo.c); as main.c will
change slightly from release to release.

CoBOS Tasks

The CoBox has a cooperative multitasking operating system. New tasks can be started with the spawn()
function. The task control block (TCB) structure (see tcbdef.h) maintains process specific data, as well as
a pointer to the next TCB. Control of the processor is released back to the kernel by calling the nice()
function. Nice() will then continue execution of the following task in a circular list fashion. Tasks, or
processes should be careful to release the CPU at least once every second, or the watchdog timer will reboot
the CoBox. Also note, that as long as ‘this’ process is running, others are not. All blocking I/O functions
imply a nice(). For example, waiting for a character to arrive via getch().

The actively running process is described in ActPro (Active Process), which is a pointer to the currently
running TCB.

10 e General Programmer's Guide CoBox

CoBOS Serial Channel Control

Each of the CoBox’s serial channels is assigned a channel control block (CCB). The CCB structure (see
ccbdef.h) maintains channel specific data and configuration for the assigned port, along with its associated
buffers (or FIFOs). Configuration of the CCB is required for serial communications. Typical settings
include Baud Rate, Parity, Databits, Stopbits, flow control, and interface mode. When a task is spawned, it
can be associated with a particular serial channel. The InitLocalChan() function, then pushes the
configuration in the CCB on to the CPU’s UART for the associated channel. This associated stream is
assigned to the ActPro->CCB_Ptr or the “active process’s CCB pointer”. Furthermore, the associated
stream’s FIFOs are also assigned to the ActPro->IO_Ptr or the active process’s IO pointer. Please note, the
newmain() process is associated with the first serial port (AIICCBJ0]) at startup.

Steps to writing and checking CoBox programs

1. Write or edit your program by any interface/editor. Try to leave main.c intact and create your changes in
demao.c or add your own source modules.

2. Make the program using Paradigm C++ tools and convert it to ROM-file by the e2i.exe utility (we usually
use a Makefile batch file included in CPK);

3. Download the ROM-file into CoBox by TFTP client. Use the table titled “Firmware Support of various
Products and Password” for the correct destination.

[* for example: tftp.exe —i <CoBox_IP> PUT <program_name>.rom <destination> */

4. If (necessary) set up new CoBox’s parameters in SETUP by Telnet or Terminal;
/* for example: telnet.exe <CoBox_IP> 9999 */

5. Start the necessary utilities for testing (Telnet, COM1/2 Terminals, UDP-client, etc.);
6. If (necessary) power off/on to reset CoBox, go to step 1.

Programmer's Guide CoBox General o 11

Hardware Overview

Hardware
Chipsets

Model xPico xDirect Micro125 SDS- UDS- Xpress
1101/2100 | 1100/2100 DR+ (W)

Code Image xpico.rom xdrt.rom m125.rom sds1101.rom uds1100.rom drig.rom
sds2101.rom uds2100.rom (dr_mrv.rom)

CPU Lantronix Lantronix Lantronix Lantronix Lantronix Lantronix
DSTni-EX DSTni-EX DSTni-EX DSTni-EX DSTni-EX DSTni-EX
26-88MHz 26-88MHz 48MHz 26-88MHz 26-88MHz 26-88MHz

Network CPU CPU CPU CPU CPU CPU
Controller

Serial CPU CPU CPU CPU CPU CPU
Controller

EEPROM None None None 2 Kbytes 2 Kbytes 2 Kbytes
RAM 256 Kbytes 256 Kbytes 256 Kbytes 256 Kbytes 256 Kbytes 256 Kbytes

Flash PROM 512Kbytes 512Kbytes 512Kbytes 2048 Kbytes 2048 Kbytes 2048Kbytes
serial flash serial flash serial flash

Model XPort- XPort- Matchport |WiPort BG/ | WiBox B/G
03/04/05 Direct+ BG/NR NR
(EX)

Code Image Xptex.rom xptdp.rom mpt_bg.rom wpt_mrv.rom | wbhx_mrv.rom
Xpt05.rom mpt_nr.rom ftp.rom

CPU Lantronix Lantronix Lantronix Lantronix Lantronix
DSTni-EX DSTni-EX DSTni-EX DSTni-EX DSTni-EX
26-88MHz 26-88MHz 26-88MHz 26-88MHz 26-88MHz

Network CPU CPU CPU CPU CPU
Controller

Serial CPU CPU CPU CPU CPU
Controller

EEPROM None None 2 Kbytes 2 Kbytes 2 Kbytes
RAM 256 Khytes 256 Kbytes 256 Kbytes 256 Khytes 256 Kbhytes

Flash PROM 512Kbytes 512Kbytes 2048Kbytes 2048Kbytes 2048Kbytes
serial flash serial flash

12 ¢ Hardware Overview Programmer's Guide CoBox

CPU Register Usage

Register

Usage

AX

BX

CX

DX

General purpose register use

Sl

Source index

DI

Destination index

DS

Data segment

SS

Stack segment

CS

Code Segment

ES

Extra Segment

IP

Instruction pointer

Programmer's Guide CoBox

Hardware Overview ¢ 13

Memory Maps

DSTni Based Products

Memory Block WiBox, WiPort WiPort opt 2 XPort-03/04/05,

(24-bit address) BG/NR, Matchport Micro-100, Micro-
BG/NR, UDS1100, 125, xDirect,xPico
UDS2100, SDS2101,
SDS2102, DR+,
DR+W

FFFFFF Boot code (reserved Boot code (reserved Boot code (reserved

EF0000 64KB) & EX Loader 64KB) & EX Loader 64KB)

FEFFFF WEB19 WEB51 Not Used

FE0000

FDFFFF WEB18 WEB50

FDO0000

FCFFFF WEB17 WEB49

FC0000

FBFFFF WEB16 WEB48

FB0000

FAFFFF WEB15 WEB47

FA0000

FOFFFF WEB14 WEB46

F90000

F8FFFF WEB13 WEB45

F80000

F7FFFF WEB12 WEB44

F70000

F6FFFF WEB11 WEB43

F60000

F5FFFF WEB10 WEB42

F50000

FAFFFF WEB9 WEB41

F40000

F3FFFF WEBS WEB40

F30000

F2FFFF WEB7 WEB39

F20000

F1FFFF WEB6 WEB38

F10000

FOFFFF WEBS WEB37

F00000

EFFFFF WEB4 WEB36

EF0000

EEFFFF WEB3 WEB35

EE0000

EDFFFF WEB2 WEB34

ED0000

14 ¢ Hardware Overview

Programmer's Guide CoBox

ECFFFF WEB1 WEB33
EC0000

EBFFFF Firmware Image Bank WEB32
EB0000 2 (Storage)

EAFFFF WEB31
EA0000

E9FFFF WEB30
E90000

ESFFFF WEB29
E80000

E7FFFF WEB28
E70000

E6FFFF WEB27
E60000

ESFFFF Firmware Image Bank WEB26
E50000 1 (Storage)

E4FFFF WEB25
E40000

E3FFFF WEB24
E30000

E2FFFF WEB23
E20000

E1FFFF WEB22
E10000

EOFFFF WEB21
E00000

DFFFFF Mirrored 2MB WEB20
DF0000 (E00000 — FFFFFF)

DEFFFF WEBI9
DE0000

DDFFFF WEB18
DD0000

DCFFFF WEB17
DC0000

DBFFFF WEB16
DB0000

DAFFFF WEBI15
DA0000

DYFFFF WEB14
D90000

D8FFFF WEBI13
D80000

D7FFFF WEB12
D70000

D6FFFF WEBI1
D60000

DSFFFF WEB10
D50000

Programmer's Guide CoBox

Hardware Overview e 15

DAFFFF
D40000

D3FFFF
D30000

D2FFFF
D20000

D1FFFF
D10000

DOFFFF
D00000

CFFFFF
CF0000

CEFFFF
CE0000

CDFFFF
CD0000

CCFFFF
CC0000

CBFFFF
CB0000

CAFFFF
CA0000

CYFFFF
C90000

C8FFFF
80000

CTFFFF
C70000

C6FFFF
C60000

C5FFFF
C50000

CAFFFF
C40000

C3FFFF
C30000

C2FFFF
C20000

CIFFFF
C10000

COFFFF
C00000

BFFFFF
B00000

AFFFFF
A00000

Mirrored 2MB
(E00000 — FFFFFF)

WEB9

WEBS

WEB7

WEBG6

WEBS5

WEB4

WEB3

WEB2

WEB1

Firmware Image Bank
2 (Storage)

Firmware Image Bank
1 (Storage)

9FFFFF
900000

Mirrored 2MB
(E00000 — FFFFFF)

Mirrored 4MB
(C00000 — FFFFFF)

16 ¢ Hardware Overview

Programmer's Guide CoBox

8FFFFF

800000

7FFFFF Not Used Not Used

500000

4FFFFF External RAM 1MB

400000

3FFFFF Not Used

040000

03FFFF RAMS3 (Firmware RAM3 (Firmware RAM3 (Firmware
030000 Image, Executing) Image, Executing) Image, Executing)
02FFFF RAM2 RAM2 RAM2

020000

01FFFF RAM1 (Network RAM1 (Network RAM1 (Network

010000 Buffers) Buffers) Buffers)

00FFFF RAMO RAMO RAMO

000000

Programmer's Guide CoBox

Hardware Overview e 17

RAMS3

CoBOS application programs execute from RAMS3.

RAM?2

Application programs can use the RAM2 (64 Kbytes of RAM) if the image is NOT executing from RAM2.
This area must be accessed by far pointers.

RAML1 (64 Kbytes)

Address Description
range
FFFF Ethernet Receive Chain
E800
E7FF 2KB Free space
E000
DFFF TCP Buffer (1% TCPAlloc for tcp14.lib), free space with tcp12
D000 and tcpip.lib
CFFF TCP Buffer (2™ TCPAlloc for tcpl4.lib), free space with tcp12
C000 and tcpip.lib
BFFF TCP Buffer (1 TCPAlloc for tcp12.lib, 3 for tcp14), free space
B00O with tepip.lib
AFFF TCP Buffer (2™, 3", and 4th TCPAlloc for tcp12.lib, 4™, 5" and
8000 6" for tcpl4), free space with tcpip.lib
TFFF TCP Buffer (1 TCPAlloc for tcpip.lib)
7000
TCP Buffer (Nth TCPAlloc)
OFFF TCP Buffer (8", 12", or 14" TCPAlloc based on lib used)
0000

RAMO (lower 64 Kbytes)

Address Description

range

FFFF 1KB Main Task Stack

FCO00

FBFF Ethernet Transmit Chain

F000

EFFF Common Ethernet receive buffers (~10KB)
C800

C7FF Initialised & uninitialized data
0100

00FF Interrupt vectors

0000

18 ¢ Hardware Overview Programmer's Guide CoBox

XPort, xPico & Micro-125 Serial Flash Page Map
The 512KB serial flash is divided into 264 byte pages.

Page Byte offset Description

range

540671 WEB1-6
557 147048

147047 Firmware Image (Storage) — 2™ 64KB
308 81312

81311 Backup Firmware — 12KB
261 68904

68903 Backup Configuration Data - Reserved
257 67848

68903 Firmware Image (Storage) — 1% 64KB
7 1848

1847 Firmware header and 2" stage loader
5 1320

1319 Hardware and configuration settings
1 264

263 Reserved — EX MAC address
0 0

TFTP Firmware area

In V6 and above, the firmware upload procedure now writes directly to flash.

WARNING:

If the variable fw_stat is not equal to 0 the firmware and web page upload procedure is running and

attempting to write flash memory.

Example:

}

if (fw_stat)
/* Stop accessing flash memory */

{

Programmer's Guide CoBox

e 19

Programming Environment

Operating System

Microsoft Windows (95, 98, NT, 2000, XP, Win 7).

Directory Structure

To avoid problems with older MS-DOS software, do not use more than eight characters for filenames. This
is an example directory tree for CoBox development. Please note, starting with V6, each product now has
it’s own working sub-directory. This subdirectory scheme removes the need for a specific suffix being
added to the created object files.

C:\Source
L— CoBox
F— cpk430 (Projects using kernel 4.3)
F— cpk450 (Projects using kernel 4.5)
F— cpks00 (Projects using kernel 5.0)
F— cpk520 (Projects using kernel 5.2)
|—— cpk550 (Projects using kernel 5.5)
F— cpkssi (Projects using kernel 5.51)
F— cpkss0 (Projects using kernel 5.8)
|—— cpk6101 (Projects using kernel 6.1.0.1)
|—— cpk6500 (Projects using kernel 6.5.0.0)
F— cpk6702 (Projects using kernel 6.7.0.2)
F— cpk6802 (Projects using kernel 6.8.0.2)
|— cpk6903 (Projects using kernel 6.9.0.3)
L— ¢pk61000 (Projects using kernel 6.10.0.0)
— Bin (r2h, web2cob, utilities, etc.)
F— Doc (Documentation files)
F— Inc (Include files)
F— Lib (Libraries)
|— Paradigm (Tool chain support files and documentation)
F— sNwmp (SNMP include files)
F— stdf (Standard setup)
— TCP_UDP_terminal (Encryption tools)
I— UDP_terminal (UDP tester)
L— Demo[x] (Demo projects)
|— xptex(s) (XPort-03,04 product (small build))
F— wbx_mrv (WiBox product)
L— wpt mrv (WiPortproduc)

Environment Variables

You should add the bin directory to your search path. Change the environment settings on Windows
NT/2000 or add this line at the end of C:\autoexec.bat:

[PATH=C:\cpk61000\bin; $PATHS

20 ¢ Programming Environment Programmer's Guide CoBox

Compiling
Compiler

e Paradigm C++ Version 7.00.071.

e Small memory model
(64 Kbytes code, 64 Kbytes data, max. file size 128 Kbytes). E2l will inform you if the
image is too large.

e Support for 128KB code image is supported via call2proxy and will occupy RAM2.

Libraries
Library name Contents
crstub Stub without encryption
crypt[2] Encrypting and decrypting
Drig, drw Xpress DR+ specific functions, wireless
fpt WiPort NR specific functions
kern100 Kernel functions
kernMAC Kernel functions for XPort
m125 Micro 125 specific functions
Mptnr MatchPort-NR specific functions
Mrv[8385 / 8686] WiPort / MatchPort Marvell radio interface
Parfl Parallel Flash functions
Romlib Memory and String functions
serfl[ex] Serial Flash functions [EX based]
snmp[m] SNMP functions [XPort]
std Standard setup functions
stubs Stub functions
supp[WPA] Radio encryption support
tepip, tcpl2, tepld TCP/IP functions (handling 8, 12 or 14 connections simultaneously)
tepipN, tcpl2N, tcpl4N Same as above without RFC-2217 support
uds21 UDS-2100 & SDS-2101 specific functions
vds100 UDS-1100 & SDS-1101 specific functions
web[m] HTTP and web server functions [XPort]
web_fs[m] Web file system functions [XPort]
Wibox WiBox specific functions
wimin MatchPort-bg specific functions
Wiport WiPort specific functions
Wispan Wispan specific functions
xDirect xDirect specific functions
Xportdp XPort Direct+ specific functions
Xportex EX-based Xport specific functions
xPico EX-based xPico specific functions
Makefile

The make process consists of two Makefiles and product subdirectories. Each demo directory
contains it’s own Makefiles. Please review them in detail.

Programmer's Guide CoBox Programming Environment e 21

Version File (VERSION)

The Version file contains the software version number as a four numbers on the first line (e.g.
6.10.0.0 stands for version 6.10.0.0). Each demo project contains a Version file, which can be
customized, as desired, for each build.

[6.10.0.0

Linker File (.LK)

Each demo directory contains product type subdirectories. Each subdirectory contains the link
directives file for that product. You will need to modify this file if you add additional .obj files to
the build process.

Batch Files (.BAT)

Three sample batch files, which can be used for any of the demo projects, are provided in the bin
directory as reference.

o that Make whole project (make all).

e m.bat Make whole project and wait for key after each page
(make | more).

e S.hat Cleanup all generated files (make clean).

Make Commands

Note: The optional “s” character will force the make process to attempt to build a 64KB module
(will not use two TEXT (CODE) segments).

22 ¢ Programming Environment Programmer's Guide CoBox

make all

make dr_mrv.rom
make drig[s].rom
make dr3[s].rom
make fpt[s].rom
make m125[s].rom
make mpt_bg.rom
make mpt_nr(s).rom
make sds1101[s].rom
make sds2101[s].rom
make xptdp[s].rom
make xptex[s].rom
make xpt5[s].rom
make xpico[s].rom
make xpc110[s].rom
make xdrt[s].rom
make wpt_mrv.rom
make wbx_mrv.rom
make u2100[s].rom
make u1100[s].rom
make clean

Make whole project (make all).

Make Xpress DR+ wireless image only.
Make Xpress DR+ image only.

Make Xpress DR3 image only.

Make WiPort-NR image only.

Make Micro-125 image only.

Make Matchport BG image only.

Make Matchport NR image only.

Make SDS-1101 image only.

Make SDS-2101 image only.

Make XPort-Direct+ image only.

Make XPort-03, 04, and XPort-485 image only.
Make XPort-05 image only.

Make xPico image only.

Make xPico110 (SMT) image only.
Make xDirect image only.

Make WiPort (B/G radio) image only.
Make WiBox (B/G radio) image only.
Make UDS-2100 image only.

Make UDS-1100 image only.

Cleanup all generated files

Programmer's Guide CoBox

Programming Environment ¢ 23

Firmware Support of various Products and Password

There are various ROM images available from Lantronix. Some images support multiple
platforms while others are very specific. Please choose the right firmware file (.rom) according to
the following table (optionally an ‘s’ may be appended for a 64KB ROM image):

Product ROM file Destination
Micro-125 M125.ROM 5M
SDS-1101 SDS1101.ROM D3
SDS-2101 SDS2101.ROM D4
UDS-1100 UDS1100.ROM u3
UDS-2100 UDS2100.ROM U4
xDirect XDRT.ROM us
Xpress DR+ DRIG.ROM R1
Xpress DR+W DR_MRV.ROM R2
Xpress DR3 DR3.ROM XP
XPort-03 / 04 (EX) XPTEX.ROM X5
XPort-05 (EX) XPT5.ROM X9
XPort-Direct+ XPTDP.ROM X8
xPico XPICO.ROM X6
xPico110 XPICO110.ROM 6X
WiPort-NR FPT.ROM FX
WiPort(B/G) WPT_MRV.ROM W6
WiBox(B/G) WBX_MRV.ROM w7
Matchport BG MPT_BG.ROM w8
Matchport NR MPT_NR.ROM FY

See e2i documentation in chapter Utilities for destination details.

Restrictions

e Do not use a lot of stack, stack memory is limited! Bigger buffers should be defined as global
variables.

e Stack memory for the main() task is FCOOh...FFFFh = 1024 bytes.

e Don’t place static structures onto the stack. You should define them as global variables.

e Dynamic memory allocation like malloc() is not supported.

e Memory usage is limited to C800h bytes. Add vectors + _data + cdata + const + _bss +
extdata + stack + kallocs, which is the actually used memory. The result has to be lower than
C800h. Information can be read from of the screen output or the map file (example below):

24 ¢ Programming Environment Programmer's Guide CoBox

Start

00000H
0A9AO0H
0AA20H
0B13CH
0B13CH
0B13CH

Stop

0A99AH
0AA1FH
0B13BH
0B13CH
0B13CH
10179H

Length Name

0A99BH _TEXT
00080H VECTORS
0071CH _DATA
00000H CDATA
00000H CONST
0503EH _BSS

10180H 1018FH 00010H EXTDATA
10190H 1019FH 00010H STACK

Class

CODE
DATA
DATA
DATA
CONST
BSS

STACK

Compiler and linker do not detect an overflow.

e Each WebProcess kallocs an additional 774 bytes. Each WebProcess will MBufGet() one
buffer for the header, and one mbuf for the COB archive directory lookup.

e Operations using 32 bits are not supported. e.g. the command

|var >> 16

is OK but

|var >> 17

cannot be used.

e Floating point arithmetic is not supported.

e Functions assigned to pointers MUST be declared globally, NOT static.

Programming
Multitasking

The CoBox’ round robin multitasking is controlled with four interrupts in the following priorities:

1. Timer (priority 1)

2. Serial interfaces (priority 2)
3. Network interface (priority 7)

4. Standard (default)

Priority 1 is the highest priority. That means that e.g. the network event can interrupt the standard

event.

CoBox’ multitasking occurs only when you call the nice () function. Remember to insert this
function in any longer loop, otherwise the watchdog will reset the CoBox after approximately 1
second. nice () is also called from some internal functions (typically 10 functions like getch()).

Watchdog

The watchdog is a hardware timer that resets the CoBox if it is not triggered regularly. The timeout
varies from 700 to 1300 mS depending on CPU clock speed.

Programmer's Guide CoBox

Programming Environment e 25

How to Send a Ping

The below sample will send 10 ping requests to 65.33.232.134, with a 30mS timeout.

#include <memory.h>
BYTE p[4] = {65,33,232,134};

int ping(BYTE *ping ip, WORD cnt, WORD to);
extern WORD icetim, iceseqg;

demo ()
{
ping(p, 10, 30);

int ping (BYTE *ping ip, WORD cnt, WORD to)
{
AD T a;

int i, 3J;

memset (&a, 0, sizeof (AD T));
memcpy (&a.ipa, ping ip, 4);
iceseq = 0;
for (1 = 0; 1 < cnt; i++) {
if (icmp out(&a, 8+12, 0x0008, i)) {
return(0) ;
}
j = (WORD) ticks;
while (((WORD) ticks - j) < to) {
nice();
if (iceseq) {
printf ("Seq %3u time S$ums\r\n", iceseq, (WORD) ticks - icetim);
iceseq = 0;

}

return ((WORD) ticks - icetim); /* return last ping time */

NOTE: icmp_out can only effectively send a ping, other requests will have a 0°d ICMP payload.

int icmp out (AD T *a, WORD len, WORD code, WORD seq)
a - pointer to AD T address structure with IP address filled in, other fields 0

len - must be 8 plus the ping data length (typically 12) == 8+12 or 20
code - ICMP type field - 0x08 for Echo Request
seq - ICMP sequence number

26 ¢ Programming Environment Programmer's Guide CoBox

TCP Connections

Example:

TCP t *t;
BYTE InBun[128 + 8]; /* include 8 additional bytes for the FIFO control block */
BYTE OutBuf[128 + 8]; /* include 8 additional bytes for the FIFO control block */

t TCPAlloc(); /* Allocate TCP Structure */

t->r.StCall = ChanS2NoTel; /* ChanS2() selects telnet automatically */
t->r.RcvCall = ChanRcv;

t->RcvFifo = FifoInit (InBuf, 128); /* FIFO size, w/o the control block */
t->XmitFifo = FifoInit (OutBuf, 128);/* FIFO size, w/o the control block */
TCPOpen (0, t, 10001); /* Passive open to port 10001 */

while (t.State == ESTABLISHED) {

/* Send and receive data */

}

T Discon(t); /* Close connection */

Connection States
The State variable in the TCP structure indicates the current connection state (see tcp.h for states).

Example:

if (t->State == ESTABLISHED) {
/* Connection established */

}
if (t->State == LISTEN) ({
/* Passive connection is waiting for connect from foreign host */

}

How to open, close and re-open sockets

In a typical environment CoBOS has 8 handles available (tcpip.lib) for Socket connections (unless
using the 12 or 14 network connection library, tcp12 or tcp14). Depending on your system those
could be utilized for:

e Web Server
e Telnet connection
o for user application

If your application is required to ‘open, close and re-open’ connections, you have to make sure that
you are not using a new connection each time. If you do, you will find that the CoBox is re-booting
once you try to open up the 9" (13" or 15™) connection.

The proper way would be to re-use the handle after T_Discon(xxx) finishes. The handle is still
valid.

Example:

Programmer's Guide CoBox Programming Environment e 27

/* Initialize the TCP structure */

t = TCPAlloc();
t->r.StCall = ChanS2NoTel;
t->r.RcvCall = ChanRcv;

t->RcvFifo = FifoInit (inbuf, 512);
t->XmitFifo = FifolInit (outbuf, 512);

/* Set the IP Address */

t->a.Ip[0] = pBIPAddresstoSendto[0];
t->a.Ip[1] = pBIPAddresstoSendto[1l];
t->a.Ip([2] = pBIPAddresstoSendto[2];
t->a.Ip[3] = pBIPAddresstoSendto[3];
t->a.Port = 18245;

for(;;)

{
/* Open an active TCP connection on an available port */
WConnectionOpen = TCPOpen(l, t, 0);
/* Send Data */
/* a0 %/

/* Disconnect the current network connection*/
T Discon(t);

}

The network stack will send the TCP data in an ordinarily fashion. In some cases, the programmer
may wish to request that the packet be sent now. This may be accomplished by ORing the tcp
structures s member sflg with 2 (t->s.sflg |= 2) followed by nice().

UDP Data Transfer

Send block as UDP packet:

main () {

udp_send(target, 1234, 1234, sendbuf, strlen(sendbuf));

/* | | | | | */
/* | | | | Length */
/* | | | Buffer */
/* | | To port */
/* | From port */
/* Destination IP address, 0 for broadcast */

}

Receive UDP packets on port 1234:

28 ¢ Programming Environment Programmer's Guide CoBox

BYTE bbuf[300];
Int buflen;
main () {

udp_register (1234, rcvr);

}

buflen = len;

}

/* rcvr: Demo UDP receive subroutine, called by kernel
/* Parameters:
/* buf UDP content received
/* len Length of UDP content
/* bflg True if block came in by broadcast
/* xip Source IP address (pointer)
/* a Source address structure (pointer)
/* from From port
/* to Destination port
void rcvr (buf, len, bflg, xip, a, from, to)
BYTE *buf, *xip;
AD T *a;
Int len, bflg;
WORD from, to;
{
if(len && (len < 300)) {
memcpy (bbuf, buf, len);

*/
*/
*/
*/
*/
*/
*/
*/
*/

Queues / FIFOs

Function

Serial and TCP queues are handled as FIFOs. The FIFO size must be a power of 2 (i. e.
256,512, 1024,...) PLUS 8 bytes. Initialization of the FIFO is done by using the
Fifolnit() function and the power of 2 size (see TCP example above). The 10Call
function is available for accessing the FIFO.

FIFO Structure

FIFO Control Block Data Block
Input pointer IP | Output pointer OP | Mask Base FIFO Data
(size — 1) | (Pointer to 1% byte
of data block)
WORD WORD WORD | WORD 0...size-1

If IP is equal to OP the FIFO is empty.

If IP is equal to OP — 1 the FIFO is full.
OP — IP = Number of characters stored in FIFO.

Incoming data is stored to IP’s address. Then IP is increased and points to the next

available cell.

The byte below the OP cannot be used. In this case IP would be equal to OP and this
would indicate an empty FIFO. A 128 byte FIFO can only store 127 bytes!

Programmer's Guide CoBox

Programming Environment e 29

Timer

The internal CoBox timer is represented in global variables time and ticks. 1000 ticks is equal to 1
second. The timer resolution for V6 and above is 1 mS for all platforms. That means the timer
value (ticks) will be updated every 1 millisecond. This could change in the future.

Example:

#define wtime ((WORD) time)

#define sticks ((WORD) ticks)

demo () {
DWORD ctime; /* Current time in ms */
DWORD stime; /* Current time in s */
WORD wctime; /* Current time in ms */
WORD wstime; /* Current time in s */

wctime = sticks;

wstime = wtime;

/* Disable interrupts to prevent timer task from changing contents between the
reading of the two variables */

disable () ;
ctime = ticks;
stime = time;
enable () ;
}

LED Control
The LED states are controlled by corresponding global variables of type WORD:
LED Standard function Variable
Green Channel 1 BlinkGWord[0]
Yellow Channel 2 BlinkGWord[1]
Red Error BlinkRWord

The bits of the variables are used to control the LED’s with a clock rate of 0.25 seconds. So the
pattern OXCCCC, which is binary

15(14|13|12|11|10| 9 |8 | 7|6 | 5|4 (3]2]|1]|0

i1({1f({0jJ0f1T|1]0]O0]|1 110|011 11010
will result in a 50% duty cycle LED blinking with a period time of one second.

After executing bit 0 the pattern starts again with bit 15 and so the whole sequence will circle
within a 4 second period.

Any changed variable contents will be activated with the start of a new period. The function
BlinkReset() will start the period immediately.

Example:

BlinkRWord = 0x0000; /* Red LED: OFF */

BlinkGWord[0] = OxFFFF; /* Green LED: always ON */

BlinkGWord[1l] = 0x0005; /* Yellow LED: 2 flashes every 4 s */

BlinkReset () ; /* Set values immediately */
Tasks

Each task has a Task Control Block (TCB). New tasks may be started with the spawn() function.

30 ¢ Programming Environment Programmer's Guide CoBox

BYTE my tcb stack([256];
int my task(void);

spawn (my task, my tcb stack, sizeof(my tcb stack), 0, “my task”);

Streams

Each task has an associated stream. This stream may be the serial port, a TCP FIFO, or not
associated. 10 functions (like printf, getch, etc) operate on the associated stream.

HTTP Server Control
The http server is started via:
spawn(WebProcess, kalloc(WEBSSIZE), WEBSSIZE, 0, “Web1”);
Multiple instances of the http server may be started.

When an http GET request occurs, the memory areas are checked for the file name starting in
WEBDO, then proceeding to WEB1, Web2, etc. The first matching file will then be sent back.

CPK applications may register a callback routine for a specific request by calling
WebMethRegister().

Since the callback routine is called by the WebProcess(), the callback’s associated 10 streams are
the TCP connection FIFOs. This makes it simple to respond to the request by using printf(), or
10Call().

Example:

int my callback (WCT *w, char *path, char *hdr);
WebMethRegister ((“POST”, my callback, “test.cgi”);

int my callback(WCT *w, char *path, char *hdr)

{

--- Do processing of request ---

--- Read from the FIFO to get POST form tags ---
printf (YHTTP/1.0 200 Document follows\r\n”);
printf (“Content-type: text/html\r\n”);

printf (“\r\n”);

printf (“<html><body>");

printf—other html information—

printf (“</body></html>") ;

Hardware Detection

Processor Type
The variable HW.cpu contains the currently used processor type:

HW.cpu Processor

0 NEC V.40

1 AMD 188ES

2 DSTni-LX-001 (186 core) & DSTni-EX

Programmer's Guide CoBox Programming Environment e 31

CPU Clock
The variable HW.cpuclk contains the currently used processor clock frequency in Mhz.

HW.cpuclk Clock Frequency

10 10 Mhz

20 20 Mhz

25 25 Mhz

48 48 Mhz (DSTni-LX/EX)

88 88 Mhz (DSTni-EX Hi-Performancemode)

EEPROM Type
The variable HW.eeprom contains the currently used EEPROM type:

HW.eeprom EEPROM

0 93C46

1 241.C02, 24L.C04, 24L.C16,
AT45DB041B (XPort)

Debugging
There are several methods to help you debug your CPK application.
Serial Port

If you need some debugging information you can use the 2" serial port (if available). Just open a
new channel in main.c:

32 ¢ Programming Environment Programmer's Guide CoBox

#1f DEBUG
int Chan2Stack[200];
extern WORD dioptr, sioptr;

Chan2 () {
extern WORD dioptr;
ActCCB->V24 speed = 0x02; /* 9600 bps */

ActCCB->V24 mode = Oxd4c; /* RS232, 8N1 */
InitLocalChan() ;
dioptr = ActPro->IO Ptr; /* This stores an I/O pointer;

necessary for access and
reference by the main process */

while (1) {
putstr ("\n\rCoBox demo template - DEBUG Port\n\r”);
Monitor () ; /* Start ProMon for debug channel */
}
}
#endif
newmain ()
{
#1f DEBUG

spawn (Chan2, Chan2Stack, sizeof (Chan2Stack), 1, “C2”);
sdelay (500); /* Wait for proper init of channel 2 */
#endif

}

To make it simpler you can define two functions:

void startdebug(void) {
ActPro->IO Ptr = dioptr;

void stopdebug(void) {
ActPro->IO Ptr = sioptr;

}

For output something to the debug port you simply switch the standard output:

#1f DEBUG

startdebug () ;

putstr (“\n\rInit UDP receiver...”);
stopdebug () ;

#endif

Syslog

If there is a syslog server in your network you can use the syslog() function for sending debug
information from the CoBox to the server.

Example:

memset (smtp_s.logmsg, 0, 513); /* Clear old message */
strcpy (smtp_s.logmsg, “Debug information”);
syslog ((WORD) (LOG_NOTICE + LOG_LOCAL7), smtp_ s.logmsg);

UDP

Simply call the udp_send() function to send debugging information. Use either a network sniffer
for receiving and displaying the packets or send it to another UDP receiver program. (If your only
using a sniffer, it might make sense to broadcast the packet.)

Programmer's Guide CoBox Programming Environment e 33

ProMon

ProMon 3.0 can be started with the Monitor() function and allows some simple debugging. See
the “Debug Functions” section.

Telnet
Open a telnet session to the debug port 9998.

Example:

int telnetdebugStack[200];
static BYTE inbuf[128 + 8], outbuf[128 + 8];
WORD telnetptr;

TelnetDebug () { register TCP_t *t; extern int ChanS2(), ChanRcv();
t = TCPAlloc();
t->r.StCall = ChanS2;
t->r.RcvCall = ChanRcv;
t->RcvFifo = FifoInit (inbuf, 128);
t->XmitFifo = FifoInit (outbuf, 128);

ActPro->I0O Ptr = &(t->RcvFifo);

TCPOpen (0, t, 9998); /* Open passive connection to port 9998 */
while (1) {

sdelay (50) ;

t->State = LISTEN;

while (t->State != ESTABLISHED) nice();
Monitor () ; /* Start ProMon, disconnect with Quit */
T Discon(t);

newmain () {

spawn (TelnetDebug, telnetdebugStack, sizeof (telnetdebugStack), -1,
« TelnetDeb »);

sdelay (500);

How to upgrade a project from 4.3 to 4.5

Changes in the programming environment

One major change is an upgrade from Borland C 2.0 to 3.1. This will result in a lot of error
messages when compiling an existing 4.3 program.

This is due to the fact, that this compiler recognizes more possibly wrong syntax. Additionally this
requires prototypes for each function. The appropriate prototypes can be found in the include files
in the inc directory. Below are some items , which have to be added/changed at a minimum.

main.c
#include kernel.h

#include io.h
setpar.c
#define SETUPVAR Setup
#include io.h
int SetParStart(int d);

34 e Programming Environment Programmer's Guide CoBox

How to upgrade a project from 4.5t0 5.0

Changes in the programming environment

CPKS5 includes support for a new processor family used by Lantronix, the DSTni-LX. This

version of the CPK can be used to build software for all the CoBox and UDS family of products.
As such, substantial changes were made to the main.c, Makefile, and linker files. Please review
these files for your current project requirements.

main.c

Add:

/* network driver declaration */
#ifdef NO

extern int NO_DRV;
#endif

#ifdef N1

extern int N1_DRV;
#endif

#ifdef N2

extern int N2_DRV;
#endif

#ifdef N3

extern int N3_DRV;
#endif

#ifdef ND

extern int ND_DRV;
#endif

Add to newmain()

/* network driver initialization */

#pragma warn -eff

#ifdef NO
NO_DRV;

#endif

#ifdef N1
N1_DRV;

#endif

#ifdef N2
N2_DRV;

#endif

#ifdef N3

Programmer's Guide CoBox

Programming Environment e 35

N3_DRV;
#endif
#ifdef ND
ND_DRV;
#endif
#pragma warn +eff
Support Removed

Support for putint(), puthex(), and delay() has been removed in this release. Please use
printf() and sdelay() as substitute routines.

Include Ordering

Include io.h before ip.h.
Include ip.h before tcp.h or udp.h

How to upgrade a project from 5.0 to 5.2

Changes in the programming environment

CPK520 includes support for a new Lantronix product family, the XPort. This version of the CPK
can be used to build software for all the CoBox, UDS and XPort family of products. As such,
several changes were made to the main.c, setpar.c, tools.c, Makefile, and linker files. Please
review these files for your current project requirements. If your target platform is XPort, several
additions have been made for that support.

main.c
Changes to Versionlnit().

setpar.c
Changes in setpar.c:

new *baudratestrings[]
230400 is now valid for DSTni-LX platforms
0 disables the the serial port

XPort does not support RS-485 modes
Function parameters within setpar.c routines may have changed.

#define COBOX added to support long DHCP names

Support Removed from tools.c

Support for longdiv(), Imod(), Imul(), atoi(), a2toi(), a2toh() has been moved into the
kernel.

Support for spri(), putCRLF() has been removed, in favor of printf().

Include file changes
Include ‘kernel’ directory has been removed. Files moved into inc.
Include the following files for XPort builds
#include “.\XPort\bitsXP.h”
#include “..\serf\ECtypes.h”
#include “..\serfl\serflash.h”

36 ¢ Programming Environment Programmer's Guide CoBox

#include <digio.h>
Include the following files for DinRail builds
include <digio.h>

New include file bldFlags.h has been added to all the demos. This contains product specific compile options
and should be included in all application source files.

How to upgrade a project from 5.2 to 5.5

Changes in the programming environment

CPK550 includes support for a two new Lantronix family products, the Micro-100 and the UDS-
200. This version of the CPK can be used to build software for all the CoBox, UDS and XPort
family of products. As such, changes were made to the bldflags.h and Makefile, along with new
linker files for the two new products. Please review these files for your current project
requirements.

XPort timer change

XPort and all other DSTni-LX based products now utilize a 1mS timer, while AMD and NEC
based products utilize a 5mS timer.

Protocol changes to port Ox77F0

Port 0x77f0 now supports UDP, and the underlying protocol has changed. See the GPIO Control
Interface document for this new protocol definition.

XPort & Serfl include directories moved

The Xport & serfl directories are now located below the inc directory.

How to upgrade a project from 5.5to 5.51

Changes in the programming environment

CPK551 includes support for a three new Lantronix family products, the SDS-1100, SDS-2100
and the XPort EX. This version of the CPK can be used to build software for all the CoBox, UDS
and XPort family of products. As such, changes were made to the bldflags.h and Makefile, along
with new linker files for the three new products. In addition, four new libraries have been added.
Please review these files for your current project requirements.

Main.c change

Due to kernel reorganization, you MUST add one additional declaration. Changes were made to
the demo main.c files to reflect this change. Please add the following line in your project:

BYTE hls[75];
Setpar.c change

The XPort EX has the ability to run at serial speeds of up to 920Kbps. However, setting this baud
rate also requires changing the CPU clock speed. These changes are made in Setup record 3.
Setup record 3, also contains other kernel specific values. Avoid using record 3 in your project.

XPort & Serfl include directories moved

The Xport & serfl directories are now located below the inc directory.

Programmer's Guide CoBox Programming Environment e 37

How to upgrade a project from 5.51to0 5.8

Changes in the programming environment

CPK580 includes support for a two new Lantronix family products, the WiPort and the WiBox.
This version of the CPK can be used to build software for all the CoBox, UDS and XPort family of
products. As such, changes were made to the bldflags.h and Makefile, along with new linker files
for the two new products. In addition, new libraries have been added. Please review these files for
your current project requirements.

Main.c change

Additional include files were added to main.c to support the two new wireless products. The byte-
order of firmwarecheck was changed.

Setpar.c change

Additional include files were added to main.c to support the two new wireless products, along with
RS-485 support in the XPort. The setup menu now includes these new options.

WiFi.c added

WiFi.c contains the standard setup configuration dialog for the wireless interface. It is located in
the stdf directory.

Version file change

The version file format changed, and as such, you must use the new e2i.exe provided.

Other changes
Added documentation as to “How to send a ping”.
Added documentation to CoBOS Ethernet frame handling.
Fixed a bug in putchar() of tools.c.
Micro-100 now uses virtual 10 (pios). Added support in Versionlnit via bldflags.
Added SetServicePort() to set port number for a specific service (HTTP, SMTP).
Changed Makefiles to include relative path to E2I.EXE.

How to upgrade a project from 5.8 to 6.1

Changes in the programming environment

CPK6101 includes support for only the Lantronix DSTni based family of products. This version
of the CPK can not be used to build software for the older CoBox, Micro, Mini, UDS-10 or any
other NEC, AMD or InnvoASIC CPU based product. A major change in V6 is the ability to
support ROM images that are greater than 64KB in size. As such, changes were made to the
flash file systems, bldflags.h, Makefile, and the directory structure; along with new linker files for
the products. In addition, the libraries have been changed. Please review these files for your
current project requirements. In order to build the larger than 64KB ROM images, you must have
TASM.EXE.

There is no direct firmware conversion from V5.8 to V6.1 for some products. You must load an
intermediate ROM image that understands the new flash file system layout. After the “upgrade”
process, you may simply use the normal tftp process to reflash the firmware. Be aware that the
new flash process writes directly to flash and will take longer (possibly 20 seconds or more) than
the old process which cached the data first.

38 ¢ Programming Environment Programmer's Guide CoBox

The V6 build process will attempt to relocate pieces of code into RAM2 and RAM3. In order to
make this happen, the linker will need to make multiple passes. The make process will find the far
links and create the required “proxy” code to access those far modules.

The product “small” builds (ie: xptexs.rom) will attempt to keep the single ROM image as 64KB.
The normal build (xptex.rom), will attempt to locate your application in RAM2 while the rest of
the code resides in RAM3. You can change the location of certain code pieces by manipulating
the Makefile.

Main.c change
Changes were made to support additional security settings.
GLOBAL BYTE ethmode is added to support Ethernet Mode (duplex, and speed) selection.

MTU size is now defined in Versionlnit().

Setpar.c change
Changes were made to factory_defaults(), now called default_setup().
Record 1 will now be reset.

Additional setup menu options were added to support the security settings. Please review these
changes.

Demo.c change
Pointers to functions MUST be declared in global space (NOT statically defined).

Changes were made to demo.c to assit in automatic testing.

Other changes
WPA is now supported.

The radio firmware of the WiPort is no longer a separate file. The radio firmware is now
integrated into the WiPort ROM image.

WPT.ROM and WBX.ROM no longer exist. These have been replaced by WPT_AGR.ROM and
WBX_AGR.ROM. New additions WPT_MRV.ROM and WBX_MRV.ROM are added to support
the new WiPort’s B/G radio.

Addition support was added for new products (UDS-1100, WiPort G, and DRIG).

How to upgrade a project from 6.1 to 6.5

Changes in the programming environment

CPK®6500 includes support for same devices as in CPK6101 except Agere radio based products
(WBX_AGR, & WPT_AGR) have been dropped. New support has been added for the UDS2100,
SDS1101, SDS2101, Matchport BG and the Xpress DR+ wireless. It is no longer possible to build
a 64KB ROM image for the wireless devices. All wireless products now use a version of crypt,
crypt2 and suppwpa libraries which have portions of their code located in TXT1 which will limit
your available CODE space. In order to build the larger than 64KB ROM images or any wireless
product, you must have TASM.EXE.

The V6 build process will attempt to relocate pieces of code into RAM2 and RAM3. In order to
make this happen, the linker will need to make multiple passes. The make process will find the far
links and create the required “proxy” code to access those far modules. During the first pass of the
linker it is normal to see FIXUP errors. These errors should not be seen on the final link pass.

The product “small” builds (ie: xptexs.rom) will attempt to keep the single CODE segment as
64KB. The normal build (xptex.rom), will attempt to locate your application in TXT1 (RAM2)

Programmer's Guide CoBox Programming Environment e 39

while the rest of the code resides in TEXT (RAM3). You can change the location of certain code
pieces by manipulating the Makefile.

SNMP functions referenced from the MIB should be built with G_FLAGS (located in TEXT not
TXT1).

Main.c change

Changes were made to support additional network interfaces which includes two new external
references. Versionlnit() was changed to add support for arp cache timeout and multiple network
interfaces.

Setpar.c change

All instances of putcst_pde were changed to putst_pde.

A bug was fix in the baudratestrings array.

defaultWiFiSettings() now takes two parameters. Source code is available in stdf\wifi.c.
Demo.c change

All instances to ChanS2() have been changed to ChanS2NoTel() so telnet mode is no longer the
default in the demo projects. All references to GChanS2() have been removed.

SNMP change
The entry point for your SNMP mib has changed from priv_mib to data_priv_mib.
Other changes

Part of 802.11i is now supported on the wireless products.

All references to \n\r have been changed to \r\n in the demos.

How to upgrade a project from 6.5 to 6.7

Changes in the programming environment

CPK6702 includes support for most devices as in CPK6501 with additional support for XPort-
Direct+, Micro-125 and MatchPort-NR. XPort-01 was dropped in this release.

Changes were made to the build process for wireless devices. Several modules in the wireless
build are now located in the second CODE segment (TXT1) due to code expansion of the wireless
requirements. As such, a wireless application of CPK6501 might not fit in CPK6702.

How to upgrade a project from 6.7 to 6.8

Changes in the programming environment

CPK®6800 includes support for most devices as in CPK6702 with additional support for xPico.
Support for Micro-100 has been dropped in this release.

(CPK6802p1) Main.c Versionlnit assigns value to reTxTime to support variable TCP
retransmission time.

How to upgrade a project from 6.8.0.0 to 6.8.0.2

Changes in the programming environment

CPK6802 includes the same support as CPK6800 with updated libs and two bug fixes. If you are
using CPK6800p1, the only changes are to \inc and \lib directories.

40 ¢ Programming Environment Programmer's Guide CoBox

How to upgrade a project from 6.8.0.2 to 6.9.0.3

Changes in the programming environment

CPK6903 includes the same support as CPK6802 with new support for xDirect and XPort-05. The
XPort-05 has the same build directions as XPort-04 with a different firmware key.

Other changes

Slight changes were made for beautification of the demos without affecting functionality.

How to upgrade a project from 6.9.0.3 to 6.10.0.0

Changes in the programming environment

CPK®61000 includes the build tool chain change from Borland to Paradigm. It is expected that
your programs should build and run without problem; however, you should validate these new
images carefully.

Other changes

Slight changes were made for linkage of the demos without affecting functionality in main.c.
Demos 11 & 16 now include a new stubbed function (snmp_upcall() which is called at the
beginning and end of the kernel snmp handler), see snmp.c and demo.c respectively.

How to upgrade a project from 6.10.0.0t0 6.11.0.0

Changes in the programming environment
CPK61100 includes the build tool chain from Paradigm (as above).

Other changes

This version supports 6 byte MAC addresses for the Micro-125, XPort-Direct+ and UDS1100.
New UDS1100 hardware is NOT supported by previous CPK versions due to larger EEPROM
size.

The link files were changed to use tcpipN.lib instead of the old tcpip.lib. The ‘N’ versions of the
library do NOT include RFC-2217 support and are therefore smaller saving 4KB of CODE and
about 752B of RAM.

How to upgrade a project from 6.11.0.0 to 6.11.0.10

Changes in the programming environment
None.

Slight changes were made to demo 10 to accomidate future expansion.

Other changes

This version supports new XPress-DR3, xPico110 and a security enhancement.

Additional Notes

Library Functions

All library functions are compiled into libraries. To use them, you must include the related library
into your project.

Programmer's Guide CoBox Programming Environment ¢ 41

Tools

All tools are available as source code. You can either include tools. c into your project or copy
the functions you need into your own source.

42 ¢ Programming Environment Programmer's Guide CoBox

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

fprintf

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

get_int

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

get_ips

Description:

Input and Output Functions
Flushin

Clears input buffer of associated stream.
kernl00.1lib, kernMAC.lib
io.h

int Flushln(void)

None

Print formatted into a FIFO.

kernl100.1ib, kernMAC.lib

io.h

int fprintf(WORD *FIFO, const char *format, d1, ..., dx)

*FIFO = pointer to FIFO
format = format string
dl...dx = data to be printed

See printf() for format variables table.

1=0K
-1 = Stream not open (null-pointer)

Get one char of associated stream.
kernl00.1lib

io.h

char getch(void)

None

Received char (blocking)

Get integer value from a string. Get_int() will skip over leading
characters that are less than 0x20.

kernl00.1ib, kernMAC.lib
io.h
char *get_int(BYTE *buf, WORD *value)

*puf = pointer to string
*value = pointer to value

Pointer to char terminating the value
0 = No value parsed

Get IP address from a string. Get_ips() will skip over leading

Programmer's Guide CoBox

Programming Environment e 43

Location:
Prototype:
Syntax:

Parameter:

Return value:

gethex

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

gethex8

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

getint8

Description:

characters that are less than 0x20.
kernl100.1ib, kernMAC.lib

io.h
char *get_ips(char *buf, BYTE *ip)
*puf = pointer to string

*ip = pointer to IP address (4 bytes)

Pointer to character terminating the string
Null pointer = Error

Read hexadecimal value while optionally printing the current
value. If v is 0, the contents of vl will be printed as a prompt.
The new value will be stored in vl. However, if vl is NULL, no
value will be printed and the new value will be stored in v.

kernl00.1lib, kernMAC.lib
io.h

char gethex(WORD *v, WORD *vl)
*v = value

*vl = last value

char value

Read one hexadecimal byte while optionally printing the current
value. Ifv is 0, the contents of vl will be printed as a prompt.
The new value will be stored in vl. However, if vl is NULL, no
value will be printed and the new value will be stored in v.

kernl00.1ib, kernMAC.lib
io.h

int gethex8(BYTE *v, BYTE *vl)
*v = value

*vl = last value

Last input character

Read integer value while optionally printing the current value.
If v is 0, the contents of vl will be printed as a prompt. The new
value will be stored in vl. However, if vl is NULL, no value
will be printed and the new value will be stored in v.

kernl00.1ib, kernMAC.lib
io.h
int getint(WORD *v, WORD *vl)

*v = value
*vl = last value

Value

Read one integer byte value while optionally printing the current
value. If v is 0, the contents of vl will be printed as a prompt.
The new value will be stored in vl. However, if vl is NULL, no
value will be printed and the new value will be stored in v.

44 ¢ Programming Environment

Programmer's Guide CoBox

getip

getstr

getyn

Location:
Prototype:
Syntax:

Parameter:

Return value:

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

getynt

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

kernl00.1lib, kernMAC.lib
io.h
int getint8(BYTE *v, BYTE *vl)

*v = value
*v| = last value

Value

Read a 4 bytes IP address as 4 decimal values. The current
address bytes are printed out in decimal and can be used as a
value when pressing <Enter> or a point.

kernl00.1lib, kernMAC.lib
io.h

void getip(BYTE *p)

*p = pointer to IP address

None

Read a string with echo. ATTENTION, the string must have a
size of at least (maxlen + 1) 111

kernl100.1ib, kernMAC.lib
io.h
int getstr(char *buf, int maxlen)

buf = pointer to string
maxlen = max. string length

TRUE = if chararacters are placed in buf
FALSE = otherwise

Read boolean value from input. If only <Enter> is pressed the
default value is used.

kernl00.1ib, kernMAC.lib
io.h

int getyn(int default)
default=1ifY,0if N
1ifY,0ifN

Read boolean value with writing default.. If only <Enter> is
pressed the default value is used.

kernl100.1ib, kernMAC.lib
io.h

int getynt(int default)

default=1if Y, 0if N

1ifY,0ifN

Programmer's Guide CoBox

Programming Environment e 45

kbhit

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

OutBuf

printf

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

Check and return number of bytes available for reading from
associated stream.

kernl00.1lib, kernMAC.lib
io.h

int kbhit(void)

None

Number of characters available for reading.

Check and return number of bytes available for writing to the
associated stream.

kernl100.1ib, kernMAC.lib
io.h

int OutBuf(void)

None

Number of characters available for writing.

Print formatted to associated stream.
kernl00.1lib, kernMAC.lib
io.h

int printf(const char *format, d1, ..., dx)

format = format string
dl...dx = data to be printed

Always 1

Following format string variables are supported:

46 ¢ Programming Environment

Programmer's Guide CoBox

Format
Type string | Remarks
unsigned int %nu n is single digit length
signed int %nd n is single digit length
hex %nx n is single digit length
char %c single char
string %ns n is single digit length
time %T Time in ms is argument, prints as xxx.yyy (y seconds
(dword) fractions)
pointer %P Prints pointer as Xxxxx:yyyy
(long)
IP address %nA | With n == 3, fixed format, without n no leading zeroes
Hardware %nH With n =0, xx:yy:zz format, with n == 0 xxyyzz format,
address hardware address is BYTE * parameter,
IF PARAMETER IS (BYTE *) 0, the own address is
printed
Serial %S Lantronix serial number (7 digits)
number
Software %nV | Lantronix UDS Software Version, format Vx.y or x.ybz.
version If parameter n =! 0, include release date (yymmdd)
Description: Send one character on associated stream via sendblk.
Location: kernl00.1ib, kernMAC.lib
Prototype: io.h
Syntax: void putch(BYTE c)
Parameter: ¢ = character to send

Return value:

putcstr

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

None

Writes a string constant to associated stream (1). To output the
same string again simply call the function (or putcstn()) only
with the label (2).

This function saves memory because all strings are stored only
once. The strings are converted into the files texte.asm and
texte.h bythe £ilt program.

kernl100.1ib, kernMAC.lib

io.h

(1) void putcstr(T_TXT1/*“Demo project“*/)
(2) void putcstr(T_TXT1)

Label [and string].

None

Programmer's Guide CoBox

Programming Environment e 47

putcstn

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

sendblk

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

Writes a string constant to associated stream with leading CRLF
(1). To output the same string again simply call the function (or
putcstr()) only with the label (2).

This function saves memory because all strings are stored only
once. The strings are converted into the files texte .asm and
texte.h bythe £ilt program.

kernl100.1ib, kernMAC.lib

io.h

(1) void putcstn(T _TXT1/*“Demo project“*/)
(2) void putcstn(T_TXT1)

Label [and string].

None

Write “Y* or ‘N* depending on parameter.
kernl00.1lib, kernMAC.lib
io.h

void putyn(int i)

i=1for ‘Y or 0 for ‘N*

None

Send data on serial interface with automatic interface
recognition (RS232/RS485).
This is not a library function but defined in tools.c.

tools.c

void sendblk(BYTE *sh, WORD len)

*sb = send buffer
len = number of chars to send

None

48 ¢ Programming Environment

Programmer's Guide CoBox

sprintf
Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

Print formatted into a string.
kernl00.1lib, kernMAC.lib

io.h

int sprintf(char *string, const char *format, d1, ..

*string = pointer to string
format = format string
dl...dx = data to be printed

See printf() for format variables table.
Always 1

., dx)

Programmer's Guide CoBox

Programming Environment e 49

Format Conversions

aztoh
Description: Converts two-digit hex values in ASCII notation to integer.
Location: kernl100.1ib, kernMAC.lib
Prototype: kernel.h
Syntax: BYTE pascal a2toh(char *p)
Parameter: *p = hex string to convert

a2toi

atoi

Return value:

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

decodeBase64

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

Integer value of hex string

atoi() with only two digits.
kernl100.1ib, kernMAC.lib
None

pascal a2toi(char *p)

*p = two-digit decimal value

Integer value of p

Convert an ASCII string to integer.
kernl00.1ib, kernMAC.lib
kernel.h

WORD pascal atoi(char *p)

*p = integer value as ASCII string

Integer value of p

Convert a base64 encoded string into a byte array.

kernl100.1ib, kernMAC.lib

void decodeBase64(BYTE *chBase64, BY TE*chStr)

*chBase64 = pointer to Base64 encoded string
*chStr = pointer to array to receive the decoded string
None

50 ¢ Programming Environment

Programmer's Guide CoBox

encodeBaseb4

Description: Converts a byte array into a base64 encoded string.
Location: kernl00.1lib, kernMAC.lib

Prototype:

Syntax: void encodeBase64 (BYTE *bStr, WORD bLen,

BYTE *chBase64
Parameter: *bStr = pointer to source string to be encoded
bLen = number of BYTES to encode
*chBase64 = pointer to array to receive the encoded array

Return value: None

Programmer's Guide CoBox Programming Environment e 51

Time Functions
get_trand

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

sdelay

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

MsGet

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

Get timer random value, used for random seed.

kernl00.1lib, kernMAC.lib
kernel.h

WORD get_trand(void)

None

Timer value

Wait for a specified time period. During delay time the

multitasking is enabled.
kernl100.1ib, kernMAC.lib

kernel.h
void sdelay(WORD t)
t = delay time in ms

None

Get actual seconds fraction.
kernl00.1ib, kernMAC.lib
kernel.h

DWORD MsGet(void)

None

Actual timer value in ms (seconds fraction)

52 ¢ Programming Environment

Programmer's Guide CoBox

Math Functions

Imod

Imul

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

longdiv

Description:
Location:
Prototype:
Syntax:

Parameter:

cReturn value:

Mod long with int.

kernl00.1lib, kernMAC.lib
kernel.h

WORD Imod(DWORD Ix, WORD y)

Ix
y
Ix%y

Multiplication of long with int to long: long*int = long.

ATTENTION:
The call of the function must have the following syntax:

resultlong = 1lmul (longvalue, intvalue);

The function then creates two nibbles out of the word. That
means defined with three parameters but called with two!

kernl100.1ib, kernMAC.lib
kernel.h

DWORD Imul(WORD I, Ih, cons)
called as

DWORD Imul(DWORD Iw, WORD cons)

11, 1h = the two words of the long value
cons = the integer value

IlIh*cons

Div long with int.

kernl100.1ib, kernMAC.lib
kernel.h

DWORD longdiv(DWORD Ix, WORD y)

Ix
y
Ixly

Programmer's Guide CoBox

Programming Environment e 53

String Functions

sprl

strchr

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

strcpy

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

strcmp

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

Simulates something like a sprintf(). Prints a long value into a
string. The string length is always 10 chars.

tools.c
None
BYTE *sprl(BYTE *p, DWORD val)

*p = where to put string (len must be min. 10)
val = integer value for conversion

Pointer to end of created string

Search for first appearance of a character in a string.
romlib.lib

string.h

char *strchr(char *s, int c)

*s = string
¢ = character

Pointer to ¢ in string

This copies characters from the string from (up to and including
the terminating null character) into the string to. Like
memcpy(), this function has undefinded results if the strings
overlap.

romlib.1lib
string.h
void strcpy(char *to, char *from)

*to = first string
*from = second string

None

The strcmp function compares the strings s1 and s2.
romlib.1lib

string.h

int strcmp(char *s1, char *s2)

*s1 = string 1
*s2 = string 2
<0ifsl<s2
==0if sl and s2 are equal
>0ifsl>s2

54 ¢ Programming Environment

Programmer's Guide CoBox

strncmp

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

The strncmp function compares the first len characters of the

strings s1 and s2.
romlib.1lib

string.h
int strcmp(char *s1, char *s2, unsigned len)
*s1 = string 1

*s2 = string 2
len = number of chars to compare

<0ifsl<s2
== 0 if first len bytes of s1 and s2 are equal
>0ifsl>s2

Get string length.
romlib.lib
string.h

int strlen(char *s)
*s = string

String length.

Programmer's Guide CoBox

Programming Environment e 55

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

MBufGet()

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

MBufFree()

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

memset

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

Memory Functions
MBufInit()

This function initialises up to 32 1KB pool buffers in RAMO
kernl00.1lib, kernMAC.lib

mbuf.h

void MBuflnit(void)

None.

None.

This function allocates one buffer from the pool.
kernl100.1ib, kernMAC.lib

mbuf.h

void *MBufGet(void)

None.

Pointer to 1KB buffer

This function frees the buffer back to the pool.
kernl100.1ib, kernMAC.lib

mpbuf.h

void MBufFree(void *buf)

buf = buffer to free.

None.

This function copies the value of ¢ into each of the first size
bytes of the object beginning at block.

romlib.1lib
memory.h
void memset(BY TE *block, int ¢, WORD size)

*block = buffer
¢ = value
size = number of bytes to fill

None.

56 ¢ Programming Environment

Programmer's Guide CoBox

memcpy

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

memcmp

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

movedata

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

This function copies size bytes from the object beginning at
from into the object beginning at to. The behavior if this
function is undefined if the two arrays to and from overlap.

romlib.1lib
memory.h
BYTE memcpy(BYTE *to, BYTE *from, WORD size)

*to = buffer 1
*from = buffer 2
size = number of bytes to copy

The value returned by memcpy() is the value of to.

Compares the first len bytes of two blocks.

romlib.lib

memory.h

int memcmp(const void *to, const void *from, WORD len)

*to = buffer 1
*from = buffer 2
len = number of bytes to compare

<0 if buffer 1 < buffer 2
== 0 if first len bytes of buffer 1 and buffer 2 are equal
> 0 if buffer 1 > buffer 2

This function copies len bytes from source address to destination

address over different segments (far copy).

memory.h

void movedata(WORD fseg, WORD from, WORD tseg,
WORD to, WORD len)

fseg = source segment

from = source address

tseg = destination segment

to = destination address

len = number of bytes to copy

None

Programmer's Guide CoBox

Programming Environment e 57

UDP Functions

udp_register

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

udp_reregister

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

udp_send

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

Set function to be called for incoming data on this port number.
This function will handle the incoming datagram.

Example:
udp_register(1234, (PTF) rcvr)
Prototype for receiver function:

rcvr(BYTE *buf, int len, int bflg, BYTE *xip, AD_T *a,
WORD from, WORD to)

Parameters:

buf UDP content received
len Length of UDP content
bflg True if block came in by broadcast

Xip Source IP address (pointer)

a Source address structure (pointer)
from From port

to Destination port

tcpip.lib

udp.h

udp_register(WORD port, PTF funct)

port = port number
funct = pointer to receiver function for this port number

Always 1

Change or delete a registered function for a specific port
number.

tcpip.lib
udp.h
int udp_reregister(WORD port, PTF funct)

port = port number to change
funct = pointer to new function for this port number or NULL
for removing the actual function

Always 1

Send a buffer contents using UDP.
tcpip.lib
udp.h

int udp_send(BYTE *ipaddr, WORD srcport, WORD destport,
BYTE *buf, WORD len)

*ipaddr: IP address of target, 0 (NULL) for broadcast

srcport: Source port number

destport: Destination port number

*puf: Buffer

len: Number of bytes to send

0 - success

58 ¢ Programming Environment

Programmer's Guide CoBox

udp_sehw

Description: Send a buffer contents using UDP.

Location: tcpip.lib

Prototype: udp.h

Syntax: int udp_sehw(AD_T *adr, WORD srcport, WORD destport,

BYTE *buf,int len)
adr: filled in address structure of destination

Parameter:
srcport: Source port number
destport: Destination port number
*puf: Buffer
len: Number of bytes to send
Return value: 0 -success

Programmer's Guide CoBox Programming Environment e 59

TCP Functions
TCPAlloc

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

TCPOpen

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

TcpWriteNB

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

T _Discon

Description:
Location:
Prototype:
Syntax:

Parameter:

Allocate a TCP structure.

tcpip.lib, tcpl2.lib, tcpl6.lib
tcp.h

TCP_tt = TCPAlloc(void)

None

TCP structure

Open a TCP connection.

tcpip.lib, tcpl2.lib, tcpl6.lib
tcp.h

int TCPOpen(int mode, TCP_t *t, int port)

int mode = 0 for passive connection, 1 for active connection
*t = TCP structure

port = TCP port number to open. When mode = 1 (active
connection) the port can be zero, then every connection gets a
unique port number.

0=0K
-1 = active open failed

TCP Write without FIFO.

tcpip.lib, tcpl2.lib, tcpl6.lib

tcp.h

WORD TcpWriteNB(TCP_t *t, void far *s, WORD len)

*t = TCP structure

*s = data buffer

len = number of bytes to send
Number of bytes written

Close TCP connection.

tcpip.lib, tcpl2.lib, tcpl6.lib
tcp.h

void T_Discon(TCP_t t)

T = TCP structure

60 ¢ Programming Environment

Programmer's Guide CoBox

Return value: None

T _Disc

Description: Close TCP connection.

Location: tcpip.lib, tcpl2.lib, tcpl6.lib

Prototype: tep.h

Syntax: void T_Disc(TCP_t t, int timeout)

Parameter: T = TCP structure
Timeout = milliseconds to wait before forcing the connection
closed

Return value: None

ChanRcv
Description: TCP connection receiver. ChanRcv is called when data has
been received on connection. The standard function places
the data into the receive FIFO.

Location: tcpip.lib, tcpl2.lib, tcpl6.lib

Prototype: None

Syntax: int ChanRcv(TCP_t *t, BYTE *buf, int len)

Parameter: T = pointer to a TCP_t structure
*buf = pointer to a receive buffer
len = number of bytes received

Return value: > int, but returns nothing... This should be changed to void.

Programmer's Guide CoBox Programming Environment e 61

ChanS2, ChanS2NoTel

Description: TCP connection status function. ChanS2 is call upon five
different conditions or states of the TCP connection. The
standard function will enable Telnet protocol. ChanS2NoTel
will NOT enable telnet protocol.

Location: kern100.lib, kernMAC.lib

Prototype: None

Syntax: WORD ChanS2(TCP_t *t, int function, int option)
WORD ChanS2NoTel(TCP_t *t, int function, int option)

Parameter: t = pointer to a TCP_t structure

> function = connection function state
> option = function option

Return value: Always 1

Function Option Meaning

1 Unused Upon receipt of first TCP SYNC packet. Return 1 to accept
connection, 0 to deny.

2 Unused Upon state being reset to LISTEN - connection ended.

3 N/A Reserved

4 Int Upon acceptance of the connection, and switching to
ESTABLISHED. Option is 0 for incoming, 1 for outgoing
connection.

5 Unused Used when t->RcvFifo is NULL. This call needs to return

the size of the buffer available for incoming TCP packets.

The tcp stack will advertize this as the 'window size'.

If you need to write your own TCP Channel Status function. For example :
int GChanS2(TCP_t *, int typ, int mode)

{
if (typ==4) {
t->TelBits=0; /* Not a telnet connection */
}
return(l);
}

62 ¢ Programming Environment Programmer's Guide CoBox

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

SaveCPsettings

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

dio_vbit_init

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

dio_vbit_in

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

Configurable Pin Functions
defaultCP_settings

Set Default Configurable Pin Settings into S_tmpRec7
<prod>.lib
bitsXP.h

void defaultCP_settings(void);

None

None

Save settings from S_tmpRec7 into working DIO structure
<prod>.lib
bitsXP.h

void SaveCPsettings(void);

None

None

Initialize low level PIO settings
<prod>.lib
digio.h

void dio_vbit_init(void);

None

None

Set configurable pin to input

<prod>.lib

digio.h

void dio_vbit_in(WORD pin);

pin = CPO .. CP7, DCD, CTS, LEDR (see platform\bits.h &

digio.h)
None

Programmer's Guide CoBox

Programming Environment e 63

dio_vbit_out

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

dio_vbit_read

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

dio_vbit_reset

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

dio_vbit_set

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

Set configurable pin to output, and set state
<prod>.lib

digio.h

void dio_vbit_out(WORD pin, WORD val);

pin = CP0 .. CP7, DCD, CTS, LEDR (see platform\bits.h &
digio.h)

val=0or1l

None

Read configurable pin

<prod>.lib

digio.h

int dio_vbit_read(WORD pin);

pin = CP0O .. CP7, DCD, CTS, LEDR (see platform\bits.h &

digio.h)
int=0or1

Reset configurable pin

<prod>.lib

digio.h

void dio_vbit_reset(WORD pin);

pin = CP0 .. CP7, DCD, CTS, LEDR (see platform\bits.h &

digio.h)
None

Set configurable pin

<prod>.lib

digio.h

void dio_vbit_set(WORD pin);

pin = CP0 .. CP7, DCD, CTS, LEDR (see platform\bits.h &

digio.h)
None

64 ¢ Programming Environment

Programmer's Guide CoBox

dio_vbit_setres

Description: Set or reset configurable pin

Location: <prod>.lib

Prototype: digio.h

Syntax: void dio_vbit_setres(WORD pin, WORD val);

Parameter: pin = CP0 .. CP7, DCD, CTS, LEDR (see platform\bits.h &
digio.h)
val=0orl

Return value: None

Programmer's Guide CoBox Programming Environment e 65

Web Functions

SetServicePort

Description: Set the port number for a particular service
Location: kernel.lib

Prototype: kernel.h

Syntax: void SetServicePort(WORD srv, WORD port_number);
Parameter: Srv = service

port_number = service socket port number

Return value:

WebMethRegister

Description: Add a callback method for web requests

Location: web.1lib

Prototype: web.h

Syntax: int WebMethRegister(char *meth, int (*f)(), char *path);
Parameter: meth = http method (POST, GET, HEAD)

f = callback function (must be declared global)
path = relative path following http://<ip_address>/

Return value:

Example:

WebMethRegister(*‘GET”, my_callback, “call_my_callback.cgi”);
int my_callback(WCT *w, char *file, char *hdr);

66 ¢ Programming Environment Programmer's Guide CoBox

DNS Functions

dns_resolve

Description: Returns the IP address for a given hostname.
Location: tcpip.lib, tcpl2.1lib, tcpl6.lib
Prototype: ip.h
Syntax: DWORD dns_resolve(char *hostname)
Parameter: *hostname = name to resolve

The name server IP address has to be set in the IP structure.
Return value: IP address, 0.0.0.0 if error occurred
Example:
ip.ns[0] = 194; /* set the name server IP address */
ip.ns[1] = 39;
ip.ns[2] = 78;
ip.ns[3] = 11;
* ((DWORD *) ip.addr) = dns_resolve (“jl232.pronet.de”);
printf (“IP address is: $A\n\r”, ip.addr);

Programmer's Guide CoBox Programming Environment e 67

Multitasking Functions

Kill

nice

reset

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

spawn

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

Terminate a process.
kernl100.1lib

None

void kill(TCB *proc_tch)
*proc_tch = TCB of process to kill

None

Allow changing of the Task Control Block.
kernl00.1lib

kernel.h

void nice(void)

None

None

Reset device immediately.
kernl00.1ib
kernel.h

void reset(void)

None

None

Start a new process
kernl00.1ib
kernel.h

void spawn(void *start, BYTE *newtcb, int size, int Chan, char
*Name);

*start = process name (function)

*newtch = Stack

size = Stack size

Chan = 0: using first serial interface
= 1: using second serial interface
=-1: no serial interface used

*Name = Process name shown in process table

None

68 ¢ Programming Environment

Programmer's Guide CoBox

FIFO Control

Fifolnit

Description: Initialize a FIFO.

Location: kernl00.1ib

Prototype: io.h

Syntax: WORD Fifolnit(BYTE *buf, int size)

Parameter: size = size of FIFO. Must be a power of 2!
buf = memory used for storing the FIFO. buf must be at least
size + 8 bytes large as it contains also the FIFO control block.

Return value: Pointer to FIFO.

IOCall

Description: The 10Call function accesses the queue p and executes function
f. Depending on function f additional paramters might be
needed.

Location: kernl00.1lib

Prototype: io.h

Syntax: int IOCall(f, p [X])

Parameter: f= Function
p = Address of a pointer to FIFO (see Example)
x = Additional parameters
Defined functions:
f x Function
0 none Check and return number of bytes available for reading
1 none Get one byte out of queue
2 NOT IMPLEMENTED
3 none Clear buffer
4 none Check and return free buffer space available for storing
5 byte Store one byte into queue
6 buf, len Store many bytes from buf in queue. 10Call() returns

when whole buffer is sent.

7 byte “Unget”, stuff byte back to top of queue
8 NOT IMPLEMENTED
9 none Buffer size, return value is “mask”, which is equ. to size-1

Return value: Seetable.

Example:

Each process — and thus channel control block — has two FIFO’s for input and output functions
defined. The addresses of these FIFO’s are stored in a structure, to which a pointer is held in the
TCB (task control block):

ActPro->10_Ptr points to a array, containing two pointers to FIFO’s
ActPro->10_Ptr[0] the input queue address
ActPro->10_Ptr[1] the output queue address

Clear the output queue of the associated stream. This can be either a serial or a TCP stream.

IOCall (3, (BYTE *) &ActPro->IO Ptr[l]);
IOCall (3, (BYTE *) &t->XmitFifo);

Programmer's Guide CoBox Programming Environment e 69

LED Control

BlinkReset
Description: Use updated LED variables immediately.
Location: kernl00.1lib
Prototype: kernel.h
Syntax: void BlinkReset(void)
Parameter: None
Return value: None
error
Description: Red LED is on, yellow LED shows error code. After 20 seconds
the device is resetting.
Location: kernl00.1lib
Prototype: kernel.h
Syntax: void error(WORD w)
Parameter: w = BlinkGWord[1]
Return value: ~ None

70 ¢ Programming Environment Programmer's Guide CoBox

Serial Port Control

InitLocalChan

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

InitLocallO

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

lio_cts

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

lio_dcd

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

Init of channel specific setup, interrupt controlled drivers are
activated with full support (flow control, etc.), buffers are
flushed, hardware “unlocked”, status reset.

To switch serial interface specifics (i. e. flow control method)
the settings have to be put in the channel control block (CCB)
and InitLocalChan() must be called for the changes to take
effect. Buffers will be flushed.

kernl00.1lib
io.h

void InitLocalChan()
None

None

General serial interface reset, setup of vectors, hardware
detection. Should only be used at bootup time. Serial “debug
driver” is initialized on first channel, polled I/O.

kernl00.1lib
io.h

void InitLocallO()
None

None

Set state of CTS line. Accesses currently active interface.
kernl100.1lib

io.h

void lio_cts(int state)

TRUE or FALSE

None

Set state of DCD line. Accesses currently active interface.
kernl00.1ib

io.h

void lio_dcd(int state)

TRUE or FALSE

None

Programmer's Guide CoBox

Programming Environment e 71

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

Note:

lio_rts

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

lio_cok

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

lio_rva

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

Set transmit state of RS485/2-wire interface.
kernl00.1lib

io.h

void lio_tx(int state)

state = 0: disable, 1: enable

None

Handled by the EX kernel on some platforms

Get state of RTS line. Accesses currently active interface.
kernl00.1lib

io.h

int lio_rts(void)

None

Returns, always True, at the moment

Get state of DTR line. Accesses currently active interface
kernl00.1lib

None

int lio_cok(void)

None

TRUE or FALSE

Set state of RVA pin.
kernl00.1ib
None

void lio_rva(int state)
TRUE or FALSE

None

72 ¢ Programming Environment

Programmer's Guide CoBox

LIOObuf

Description: Get empty state of the transmit register
Location: kernl00.1ib
Prototype: lo.h
Syntax: WORD LI00Obuf()
Parameter: None
Return value: 0 if empty, non zero otherwise
LioBrk
Description: Send a break signal. LioBrk sends a break on the channel
defined by the ccbh.
Location: kernl00.1ib

uds.lib: for the AMD platforms (UDS10,
Mini REv2, Micro, FL, ...)

ecl.lib: for DSTNILX platfoms (UDS100
only at the moment)

cbx.lib: for V40 platforms (E2, DR1)

Prototype: io.h

Syntax: void LioBrk(CCB *cch)
Parameter: cch = pointer to channel control block
Return value: None

Programmer's Guide CoBox Programming Environment e 73

EEPROM Functions

These functions read and write data into ‘setup or configuration’ memory. Typically, the
programmer will change values in Setup[], then use StoreCMOS() to save these values. If you do
not use StoreCMOS() and use EE_Write() directly, be sure you do not write over the first 6 bytes
of ‘setup’ memory (kernel dependent information is stored there). All of these functions are
automatically indexed into page 1 on the XPort. However, it is possible to overwrite the firmware

Return value:

Return value:

image.
EE Read
Description: Read block out of EEPROM and validate checksum.
Location: kernl100.1ib, kernMAC.lib
Prototype: kernel.h
Syntax: pascal EE_Read(BYTE *buf, WORD adr, WORD len)
Parameter: buf = buffer to store content

adr = address in EEPROM
len = number of bytes to read

Checksum is checked but not stored in buf!
0 = ok, 1 = checksum error, 2 = memory error

EE_Write
Description: Write block to EEPROM and calculate checksum.
Location: kernl100.1ib, kernMAC.lib
Prototype: kernel.h
Syntax: pascal EE_Write(BYTE *buf, WORD adr, WORD len)
Parameter: buf = buffer to store content

adr = address in EEPROM
len = number of bytes to write

2 bytes more are stored at the end of buf to contain the
checksum!

0 = ok, 2 = memory error

StoreCMOS
Description: Write setup array to EEPROM.
Location: kernl100.1lib, kernMAC.1lib
Prototype: kernel.h
Syntax: void pascal StoreCMOS(void)
Parameter: None
Return value: None

74 ¢ Programming Environment

Programmer's Guide CoBox

Flash Functions

These functions are used to write data into the WEB locations. On XPort, these functions
automatically index to the correct page.

CopyEEPR
Description: Copy 64 K EEPROM contents into flash memory.
Location: kernl00.1ib, kernMAC.lib
uds.lib: for the AMD platforms (UDS10,
Mini REv2, Micro, FL, ...)
ecl.lib: for DSTNILX platfoms (UDS100
only at the moment)
cbx.lib: for V40 platforms (E2, DR1)
Prototype: flash.h
Syntax: void CopyEEPR(void)
Parameter: None
Return value: None
flsh_clr
Description: Clear flash page.
Location: kernl00.1ib, kernMAC.lib
uds.lib: for the AMD platforms (UDS10,
Mini REv2, Micro, FL, ...)
ecl.lib: for DSTNILX platfoms (UDS100
only at the moment)
cbx.lib: for V40 platforms (E2, DR1)
Prototype: tlash.h
Syntax: void flsh_clr(WORD ofs, WORD page)
Parameter: page = page number to clear
ofs = offset ignored
Return value: None

Programmer's Guide CoBox Programming Environment e 75

flsh_pgm

Description:

Location:

Prototype:
Syntax:

Parameter:

Return value:

flsh_typ

Description:

Location:

Prototype:
Syntax:

Parameter:

Return value:

Program flash memory.
kernl100.1ib, kernMAC.lib

uds.lib: for the AMD platforms (UDS10,
Mini REv2, Micro, FL, ...)

ecl.lib: for DSTNILX platfoms (UDS100
only at the moment)
cbx.lib: for V40 platforms (E2, DR1)
flash.h
void flsh_pgm(WORD dstofs, WORD dstseg, WORD srcofs,
WORD srcseg, WORD count)

dstofs = destination offset

dstseg = destination segment

srcofs = source offset

srcseg = source segment

count = number of pages to program (must be 0 for 64 K)

None

Get flash type.
kernl00.1lib, kernMAC.lib

uds.lib: for the AMD platforms (UDS10,
Mini REv2, Micro, FL, ...)

ecl.lib: for DSTNILX platfoms (UDS100
only at the moment)

cbx.lib: for V40 platforms (E2, DR1)
flash.h
WORD flsh_typ(WORD ofs, WORD page)

page = page number
ofs = offset

Flash type

76 ¢ Programming Environment

Programmer's Guide CoBox

Flash File System Functions

The following functions operate on files stored in flash memory.

get file_curr_pos

Description: Get file read location.

Location: serfl.lib, parfl.lib
Prototype: filesys.h

Syntax: DWORD get_file_curr_pos (int handle)
Parameter: handle = handle to previously opened file.

Return value:

Return value:

get file start pos

Description: Get file start location.

Location: serfl.lib, parfl.lib
Prototype: filesys.h

Syntax: DWORD get_file_start_pos(int handle)
Parameter: handle = handle to previously opened file.

Return value:

Return value:

File read pointer’s current position, or -1 on error

get_file_len
Description: Get file len.
Location: serfl.lib, parfl.lib
Prototype: filesys.h
Syntax: DWORD get_file_len (int handle)
Parameter: handle = handle to previously opened file.

Length of file, or -1 on error

Offset to start of file, or -1 on error

r close
Description: Close afile..
Location: serfl.lib, parfl.lib
Prototype: filesys.h
Syntax: int r_close(int handle)
Parameter: handle = handle to previously opened file.

always 0

Programmer's Guide CoBox

Programming Environment e 77

r_open

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

r _read

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

set_file_curr_pos

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

Opens a file.

serfl.lib, parfl.lib
filesys.h

int r_open(BYTE far *fname)
fname = filename

valid index to file handle, or -1 on error.

Read from a file.

serfl.lib, parfl.lib

filesys.h

WORD r_read(int handle, BYTE far *buf, WORD len)

handle = handle to previously opened file.
buf = buffer to hold data.

len = maximum number of byte to read.
number of byte read, -1 on error

Set file read location.

serfl.lib, parfl.lib

filesys.h

int set_file_ curr_pos (int handle, DWORD offset)

handle = handle to previously opened file.
offset = offset into the file

0 = success

-1 =error

78 ¢ Programming Environment

Programmer's Guide CoBox

Random Generator Functions

rand
Description: Get random number.
Location: kernl100.1lib, kernMAC.1lib
Prototype: random.h
Syntax: WORD rand(void)
Parameter: None
Return value: Random number (unsigned)
srand
Description: Set random seed
Location: kernl100.1lib, kernMAC.1lib
Prototype: random.h
Syntax: void srand(WORD seed)
Parameter: seed = random seed
Return value: None

Programmer's Guide CoBox Programming Environment e 79

Encryption Functions

tf_byte stream

Description: This function can encrypt or decrypt any number of bytes.
Location: crypt.lib, crstub.lib

Prototype: 2fish.h

Syntax: void pascal tf_byte stream(tf_block *tmpb, tf_key_struct

*keystr, BYTE *input, int nBytes, BYTE *output, BYTE *pstat,
enum tf_stream_mode mode)

Parameter: tmpb = temporary buffer used for decryption
keystr = key structure
input =buffer containing data to be decrypted
nBlocks = number of blocks to decrypt
output = buffer to store decrypted data
pstat = stores current state
mode = one out of: tf_ofb, tf cfb_e, tf cfb_d

Return value: None

tf_block _decrypt

Description: Decrypt a ciphered block.

Location: crypt.lib, crstub.lib

Prototype: 2fish.h

Syntax: void pascal tf_block_decrypt(tf_block *tmpb, tf_key_struct

*keystr, tf_block *input, int nBlocks, tf_block *output)

Parameter: tmpb = temporary buffer used for decryption
keystr = key structure
input =buffer containing data to be decrypted
nBlocks = number of blocks to decrypt
output = buffer to store decrypted data

Return value: None

tf_block_encrypt

Description: Encrypt a plain block.

Location: crypt.lib, crstub.lib

Prototype: 2fish.h

Syntax: void pascal tf_block_encrypt(tf_block *tmpb, tf_key_struct

*keystr, tf_block *input, int nBlocks, tf_block *output)

Parameter: tmpb = temporary buffer used for encryption
keystr = key structure
input =buffer containing data to be encrypted
nBlocks = number of blocks to encrypt
output = buffer to store encrypted data

Return value: None

80 e Programming Environment Programmer's Guide CoBox

tf_key prep

Description: Key pre-processing. Needs to be done only once per key.

Location: crypt.lib, crstub.lib

Prototype: 2fish.h

Syntax: void pascal tf_key_prep(tf_key_struct *keystr, void *key,
BYTE keyLen)

Parameter: keystr = pointer to key structure

key = pointer to key string
keyLen = key length in bits (e.g. tf_key 128)

Return value: None

Programmer's Guide CoBox Programming Environment e 81

Debug Functions

Monitor

Description: Start ProMon.

Location: kernl00.1lib, kernMAC.lib

Prototype: kernel.h

Syntax: void Monitor(void)

Parameter: None

Return value: None

Command Function

5 Dumps memory from segment:offset until character input.
D segment:offset
Enter memory contents.

E E segment:offset vall [val2] .. [val32]
Stores upto 32 BYTEs (or WORDs if WORD mode) to segment:offset++
Fill memory
F segment:offset,last value

F Effectively:
while (offset <= last) segment:offset++ = value;

c Clear flash segment. If segment=1, returns flash type.
C segment

H, ? Help. Print command list.

Port input. Read from register.

| I port
Effectively returns InByte(offset) or InWord(offset) if WORD maode.
Move memory.

M M offset,last target
Effectively:
while (offset <= last) *target++ = *offset++;
Port output. Write to register.
O port <vl1>[<v2> <v3>...<v32>]<cr>

° Writes upto 32 WORD:s to port.
Effectively OutWord(port, v1), OutWord(port, v2)...

P Print process table.

Q Quit ProMon.

T Print ticks in seconds.

w Switch to word mode prefix. Use ‘W’ before command (ex. WE 0000:1234 514)

syslog

Description: Send a message to a syslog server.

Location: tools.c

Prototype: -/syslog.h

Syntax: void syslog(WORD level, char *message)

82 ¢ Programming Environment Programmer's Guide CoBox

Parameter: level: priority level + facility level (see syslog.h)
message: pointer to message to be send.

Return value: None

Programmer's Guide CoBox Programming Environment e 83

SNMP

Introduction

Since it was developed in 1988, the Simple Network Management Protocol has become the de facto standard for
internetwork management. Because it is a simple solution, requiring little code to implement, vendors can easily
build SNMP agents to their products. SNMP is extensible, allowing vendors to easily add network management
functions to their existing products. SNMP also separates the management architecture from the architecture of
the hardware devices, which broadens the base of multivendor support. Perhaps most important, unlike other so-
called standards, SNMP is not a mere paper specification, but an implementation that is widely available today.

For more detailed information on the SNMP protocol please read the file: ~ SNMP - Simple Network
Management Protocol.htm in the directory demol1.

CoBox SNMP structure

The kernel, as it comes in this development environment, contains the basic SNMP implementation for the
Ethernet interface as it is found in almost any, Ethernet enabled device. It supports the storage of the IP settings
and keeps track of several counters for network traffic. In picture 1 this is indicated as the System variables
block. For the demosnmp example we have expanded the default SNMP functionality with a customized part, the
Project variables block, which is described in a so-called ‘private MIB’. This private MIB is the definition of the
extra information, which can be read or written by the SNMP manager. It has to be compiled to become
understandable for the SNMP manager and , in the device server we have to implement a structure to hold the
extra data in such a way that it is accessible by the kernel SNMP module.

Lantronix Device Server

System
variables Kernel SNMP
SNMP
module LAN Manager
Serial B Project (Agent)
Device |\ k5232 demo() =¥ ariables

picture 1 - CoBox SNMP block diagram

The example is meant to be the SNMP-management interface for a power supply. The power supply will report
its temperature, output voltage and current in regular intervals to the serial port. The device server takes the
voltage and current readings, multiply them to get delivered power and compare all the values against predefined
limits. If one of them is out of range an appropriate SNMP-trap will be sent to the SNMP manager. The function
demo() handles all the incoming serial data from the power supply. The name of this handler function can be
changed by the user in main.c and demo.c.

SNMP requests are processed by the kernel depending on the private MIB description. The file
DEMOSNMP.MIB contains the text version of the private MIB while Picture 2 shows a graphic representation of
it.

84 ¢« SNMP Programmer's Guide CoBox

ED private
=[] enterprises
=] magic?
=[] products
=[] powersrc
=[] readings

=] traps

& psPowerReading
& poltageR eading
& psCunentReading

& psTempReading

=[] =ettings

- psPowerpperLirit
i psPowerlowerLimit
& pvoltagel pperLimit
& pvoltageLowerLimit
& psTempl pperLinmit
i psTempLowerLimit
- psSendCommand

- psMessageSting
5 psdlamPower

& psdlamivoltage

i pslamT emp
- patlamSenialCormm

=] tables
=+ historyT able

picture 2 - Private MIB for power supply control

Programmer's Guide CoBox

SNMP e 85

SNMP environment

In the file snmp.c some static variables are defined for the SNMP environment.

Enterprise ID

A private MIB must contain a unique enterprise ID. For the example we have used a fake company called
MAGIC? with an enterprise ID of 7777. This enterprise ID must be declared as static variable enterpriset[]:

[BYTE enterpriset[] = { 6, 7, Ox2b, 6, 1, 4, 1, 188, 97 };

This is the MIB tree iso.org.dod.internet.private.enterprises.magic?.

The first character is always 6, second character is length of object 1D excl. length, and the third byte is 0x2b.
The next characters represent dod.internet.private.enterprises which is OID 6.1.4.1.

Calculation of the enterprise id (7777 is taken as an example):

Given number: 7777 = 1E61(hex) =0001 1110 0110 0001

Use seven bits, fill with zero: =0011 1100 0110 0001

Set first bitto 1; =1011 1100 0110 0001 = BC61 (hex)
=188, 97 (dec)

SNMP object

Use the global variable S_obj[] to point at the start of the MIB tree handled by the device server:
GLOBAL BYTE S _obj[]={9, 0x2b, 6,1, 4,1,188,97,1,2 };

In our examples this is the MIB tree iso.org.dod.internet.private.enterprises.magic7.products.powersrc.

Traps variables

For each generated trap we have defined an OID. This OID will be used when generating the trap message,
which can also hold optional measurement values.

Example:
BYTE onbvar([] = {
/* 1°% char is always 6; 2™ length of objid excl. length */
6, 8, 0x2b, 6, 1, 2, 1, 1, 1, O, /* System Description
*/
6, 8, 0x2b, 6, 1, 2, 1, 1, 3, 0 /* SysUpTime
*/

}; /* object-id for standard-traps */

BYTE onbvar2[] = {

6, 12, 0x2b, 6, 1, 4, 1, 188, 97, 1, 2, 3, 1, 0 /* Error-String */

}; /* object-id for customer specific Trap 2 */

BYTE onbvar3[] = {/* 1°° char is always 6; 2" length of objid excl. length */
6, 12, 0x2b, 6, 1, 4, 1, 188, 97, 1, 2, 3, 1, 0, /* Error-String */

6, 12, 0x2b, 6, 1, 4, 1, 188, 97, 1, 2, 1, 0, 0 /* Error-value */

/* This byte must be set to passed variable ---" */

}; /* object-id for customer specific Trap 3 */

The OID onbvar[] is used with the coldstart trap, onbvar2[] is used with the serial communication traps while
onbvar3[] is used when sending an alarm trap message.

The function ps_trap() is called from various places in snmpscan() and each time different
parameters are passed causing the appropriate data to be included in the trap message.

86 ¢« SNMP Programmer's Guide CoBox

void ps_trap(int typ, int spec)
{

int rc;

if(!'*((DWORD *) (Setup + 22)))
/* check for SNMP mgr IP */

return;

else

{
if(typ < 6)
{
/* Standard traps */
scon.inpptr = onbvar;
scon.inpend = onbvar + sizeof(onbvar);
}
else
{
/* Customer specific trap */
switch(spec)
{
case 2:
scon.inpptr = onbvar2;
scon.inpend = onbvar2 + sizeof(onbvar2);
break;
case 3:
scon.inpptr = onbvar3;
scon.inpend = onbvar3 + sizeof(onbvar3);
break;
default:
scon.inpptr = onbvar;
scon.inpend = onbvar + sizeof(onbvar);
break;

rc = snmp_trap(enterpriset, typ, spec); /* create trap message */
if(rc > 0)
{
if(Setup[22]
udp send(Setup
if (Setup[26]
udp send(Setup
if(Setup[30]
udp_send(Setup
}

22, 162, 162, outbuf, rc);

26, 162, 162, outbuf, rc);

+ - + — 4+ —

30, 162, 162, outbuf, rc);

}

custom routine for sending traps

In this example the traps will be send to up to three manager IP addresses. A specific OID will be send as trap

depending on the spec variable.

Programmer's Guide CoBox

SNMP e 87

Checking access rights

Access rights are processed by the function snmp_acheck(). The access will be permitted depending on IP

address and read/write community name of SNMP manager.

If no custom snmp_acheck() function is provided a default function will be used an
granted.

d access will always be

int snmp_ acheck (unsigned char *ip,
{

int i;

BYTE IPflag=0;

char *community, WORD c

/* Check IP address to be one of the defined SNMP managers

/* and check SNMP community name otherwise exit with no ac
IPflag = 0; /* set IP flag to fa
for (i=0 ; i<3; 1i++) {
if (PS.trapadr[i][0] != 0)
if ((memcmp(ip, PS.trapadr[i], 4)) == 0) {
IPflag=1; /* set IP Flag to true
}
}
if (IPflag == 0) /* all tests failed?
{
return(1l); /* access denied
}
/*
Check SNMP Community
if community is Write Community - read and write access -

if community is Read Community - read only access
if community not known - no access
we need to check the write community first, this is becaus
first,

*/

write requests are blocked as a read only access is

if (strncmp (community, /*
{
return (0) ;
}
else
{
if (strncmp (community,
{
return (2) ;
}
else
{

return (1) ;

}

PS.wt community, comlen)

)

/* read-write a

PS.rd community, comlen) == /*

)
/* read-only ac
/* then:

not

/* access denie

}

omlen)

P
cess */

lse */

*/

*/

*/

(0)
(2)
(1)

return

- return

- return
e if the

read and the write communities have the same name and read is checked

returned

write ? */
ccess */
read ? */
cess */
known */

d */

custom routine for checking access rights

88 « SNMP

Programmer's Guide CoBox

Private MIB

MIB tree definition

The private MIB tree inside the CoBox, as defined in snmpmib.h, must exactly match the MIB file

DEMOSNMP . MIB that is used in the MIB browser. The example shows the beginning of a MIB file with
corresponding part in CoBox source.

You don’t have to use the same names inside the MIB and data priv mib but this will help understanding

the structure.

MIB file :
magic?7 OBJECT IDENTIFIER ::= { enterprises 7777 }
products OBJECT IDENTIFIER ::= { magic7 1 }
powersrc OBJECT IDENTIFIER ::= { products 2 }
readings OBJECT IDENTIFIER ::= { powersrc 1 }
settings OBJECT IDENTIFIER ::= { powersrc 2 }
traps OBJECT IDENTIFIER ::= { powersrc 3 }
tables OBJECT IDENTIFIER ::= { powersrc 4 }
Private MIB tree :
asm data priv mib: dw 1, 7777
asm dw S LEER , 1776
asm dw S SEQU , magic7?
asm magic7: dw 1, 1
asm dw S_SEQU , products
asm products: dw 1, 2
asm dw S LEER ;1
asm dw S_SEQU , powersrc
asm powersrc: dw 1, 4
asm dw S_SEQU , readings
asm dw S_SEQU , settings
asm dw S_SEQU , traps
asm dw S_SEQU , tables

The enterprise name is magic7 and the enterprise identifier is 7777. The header file has to declare a structure with
7776 empty entries (S_LEER) and one for the enterprise ID. S_SEQU points to the enterprise magic7, which
contains only one entry products. products contains two entries (dw 1, 2):one is empty and the 2™

points to powersrc. powersrc itself contains four entries (dw 1, 4).

Programmer's Guide CoBox

SNMP e 89

Read-only variables

Until now only the MIB structure is defined. The next part shows the definition of some read-only variables.

MIB file:

psPowerReading OBJECT-TYPE
SYNTAX
ACCESS
STATUS
DESCRIPTION “Power output”
::= { readings 1 }
psVoltageReading OBJECT-TYPE
SYNTAX
ACCESS
STATUS
DESCRIPTION “Voltage output”
::= { readings 2 }
psCurrentReading OBJECT-TYPE
SYNTAX
ACCESS
STATUS
DESCRIPTION “Current output”
:= { readings 3 }
psTempReading OBJECT-TYPE
SYNTAX
ACCESS
STATUS
DESCRIPTION “Temperature”
::= { readings 4 }

INTEGER (O.

read-only
mandatory

INTEGER (O.

read-only
mandatory

INTEGER (O.

read-only
mandatory

INTEGER (O.

read-only
mandatory

.400000000)

.65535)

.65535)

.65535)

Private MIB tree:

asm readings: dw 1, 4
asm dw S_INT + S _LONG + S_RAM,

asm dw S INT + S_RAM,
asm dw S INT + S_RAM,
asm dw S_INT + S_RAM,

PS.PowerReading

PS.VoltageReading

PS.CurrentReading

PS.TempReading

90 « SNMP

Programmer's Guide CoBox

Variable type descriptors

Symbol

Description

S_SEQU

Sequence, directs to another label

S_LEER

Number of empty fields

S_RAM

Field is stored in RAM

S_ROM

Field is stored in ROM

S_OCTSTR

Field is a zero terminated string

S_INT

Field is an integer value

S_LONG

Field is a long value

S_TIPADR

Field is an IP address

S_TCTR

Field is a counter

S TGAUGE

Field is a gauge

S_TTICK

Field is a timer

S_AFUN

Field will be handled by following function (put ‘_” in front)

Programmer's Guide CoBox

SNMP e 91

Read/write variables

By adding the S_SET to the variable type it becomes writable, meaning that the value of it can be changed
directly from the SNMP browser (manager). It is also possible to attach a separate function to handle variable

changes. In this way extra checking and validation can be added.
Private MIB tree:

asm Settings: dw 1, 7

asm dw S_INT + S _LONG + S RAM + S_SET ,
asm dw S_INT + S _LONG + S RAM + S_SET ,
asm dw S INT + S RAM + S SET ’
asm dw S_AFUN

asm dw S INT + S RAM + S SET ’
asm dw S INT + S RAM + S SET ’
asm dw S_AFUN

PS.PowerUpperLimit
PS.PowerLowerLimit
PS.VoltageUpperLimit
, _voltage Lower
PS.TempUpperLimit
PS.TempLowerLimit

, _send command

Example function for handling a read/write variable, see comments:

voltage Lower (op) WORD *op;
{
if ((scon.flags & FLAG SET))
{
if ((scon.intval < 300) || (scon.intval > 500)
{
return S _badValue;
}
if(scon.flags & FLAG PASS)
{
return 0;
}
else
{
PS.VoltageLowerLimit = (WORD) scon.intval;
return 0;
}
}
else
{
(scon.flags & FLAG INCR)
{
(scon.objend == op)
{

*scon.objend++ = 0;

}

if

if

}

(scon.objend != op + 1 ||
{

return S_NextEntry;

}
(snmp leaf (S _INT + S RAM,

if op[0] != 0)

return

}

/* Setting ? */

)

/* just checking */

/* now do it */

& (PS.VoltageLowerLimit)));

92 « SNMP

Programmer's Guide CoBox

Tables
MIB definition for a table:

asm Tables: dw 1, 1
asm dw S SEQU, historyTable

asm historyTable: dw 0, 1
asm dw S SEQU, historyEntry

asm historyEntry: dw 2, 4
asm dw S_AFUN, history table

This function is called to handle a request on the table:

Programmer's Guide CoBox SNMP ¢ 93

history table(WORD * op)
{
WORD 1i;
if((scon.flags & FLAG SET
(!(scon.flags & FLAG PASS
if (scon.flags & FLAG INCR)
{
/* if increment */
if(scon.objend == op)
{
i = *op = 1;
scon.objend++;
}
else
{
i = *op + 1;

}

*op = 1i;
}

else

{

i = *op;

scon.objend = op + 1;
if(1 > PS HIST)
{
opl -1 J++;
i = *op = 1;

}

switch(op[-1 1)
{

case 1: /* Volt */

snmp_leaf (S_INT

break;

case 2: /* Amp */

snmp leaf(S INT

break;

case 3: /* Temp */

) &&

))) return S readOnly;

/* non incremental

+ S_RAM, &PS.hist[1].volt);

+ S _RAM, &PS.hist[i]J.amp);

snmp leaf(S INT + S RAM, &PS.hist[i]J.temp);

break;

case 4: /* TimeStamp */
snmp_leaf (S_TTICK + S_RAM
&PS.hist[i].tstamp);
break;

default:

return S_noSuchName;

}

return 0;

}

+ S_LONG,

*/

94 « SNMP

Programmer's Guide CoBox

Utility Programs

cbxfilt

Program Description
The goal of cbxfilt.exe is to save memory, storing strings only once.

cbxfilt.exe extracts text lines from the source file(s) and creates two new files texte.asmand
texte.h, which are included into the project.

First the program searches for lines containing putcstn() or putcstr().

|putcstn(T_TXTl/*“Demo project™*/)

Then cbxfilt.exe creates a table with label (T_TXT1) and corresponding string (Demo project). If
the same string is used next time, you only need to write the label and the corresponding text will
be printed:

|putcstn(T_TXT1)

Command Syntax
cbxfilt filel [file2 file3...]

r2h

Program Description
r2h Converts CoBox .ROM files into Intel hex format .HEX.

Command Syntax

r2h romfile

e2i

Program Description

e2i converts linker output <Project name>.EXE into .ROM file <Project name>.ROM.

Command Syntax
e2i Name Type Bootcode Version

Name: Project name
Type: TFTP password
Bootcode: nix

Version: version filename
Example:

e2i xptex X5 nix myVers

Programmer's Guide CoBox Utility Programs e 95

Web2CoB

Program Description

Web2CoB is a command line utility that collects files from a given directory and puts it into one
COBOX.COB file. After uploading the COBOX.COB file to a CoBox via TFTP into memory
areas WEBO...WEBG it can be used as a CoBox web server directory.

WEBQO is located in RAM and loose its contents after a reset. WEB1...WEB®6 is stored in the flash
memory.

When an http request occurs the memory areas are checked for the file name starting in WEBO.
The first matching file will then be send back.

Command Syntax

Web2CoB [/o <output file>] [/d <directory>]

Output file: Optional parameter for output file name. Default file name is
cobox.cob.

Directory: O_ptional parameter for source directory. Default is the current
directory.

96 e Utility Programs Programmer's Guide CoBox

Structure of .COB File

Entry Length [Bytes] Remarks
Magic 4 Magic is always “CoB1”
File 1 directory entry:
0 = end of directory,
. nothing follows.

Length of file name (1) ! = max. length of file name

is 255 chars
. Max. file length is
File length (1) 2 64 Kbytes
File Start Position (1) 4 Relatively to start of .COB

file

File name (1)

Depends on length entry (1)

Contains full path name in
valid web syntax following
http://<server address>/
e.g.

pic/hires/Itx_logo.jpa

File 2 directory entry:

Length of file name (2) 1
File length (2) 2
File Start Position (2) 4

File name (2) Depends on length entry (2)
Repeat until last directory
entry

File (1) Depends on length entry (1)

File (2) Depends on length entry (2)

Repeat until last file entry

Programmer's Guide CoBox

e 97

Cob2WeB

Program Description

Cob2Web is a command line utility that reverses the function of Web2Cob.

Command Syntax
CoB2Web /i <input file> /d <directory>

Input file: Input file name (.COB archive).

Directory: Output directory. Destination for web source files.

98 e Programmer's Guide CoBox

Demo Sample Programs

Introduction

Several sample programs are provided as part of this kit. The
samples are to provide examples of commonly required
functionality.

In each demo project, there are several source files.

Main.c is a common block of all demos. Main.c contains all needed
procedures for initializing so-called “process” that is a main
feature of CoBox’s operation system. The WebProcess() is launched
from main.c for those demos requiring web services.

Demo.c is where most of the functionality changes take place.
Setpar.c is where changes to setup menu are made.

Tools.c is a collection of nice to have utilities, and is common
across all demos. By default these utilities are undefined with
#ifdef statements.

Below is a description of each demo’s functionality.

Demo 1

In this version, the program is only a so-called “hello world”
program that demonstrates a very basic functionality. In this
case, 1t is a simple template of the necessary infinite loop with
the nice () function.

Demo 2

In this version, the program begins the exchange of UDP packets in
a classic serial tunnel (source port 1234) (destination
192.168.1.100:4321).

Demo 3

In this version, the program adds the use of the setup menu, and
setup data array to hold remote socket information.

Demo 4

In this version, the program adds the exchange of TCP packets to
the above demo project.

Demo 5

In this version, the program joins together the two FIFO for
simple data handling.

Demo 6

In this version, the program adds the ability to use passive or
active TCP connections (listen or connect).

Programmer's Guide CoBox Demo Sample Programs e 99

Demo 7

In this version, the program adds DNS resolver functionality.

Demo 8

In this version, the program changes the serial port reading for
non-buffered IO operations.

Demo 9

In this version, adds TwoFish encryption to LTX, DLX and U200.

Demo 10

This is a complete program change and only supports the Xport and
WiPort. This demo is used to control the configurable pins of the
Xport & WiPort. This demo includes a Java based applet, which can
be used to manipulate the pins.

Demo 11

This program is an example of implementing a private SNMP MIB.

Demo 12

This program is an example of implementing a cgi callback through
the HTTP server. To use this demo, you must tftp the cobox.cob
file to WEB1. Then, use a browser to connect to the CoBox..
http://<ip address>/test.html. After submitting your query,
you’1ll have 10 seconds to input serial data as the response. (A
loopback connector would work.)

Browsing to http://<ip address>/testjs.html is an example of using
Java Script in an application. In this example, the serial
response is placed into a Java Script variable.

Demo1l3

This program is an example of implementing SMTP, which is a basic
way to send mail.

Demol4

This program is an example of implementing Rijndael encryption.
This demo is for encrypted Xports, SDS and Micro-100s only, and
may not be in all kits.

Demol5

This program is an example of implementing a SNTP client. This is
a simple way of receiving network time. NOTE: this demo has not
had extensive testing performed.

Demol6

This program is an additional example of implementing a SNMP
private MIB. NOTE: this demo has not had extensive testing
performed.

100 ¢ Demo Sample Programs Programmer's Guide CoBox

Ethernet Frame Handling

Inbound Frame Processing

Upon reception of Ethernet frames, CoBOS removes the frames from the Ethernet ring buffer, and
places them into a section of RAM reserved for incoming frames. When the IP Process task is in
the run state, it inspects the buffer for inbound frames and handles them according to the Ethernet
type field.

Under normal processing, the Ethernet type field is tested for IP or ARP. If neither condition is
true, the packet is passed to a default packet handler (pkt_default() — if it’s defined).

ARP Handler

If this is an ARP packet, CoBOS will act on it locally. If it's not a locally handled packet it is
passed to a default arp handler (pkt_defarp() — if defined).

IP Handler

IP packets have a larger processing procedure. If the packet is IP addressed to the CoBox (or a
broadcast or multicast), the packet continues processing; otherwise it is passed to the default IP
handler (pkt_defip() — if defined).

Only three types of IP packets are handled: ICMP, UDP and TCP. Processing within these

sections is controlled by the global parameter tc_para.

ICMP Handler
If the packet is ICMP, and (tc_para & 2) is true, call pkt_defip(), otherwise handle the
packet locally. After local processing of ICMP, if (tc_para & 8) is true, then call
pkt_defip().

UDP Handler
If the packet is UDP, and a handler is registered (udp_register()), call the handler. Then if
(tc_para & 1) is true and it's a broadcast, multicast or no port handler is registered call
pkt_defip().

TCP Handler

If the packet is TCP and (tc_para & 4) is true, call pkt_defip(), otherwise handle the
packet locally.

After processing ICMP, UDP or TCP, if the packet is a broadcast or multicast, call pkt_defip(), if it
was not previously called.

If pkt_defip or pkt_defarp are not set, pkt_default() is called in it place - if it’s set.
Finally, pkt_bridge() is called for all packets if set.

Programmer's Guide CoBox Ethernet Frame Handling ¢ 101

Packet Handler Syntax

Hooks into the network stack are available via the use of four functions and one control switch.
These functions are normally NULL, but if defined, will be called by the network stack at different
points during processing of the Ethernet frame. Each Ethernet frame is preceeded by a length field
(see e_hdr_t structure below). Each packet handler is called with a pointer to specific data within
the frame.

typedef struct e hdr t {

int len; /* length */

BYTE to[6]; /* to address */

BYTE from[6]; /* from address */

WORD type; /* ethernet type, 0x800-IP 0x806-ARP */
} e _hdr t;

void *pkt default (BYTE *rb)
rb - pointer to e hdr t structure

void *pkt bridge (BYTE *rb)
rb - pointer to e hdr t structure

voild *pkt defarp (BYTE *rb)
rb - pointer to the "to" field of the e hdr t structure

void *pkt defip (BYTE *rb, WORD b)
rb - pointer to IP header in the Ethernet frame.
b - broadcast flag
1 - broadcast
2 - multicast

To use the bridge functionality for example:

extern void (*pkt bridge) ();
void bridge default (BYTE *rb);

demo ()

{
pkt _bridge = bridge default;

void bridge default (BYTE *rb)
{

/* Insert your handler code here */

102 e Ethernet Frame Handling Programmer's Guide CoBox

Overview

Outbound Frame Processing

You can send raw Ethernet frames by passing a complete frame to the Ethernet controller. To
perform this functionality correctly, a three step process is required. Your program should allocate
the buffer, send the buffer, and then free the buffer.

getportbytype

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

GetSendBuf

Description:

Location:
Prototype:
Syntax:

Parameter:

Return value:

FreeSendBuf

Description:
Location:
Prototype:
Syntax:

Parameter:

Return value:

_send_block

Description:
Location:
Prototype:
Syntax:

This function returns the index of the interface.

<platform specific>.1lib

int getportbytype(WORD itf, BYTE port);

itf — interface (ND_DRYV — DSTni wired interface, NW_DRV —
wireless interface)

port — always 0.
Returns an index to the interface.

This function return a pointer to a transmit buffer. This function
will block until one is available.

<platform specific>.1lib
nethw.h

BYTE *GetSendBuf(WORD itf);
itf — interface to get buffer for.

Returns a pointer to a transmit Ethernet buffer.

This function frees reference to the transmit buffer.
<platform specific>.1lib

nethw.h

void FreeSendBuf(BYTE *buf);

Buf — pointer to transmit buffer returned by GetSendBuf()

None

Lists a buffer available to the Ethernet controller for transmit.

<platform specific>.1lib

int _send_block(BYTE *buf, WORD len, WORD interface);

Programmer's Guide CoBox

Ethernet Frame Handling ¢ 103

Parameter: buf — pointer to transmit buffer returned by GetSendBuf()
len — number of bytes to transmit
interface — value returned from getportbyname().
Return value: Always0

For example:

{
BYTE *buf;
WORD itf;

itf getportbytype (ND DRV, 0); /* get wired interface number */
buf = GetSendBuf (itf) ;

- /* Store bytes into the buffer */

_send block(buf, length, itf);

FreeSendBuf (buf) ;

104 e Ethernet Frame Handling Programmer's Guide CoBox

DSTni Chipset Loading

Introduction

Lantronix uses both the DSTni-LX and the DSTni-EX chipsets in some of its products. The on-chip boot
loaders are different. Both loaders will attempt to find a valid bootable image from the serial port, parallel
flash and SPI interface (serial flash), in that order. The DSTni-EX will also attempt to boot over the
network using a BOOTP / TFTP sequence. The first valid image found will be loaded.

The DSTni-LX will inspect the serial port at 115200, 8, N, 1 for the serial download signature. If the
signature is found, the serial binary file is loaded directly to segment 0x0008. The DSTni-EX performs the
same way, except inspects the port at 57600.

Parallel flash is inspected on 64KB boundaries starting at segment address OxFFQO0. If a valid image is
found, the header describes the size, load location and entry point of the image (checksum validation is
performed).

Serial flash is inspected at page 5 for a valid header. The header describes the size, load location and entry
point of the image (checksum validation is performed).

A network boot image must also contain a valid header as above.

CoBOS Loading

Serial Flash Devices

XPort, Micro-100 (CPK580) and earlier than V6

Serial flash page 5 contains a small "intermediate loader”. The main 64KB CoBOS image is stored at

page 6+. A damaged intermediate loader (checksum error of either the intermediate loader or the

CoBOS image) will cause the DSTni-EX to attempt a network boot. A DSTni-LX will spin on the

serial port for download.

Load Process:

1. The on-chip loader copies the image described in the header to the load location described in the
header (segment 0x0008 for XPort and Micro-100).

2. On-chip loader turns over control to the copied image (intermediate loader).

3. The “intermediate loader” copies the CoBOS image to RAM3.

4. The “intermediate loader” turns over control to CoBOS in RAM3.

XPort, Micro-100, (CPK6100) and V6 or later

Serial flash page 5 & 6 hold the small "intermediate loader". The first 64KB of the CoBOS image is

stored at page 7. A damaged header or checksum error of the intermediate loader image will cause the

DSTni-EX to attempt a network boot. A DSTni-LX will spin on the serial port for download.

Load Process:

1. The on-chip loader copies the image described in the header to the load location described in the
header (segment 0x0008 for XPort and Micro-100).

2. On-chip loader turns over control to the copied image (intermediate loader).

3. The “intermediate loader” inspects page 7 for a valid CoBOS image and copies the first 64KB
from page 7 to RAMS3.

4. The “intermediate loader” will then copy any remaining bytes from page 308 to RAM2.

5. The “intermediate loader” turns over control to CoBOS in RAM3.

If the intermediate loader load is valid and no valid CoBOS image exists, the intermediate loader will
invalidate itself and reboot.

Parallel Flash Devices

Programmer's Guide CoBox DSTni Chipset Loading ¢ 105

WiPort, WiBox, UDS-100, SDS, Xpress-DR (CPK580) and earlier than V6

Parallel flash segment OxXFFOO holds the header and a small "intermediate loader”. The main 64KB

CoBOS image is stored at segment 0x8000. A damaged header or checksum error of the intermediate

loader will cause the DSTni-EX to attempt a network boot (wired interface only). A DSThi-LX

(Xpress-DR, SDS or UDS-100) will spin on the serial port for download.

Load Process:

1. The on-chip loader turns over control to the “intermediate loader” image described in the header.

2. The “intermediate loader” searches for a valid CoBOS image in each 64KB flash segment starting
at OxFEOO and ending at 0x8000 (working down).

3. The “intermediate loader” turns over control to the first valid CoBOS image found.

WiPort, WiBox, UDS-100, SDS, Xpress-DR (CPK6100) and V6 or later

The boot and load process is the same as describe for the V5.8.0.1 devices above.

V6+ however uses two banks of six 64KB pages for CoBOS image storage. These two banks are
known as the “executing bank” and the “upgrade bank”.

The first bank can start on any 1MB boundary, and the second bank is located six 64KB pages above it.
WEB 1 is located six 64KB pages above bank 2.

For example:

Bank 1 at 0XE00000 (segment 0XEQ0Q)

Bank 2 at 0XE60000 (segment 0XE600)

WEB1 at 0XEC0000 (segment OXEC00)

When the executing bank is assigned to bank 1, bank 2 is the upgrade bank. When bank 2 is the
executing bank, bank 1 is the upgrade bank. TFTP upgrades write directly to the flash upgrade bank.
After successful checksum and flashing of the upgrade image, the V6+ device will invalidate the
CoBOS image in the executing bank and reboot.

Notes:

1. Device Installer’s firmware recovery procedure of WiPort W4 or WiBox W3 will erase twelve
64KB pages of flash (both banks) effectively erasing segments 0x8000 — 0x8BO0O0 inclusive.

2. Itis possible to flash a 64KB executable image into the WEB areas. Once this is done, that image
will be executed upon reboot since it will be found first. This will cause the logical flash layout to
be different than documented. The ONLY recovery method is to erase the parallel flash.

3. ltisalso possible to AU flash a V5.8 image on top of V6. The safest method would be to append
the radio firmware to the rom image before the flashing. The new V5.8 rom image would be
stored in either segment 0x8000 or 0x8600 which “could” cause a different logical flash layout.

4. Changing to or from V6+ will require a reload of the Web Pages also.

106 ¢ DSTni Chipset Loading Programmer's Guide CoBox

CoBOS Standard UDP Handlers

These are the standard functions we associate with the listed UDP port numbers.

7 UDP_Echo
68 dhcpr

69 tf_recv

161 snmp_input
1023 dns_reply
Ox77F0 GPIOUDPrec
OX77FE fw_recv

Programmer's Guide CoBox CoBOS Standard UDP Handlers e 107

